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ABSTRACT

A practical approach for predicting partially cavi-
tating flow characteristics of foil sections is presented
The met hod takes into account indirectly the viscous flow
effects and the interaction between the fully wetted and
perturbed cavitating flows. The partially cavitating flow
characteristics are found to be sensitive to variations in
the angle of attack, canber, thickness, and the thickness
distribution. Sorre conpari sons between the cal cul ated and
neasured cavity lengths are nade, and the results are
generally in good agreenent. Further devel opnents needed in
the future are also discussed

ADM NI STRATI VE | NFORMATI ON
The work reported herein was supported by the General Hydromechanics
Research Program under Task Area SR0230101 and Wrk Uit 1522-025

| NTRODUCTI ON

There is concern with avoi ding probl ens and reducing the |ikelihood of
propel ler-induced hull vibration, noise, and blade erosion on Navy ships. The
unst eady surface pressure excitation and |local flow instability responsible for
these probl ens are associated with bl ade sheet cavity geonetry and cavity dynam
ics. Reliable conputational tools for the analysis of propeller blade sheet
cavitation would be wuseful for assessments of given propeller/wake/hull arrange-
nments and for guidance of new propel |l er geonetries intended to keep bl ade cavi -
tation and excitation levels under sone control

Real istic estimates of hull surface pressure excitation produced by unsteady
‘cavity volune variation depend on accurate definition of cavity geometry. Tulin
and Hsul»2* have observed, for instance, that predictions of partially cavitating
flows about a lifting surface are very nmuch influenced by the surface velocity
distributions calculated for fully wetted flows about the foil sections and by the
conditions used for the cavity closure. Linearized theories for [lifting foils
all predict an infinite suction-pressure peak at the foil |eading edge, with an
inverse square root singular behavior. This propagates difficulties into the
analysis of the cavitating flow over the foil, especially for the cavity

georetry. Linear cavity flow theories show inaccurate cavity predictions for

*References are listed on page 11



the location of the sheet cavity leading edge, the sensitivity of the -cavity
extent and cavity thickness to changes in the foil thickness, and foil angle of
attack. It has al so been shown? that details of the cavity-closure condition can
affect the overall hysteresis-like behavior of unsteady leading edge cavitation.

Exanpl es of linearized analysis of two-dinensional, partially cavitating
flows about lifting foils and some applications of the results to three-
dimensional propeller blade problens are found in References 3 through 9.
Cenerally, the results of the conplete propeller analysis schenmes are fairly good
in that the principle features of the steady and unsteady bl ade cavitation and
propel ler performance are at least represented in the predictions

There are, however , persistent difficulties with the cavitating flow aspects
of the available calculation schemes, leading to a degree of wunreliability in
the predictions. As an exanple, consider the Mssachusetts Institute of
Technol ogy unsteady cavitating propeller anal ysis program developed by Lee,6 and
known by the acronym PUF-3. W en applied to high speed ships (~30 knots) the usua
prediction for blade cavitation fromthis conputation schenme typically shows
excessive cavity length over the outer blade region, compared wth observations.

Recently, a nonlinear nunerical nethod for the analysis of two-dinensional
partially cavitating lifting foils has been devel oped by Uhlman!O based on the
distribution of line-vortex elenents on the boundaries of the foil and cavity.
This inmportant work has been useful in (a) illustrating the differences in trends
between the linear and nonlinear predictions for crucial cavity flow features, and
(b) showing qualitative agreement with the existing results of Tulin and Hsu
Unfortunately, the method requires very large conputation tinme and cost, involving
| arge nunbers of boundary elenents and nany iterations to arrive at very
slowy converging solutions. It does not appear that such a large conputationa
effort can be tolerated at the present time inside a | arge-scal e three-
dimensional calculation schene for an entire propeller.

An inportant building block for the eventual realistic analysis of conplete
propeller blade flowis a reliable yet (fast running) efficient computer program
for the prediction of partial chord length cavitation and the hydrodynam c | oads
devel oped on two-di nensional foil sections operating in high speed steady and
unsteady inflow conditions. The present work describes results’ for an approach

that holds great promise for both accuracy and calculation speed.



Wth the fully wetted flow assumed known, a partially cavitating flow
theory was developed by Tulin and Hsu. : This theory offers the foll owi ng advan-
t ages: (a) it deals with the effect of leading edge radius; (b) it can be
applied as a two-dimensional perturbation to a known three-dinensional flow
Some salient features of Tulin-Hsu theory are outlined.

In the original treatment of Tulin and Hsu, the cavity is assunmed to be
detached from the leading edge, and the circulation of the fully wetted flowis
taken to be the ideal-flow value. Roth of these assunptions are not generally
realized in practice. The theory of Tulin-Hsu is nodified here to account for
some of the real flow effects, and is used to predict the cavitation performance
of various NACA (National Advisory Conmittee for Aeronautics) sections. Sone
conpari sons between the cal cul ated and nmeasured cavity |l engths are made, and the
results are found to be generally in good agreenment. Further devel opnent s

needed in the future are also discussed.

QUTLI NE OF TULTN- HSU THEORY

Consi der two-di mensional inviscid flows with small regions of cavitation and

defi ne;

¥ = (¢/U) + 1(P/U) (the conpl ex potential) (1)
d¥/dz = ¥' = ‘P(')‘{’i = (UU = i(v/U) (the conplex velocity) (2)
—180
yro- q4e (no cavitation) (3)
' -6, "
Y] o= gle (

represents the effect of cavitation, so that

w'l =1 (5)



if no cavitation occurs. The flowin the physical and conpl ex potential plane
is shown in Figure 1. The problem as posed, utilizes the single spiral vortex
model for cavity termnation

For the solution, it is useful to define the function

© =Wyt = 1n do. 180+ 1n q - iel (6)

The w representing the contribution fromthe fully-wetted flow, is assuned to

0?
be known. The problemis then reduced to that of finding @y with the boundary
condi tions:

Re(w,) = I n q; = In (qc/qO) $g<d<dy (7)

where qc = V1+o (o = cavitation nunber) and

$ <4<y
v =07
Im(oul) = O T ¢D<¢><¢E (8)
ENLTRAR
The conditions at infinity are:
Re(wl) = O (9)
Im(w;) = 0 (10)
The approximate cavity closure condition is:
im g = @p/eu? =8 ()

where Dy is the cavity drag.



The problemas formulated may be greatly sinplified with the aid of tt:

conf or nal t ransfornati on
Wep (12)
- s B o4
T 1al (‘l’/d)E)—l in

or

¥/b = o7/ ad) (13)
wher e

a; = V(¢E7¢D)—1 (14)

whi ch maps the conpl ex potential plane onto the G half plane as shown in
Figure 2
The associ at ed boundary conditions, conditions at infinity, and the closure

condition are given respectively by:
Re(w,) = ln(qc/qo) —1<£<—bl (15)

Im(ml) =0 —o<E<~] (16)

(17)

|
o

Re(a)l(—ial))
Im(wl(-ia1)> =0 (18)

Imfml(d‘l’/dc)dc = (Dl/pU2) = 60 (19)



The appropriate solution of the m xed boundary val ue problemis then given
by:

b,
vT+b . 1 Ly t+1 [ln\/l+0—1nq ] -
i 0
w = —= d¢+C

C+bl(€-?;)

0+clg (20)

The value of al is assumed specified, which is equivalent in specifying the
cavity length. The constants c,, cl, and o are deternined from Equations (17),
(18), and (19). Note that Dy in Equation (19) is not known a priori; a satisfac-
tory solution can, however, be obtained in two or three iterations.

For a first approximation, the lift and drag due to cavitation may be

expressed as:
L+ 0 = -0t fo @rana 21)

and the cavity volune is given by:
Vv = —Im/u)l‘l’(d‘P/dC)dC (22)

SOVME  PRACTI CAL  APPLI CATI ONS

The cavitating flow perturbation ¥y, as seen in Equation (20), depends only
upon the local fully wetted velocity distribution, q,, and cavity detachnent
poi nt . In the original treatnment of Tulin and Hsu, the cavity is assuned to
detach fromthe |eading edge (b; = 0), and the fully wetted velocity distribu-
tion is assuned to be determned by perfect fluid theory; such assunptions may
not be realized in practice.

The velocity distribution is generally nodified by the viscous boundary
layer and wake. The effect of viscous wake on the circul ation defect, according

to Spence and Beasley,11 may be approxi mated by:

_ _ '/ 2 . \2
I = (LIFT/pU) = rideal [1—0.214 (D/0.5pU"¢) (23)

t
-4



where D = Do + D} = total drag and ¢ = chord length. The boundary layer effect
on circul ati on depends on shapes and transition positions of foils and is quite
cunbersome to estimate. In the present application, neasured lift-curve slopes
will be used for estimating fully wetted velocity distributions. For a first
approxi mati on, Equation (23) is also utilized to account for sone of the
interactions between the fully wetted and the perturbed cavitating flows.'

Cavitation inception at high speeds generally occurs at the position of
mnimum pressure. In the present approach, the cavity is assuned to detach at
the point where the fully wetted pressure is nmnimum The exact |ocation of
detachnent is, of course, also dependent on fluid properties, anbient flow con-
ditions, and transition positions. Such influences can be substantial in
laboratory studies when test Reynolds nunbers are |ow

In the following, the wpartially cavitating flow characteristics of various

NACA sections are analyzed. For such sections, ideal-flow values of the fully

wetted velocity distributions are tabulated in Appendices | and Il of Reference
12. In the first iteration, the value of D; is taken to be zero. For the sub-
sequent iterations, the value of Dj is approximted by:
*2
Dl = LOOL[l—(U/qo )] (24)

where L, = fully wetted lift, q,* = fully wetted velocity at the position of
mninum pressure, and o = angle of attack. Wnd tunnel nmeasured values of [|ift
curve slope at chord Reynol ds nunber = 6 x 106 (presented in Figure 57 of
Reference 12) are used to correct the ideal fully wetted velocity distributions.
Al though the calculated results can only be applied strictly to the cases in

whi ch the chord Reynol ds nunbers are close to 6 x 106; such results are believed
to be approximately valid for higher Reynolds nunbers (up to about 108); the
correction due to the variation of Reynolds nunber in the ranges of 107 ~ 108 is
probably not significant. Extensive nunerical calculations have been made
however, only selective results of salient interest are presented here.

In Figures 3 and 4, the variations of cavity length and volume wth angles
of attack and cavitation nunbers for NACA 66-006 section are shown. The length
and vol ume of the cavity, for a given &/0, generally increase wth increasing
angle of attack. The cavity length and cavity volume for canbered NACA



66-006 with a = 1.0 neanline, and @ = 40 are given in Figures 5 and 6. The
effect of increasing design camber is to increase the length and volume of the
cavity.  Some of the partially cavitating flow characteristics for NACA 66-006,
NACA 66-008, NACA 66-010, and NACA 66y-012 sections are shown in Figures 7 and
8. The length and volune of the cavity, in general, decrease rapidly wth
increasing foil thickness. The partially cavitating flow characteristics are
also found to depend on thickness distributions. Shown in Figures 9 and 10 are
some calculated results for NACA 66-006, NACA 63-006, and NACA 0006 sections
with o« = 40, The NACA 0006 section, which has leading edge radius = 0.,004c pro-
duces smaller cavity lengths and cavity volumes than those produced by the NACA
63-006 and NACA 66-006 sections for a/o <0.05; but for o/o >0.05, the NACA 0006
section produces larger cavity lengths and cavity volumes than those of NACA
63-006 and NACA 66-006 sections. The leading edge radii of NACA 63-006 and NACA
66-006 are 0.00297c and 0.00223c, respectively.

Some conparisons between the calculated and the neasured cavity lengths are
shown in Figures 11 through 14. The foils for which systematic experinental
observations are available include: NACA 4412 (Kermeen),l3 NACA 661-012
(Kermeen), 14 10.5% Joukowsky section (Shen and Peterson),l3 NACA 64A006
(MQullough and Gault).!® In analyzing NACA 4412, NACA 661-012, and NACA 64A006
sections, neasured lift curve slopes for the fully wetted flow are used for the
first iteration. For the Joukowsky section, the value of 2v for [lift-curve
slope is used for the calculations. The data of MQullough and Gault are wnd
tunnel neasurenents for leading edge separation, the cavitation nunmbers and
cavity lengths are inferred from pressure coefficient neasurements (from Figure
3 of Reference 16). The agreenent between theory and neasurenents is in general
good. The results lend credence to both the present theoretical devel opnent and
method of calculation.

DI SCUSSI ON
The partially cavitating flow characteristics of hydrofoil sections are
found to be sensitive to variations of angle of attack, canber, thickness and
thickness  distribution. A
Foil section thickness has an inportant infThence. FOr a given a/o, the

cavity extent (length) generally decreases with increasing thickness ratio,



as seen in Figure 7. The effect of thickness distribution and |eadi ng edge
radius is sonmewhat nore conplicated. In Figure 9, with a conparison at the sane
thickness ratio, the NACA 00xx sections (with |larger |eading edge radius than
NACA 6-series sections) produce shorter cavities for small values of @/d <0.05,
For larger values of &/0, NACA 6-series sections generally produce the shorter
cavi ties. About the same trend holds for the sectional cavity vol une. Tﬁus,
dependi ng on the operating ranges of a/¢, the choice of foil section for the
least amount of partial cavitation can vary considerably.

The theory presented herein takes into account the proper pressure distribu-
tion at the leading edge of the noncavitating foil flow It: is substantially dif-
ferent from that in the linearized theories. Sone conparisons between results of
the present calculations and results of linear theory are displayed in Figure 15
for NACA 16-series sections. In these calculations, the value of 27 is used for
the lift curve slope. It is seen that the linear theory provides substanti al
m srepresentation of the effect of section thickness on cavity extent. Li near
theory predicts an increase in cavity length wth increasing thickness ratio,
contrary to the correct trend predicted by the present analysis.

By using nmeasured values of lift-curve slope for fully wetted flow, the pre-
sent results also take into account indirectly sone of the viscous flow
effects. Exanpl e variations of conputed cavity | engths associated with changes
inlift curve slopes for NACA 66-006 section are given in Figure 16, and are seen
to be substantial. Lift reduction due to viscosity depends on foil trailing edge
angles and may not be small, especially for chord Reynol ds nunber <106, In
these cases, the viscous-flow effects on the partially cavitating flow charac-
teristics can becone very inportant.

The present theory al so accounts for someof the reduction in circulation
due to the effect of cavity wake. This is acconplished by using Equations (23)
and (24). The interaction effect involves a reduction of foil lift that is caused
by the flow retardation associated with the cavity drag. It can be substanti al
if the cavity drag is large. In Figure 17, the magnitude ofthis influence is
indicated as the variation of cavity length for the NACA 66-006 section with and
without the interaction effect included.

Fl ow characteristics of partially cavitating foils vary also with the

positions of cavity detachment and cavity closure conditions. Variations of



cavity length with different detachment points are given, for example, in Figure
18 for the NACA 66-006 section at a = 4° incidence. This compa-res the results for
detachment at the leading edge (xd = 0) with those using the minimum pressure
point (xd = xm) for fully wetted flow. In the present example the value of

Xp (= 0.00026) is quite small. Values of Xy are much larger for thicker sec-
tions with smaller angles of attack, and the effect of cavity detachment posi-
tions on the partially cavitating flows can be substantial. In Figure 19, the
predicted cavity length variations due to different closure conditions for NACA
66-006 section are displayed, and are shown to be significant. Since the cavity
closure condition may vary rapidly in unsteady flows, it can have a very impor-

tant effect on time-varying properties of partially cavitating flows.

CONCLUSIONS AND  RECOMMENDATIONS

The present approach permits an efficient and fast-running solution to the
partially cavitating flow problem to be carried out in terms of a known fully wetted
flow velocity distribution. This analysis can be readily applied to unsteady flows
if the time rate of change is not too rapid. The perturbed cavitating flow can
thus be analyzed at any given time based upon the instantaneous values of angle of
attack. A similar approach may also be applied to unsteady three-dimensional flows
if the fully wetted flow does not vary too rapidly in the spanwise direction.

Further work should be carried out along several lines to exploit the present
successful analysis of partially cavitating realistic-foil sections. (1) The
steady results should be extended to include unsteady inflow variations of arbitrary
frequency in order to cover cases of rapid-time variability. (2) With the two-
dimensional analysis complete for steady and unsteady cases, the results should
be applied to make a comprehensive study on the influence of section shape on
performance features of partially cavitating foils. New foll s’hapes will be
generated that have certain desirable features for use as propeller blade sec-
tions. Examples of sought-after properties might include: the best lift-to-
drag performance for given cavity length and/or volume; the least cavity length
and volume for given foil lift; and the least inherent unstable cavity behavior
under typical unsteady conditions. (3) The present nonlinear sectional flow
analysis approach should be incorporated into a global |lifting-surface analysis

scheme for unsteady propeller performance.
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