
HYDRONAUTICS, Incorporated 

TECHNICAL REPORT 121-5 

. 

t’ 

THE SHAPE OF CAVITIES IN 
SUPERCAVITATING FLOWS 

BY 

Marshall P. Tulin 

April 1965 

Presented in Abridged Form at the XI International Congress 
for Theoretical and Applie'd Mechanics, Munich - 

September 1964 

Prepared Under 

Contract Nonr-3435(00) 
Office of Naval Research 

Navy Department 

I I 



. 

t 

. 

HYDRONAUTICS, Incorporated 

-I- 

TABLE OF CONTENTS 

INTRODUCTION.......................~ ...................... 

STEADY, PLANAR CAVITIES IN THE ABSENCE OF GRAVITY ......... 

Dragless Cavities .................................... 

The Influence of Lift ................................ 

STEADY, PLANAR CAVITIES IN THE PRESENCE OF GRAVITY ........ 

Longitudinal Field ................................... 

Transverse Gravity Fields ............................ 

REFERENCES ................................................ 

Page 

1 

2 

10 

12 

12 

13 

16 

29 

I I il i/i ’ 



HYDRONAUTICS, Incorporated 

A, b,‘bi J Ci Real constants 

cD The drag coefficient based on a characteristic 
body dimension, c 

'd 

c 

c 
P 

g 

I 

k 

a 

a0 

PC0 

pc 
R 

to4 

% 

52 

-ii- 

NOTATIO:N 

The drag coefficient based on the cavity length,J 

A characteristic body dimension 

The pressure coefficient on the body 

The acceleration of gravity 

Denotes"the imaginary part of" 

A wave number, gR/2U02 

A non-dimensional leng'th, gR/2U02 

The cavity length in the absence of gravity 

The ambient pressure at the position of the 
forebody 

The pressure in the cavity 

Denotes "the real part of" 

The wake or cavity thickness at infinity 

The cavity thickness 

The speed on the cavity 
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uO 
The speed at infinity 

U The velocity perturbation in the undisturbed flow 
direction 

V 

33 

X 

Y 

yc 

The velocity perturbation normal to u 

The total volume of the cavity 

The ordinate in the undisturbed flow direction 

The ordinate normal to x 

The vertical ordinate of the cavity boundary 

yO 
The vertical ordinate of the body 

Z The complex variable, x + iy 

a o,%,~2,P,Y Real constants 

r The circulation around the cavity 
. 

The non-dimensional complex variable, x ' iy 
J/2 

The complex velocity, u - iv 

The non-dimensional horizontal ordinate, 

P The density of the flowing fluid 

The cavitation number based on the ambient 

pressure at the forebody, 0 = %- p, 

&Jo 
2 

The entering incidence 

1 llillll I /I 
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+ The complex potential, @ + i$ 

The non-dimensional complex potential, Q 
uo.a/2 

The real velocity potential 

The real stream function 

The non-dimensional stream function, 

. 
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INTRODUCTION 

A great deal of interest has recently been shown in super- 

cavitating flows. This interest seems due in part to the sub- 

jectls practical importance in connection with supercavitating 

and ventilated propellers, turbines, and hydrofoils; in part to 

the traditional mathematical interest in free streamline flows - 

as boundary value problems; and perhaps in part to the stimulation 

afforded by the observation of actual supercavitating flows as 

created in experimental water channels. Indeed, "cavity-watching" 

can be a rewarding past-time, and no better way to become fa- 

miliar with cavity flows can be imagined. Sometimes interesting 

phenomena which are not yet well understood may be observed, and 

occasionally one is moved to ask quite general questions about 

the shape of cavities in supercavitating flows. The latter forms 

the subject of this paper. 

Some of the most interesting cavities in nature are un- 

steady and three-dimensional. Here, however, we shall discuss 

only certain questions about steady, planar flows. 

Perhaps the most interesting new result given here concerns 

the effect of a transverse gravity field on the Helmholtz flow 

(a = 0) past a small forebody experiencing drag alone. The 

first-order boundary value problem for this flow is solved in 

closed form. It is shown that the cavity behind such a body is 

of a finite length which corresponds to a definite Froude number 

[flow speed/(gxcavity length)+] with a value of l/7/;;. The 

cavity is, quite contrary to intuition, deflected in the same 



HYDRONAUTICS, Incorporated 

-2- 

direction in which gravity acts, so that the bulk of the cavity 

lies below the forebody; the cavity is symmetric fore and aft 

and terminates at the depth of the forebody. 

Other flows are also discussed here including the dragless 

cavity, and some new non-linear finite-cavity models are dis- 

cussed; these models feature cavity termination in spiral vor- 

tices followed by trailing wakes. 

STEADY, PLANAR CAVITIES IN THE ABSENCE OF GRAVITY 

The length of a cavity which is at least several times in 

length the size of the body that produces it, depends primarily 

on the drag of the forebody (which is assumed to be non-zero) 

and the cavitation number of the flow. The form of the well- 

known asymptotic law, 

n1 

may be deduced from some rather simp:Le considerations, Tulin 

(1964 >> of which the most important is that the cavity drag of 

the forebody manifests itself in the flow in the form of mixing 

momentum losses; these are assumed to occur in a localized 

region where the cavity terminates 01” "collapses." Irregular, 

turbulent flow has often been observed in this region, Fig- 

ure la. 

I Ill 
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In the special and historically very important case of the 

Helmholtz flow (a = 0 and gravity, surface tension, etc. are 
absent) the cavity becomes infinite in extent. The drag of the 

forebody then manifests itself in a convection of momentum aft. 

If the possibility of asymptotic waves on the cavity is ignored, 

then it may easily be deduced from momentum consideration that 

the drag of the forebody is finite b,ut non-zero only if the cavity 

width increases asymptotically as the square root of the down- 

stream distance; in fact, it is necessary that 

i 
I 4 

Ye/C * ; CD / 

I 

(x/c)+ [21 

This is indeed the correct asymptotic behaviour in this case, 

for waves certainly cannot occur on ,the cavity without the 

presence of gravity, surface tension, a basic shear flow, or 

some other agency which might cancel the inevitable undulations 

in dynamic pressure which must occur along the wavy free stream- 

line. 

It is clear that the presence o:f gravity, regardless of 

its strength, must cause a complete alteration of the asymptotic 

field as given by [2], for a cavity of unbounded width cannot 

exist at constant pressure in the presence of even the slightest 

transverse gravity field. Later on we shall quantitatively de- 

scribe the very interesting effect of gravity, but for now we 

continue to ignore it. 

I ill ii 
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The shape of finite cavities (0 > 0) cannot be defined 

through ideal flow considerations alone, for a steady finite 

cavity at constant pressure cannot exist in a perfect fluid. 

Observations indicate, however, that unsteady and viscous ef- 

fects are important in the cavity flow, only in the immediate 

region of cavity collapse, and in the wake of the cavity which 

trails downstream. Starting with Zhukovsky (1890) various as- 

sumptions about the flow behind the (cavity and/or at closure 

have been made in the form of mathematical models which allow 

solutions. These are perhaps best evaluated with regard to 

their relevancy by considering brief:Ly the real cavity flow. 

A viscous wake, trailing to infinity downstream, must exist 

behind a real finite cavity in nature, Figure lb. Momentum con- 

siderations require that the forebody drag experienced by a real 

supercavitating body be manifested by a momentum defect in the 

far wake behind the body and its cavity. Cavity drag must there- 

fore manifest itself in much the same way as friction and form 

drag do in the flow past a body without a cavity. In this latter 

case, it is a matter of experience that the displacement thick- 

ness of the wake generally decreases continuously from the re- 

gion right behind the body, toward an asymptotic value equal to 

the momentum thickness; this behaviour is due to the continual 

downstream smoothing of the blunt wake profile found close to 

the body itself. We should expect precisely the same behaviour 

of the cavity-wake displacement thickness since the wake pro- 

file must be most blunt in the turbulent region just behind 

cavity collapse - the region where the momentum losses are ac- 

tually experienced by the fluid. The effect of the wake on the 

I II 
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outer potential flow may be determined by replacing it with a 

body whose thickness is taken equal to the wake displacement 

thickness. The asymptotic thickness of the trailing wake is thus, 

For blunt 'bodies, whose drag coeff'iclent is O(l), the wake thick- 

ness according to [3] is about the same size as the body itself, 

and should not therefore be neglected in any proper model of the 

flow. At the same time, the wake thickness is seen to be some- 

what thinner than the body width for CD < 2, as is always the 

case .for small and moderate value of CT(CI < 1); therefore, a 

proper model must neither ignore the wake nor involve too wide 

a trailing wake. 

For slender bodies, whose drag coefficient is of the order 

of the body thickness or inclination squared, the wake thickness 

according to [3] need only arise in connection with second-order 

terms; that is, a linearized or first order theory may properly 

neglect the wake. 

All well-known wake models may be divided into two categories. 

They either involve no trailing wakes at all: Riabouchinsky 

(1920); Efros (1946) - Kreisel (1946) - Gilbarg (1946); and 

T-din (1953 ); or they involve thick wakes whose thickness is 

generally greater than that of the frontal projection of the body: 

I II 
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Zhukovsky (1890) - Roshko (1955) - Eppler (195&), and Wu (1962) - 

Fabula (1962). The former of these groups is clearly more suit- 

able for the treatment of slender bodies, and the latter for 

blunt bodies. Note, however, that even in the case of blunt 

bodies, the latter group of models wf~ll generally very much ex- 

aggerate the wake thickness. In any case, none of the models 

mentioned is suitable for the proper representation of supercavi- 

tating flow past both blunt and slender bodies. 

In Figure 2 are presented two cavity flow models involving 

cavities which terminate in spiral vortices and are followed by 

trailing wakes. These flows resemble in a number of important 

respects our description of real cavity flows. Their asymptotic 

wake thicknesses are adjusted always:, to be in proper relation 

to the drag coefficient. In the case of the double spiral vortex 

model, the trailing wake thins downstream, imitating the down- 

stream reduction in the displacement thickness of a real wake. 

The double spiral vortex model further attempts to reflect reali- 

ty roughly by taking into account the loss in pressure recovery 

which must surely accompany mixing at cavity collapse; it does 

this by assuming that ambient, rather than stagnation pressure 

exists in the wake just behind the region of cavity collapse as 

well as far downstream. These models, in the particular case 

where the wake is closed at infinity,, were first suggested by 

Tulin (1964), In connection with a dlscussion of small perturba- 

tion theory. As noted then, the use of either spiral vortex 

model may also afford satisfaction through their representation 

of the turbulent mixing at cavity collapse by the physically 

I I 
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impossible (the physical plane is infinitely covered in their 

neighborhood) but nevertheless highl;y suggestive spiral vortices. 

Mathematically, these spiral vortex models offer important 

advantages. The single vortex termination involves a wake which 

is closed in the physical plane to the first order, which is con- 

tinuous across ?# = 0 in the 4, 7c/ plane, and which affords a par- 

ticularly good model from which to proceed with a small perturba- 

tion expansion; the reason for the latter lies in the fact that 

the boundary value problem for the second order expansion for 

this model is with the exception of the wake closure condition, 

identical in form with the first ordler problem, while the latter 

is identical with that which provides the usual starting point 

for the linearized theory, Tulin (1964). The double spiral 

vortex model corresponds to a flow in a simply connected region 

in the Qs + plane, This affords a very considerable advantage 

when treating the problem of a foil beneath a free surface at 

high speeds, and has just recently been used in a first order 

theory to treat that problem with very good agreement between 

theory and experiment, Yim (1964). 

Linearized, or first order theory, may be used to produce 

quite general results about cavity shapes in supercavitating 

flows. When the trailing wake is thin or non-existent, the 

cavity behind a body approaches an elliptic shape, whose thick- 

ness ratio is just a/2, Tulin (1953). In this first order theory 

the region of cavity collapse shrinks 'down to a point singularity. 

If the ca'vity length is R, then the Icomplex velocity near cavity 

termination takes the form: 
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If' the cavity is much longer than the forebody, then the latter 

may sometimes be represented by a similar singularity placed at 

the leading edge of the cavity; such a "point body" can be very 

useful, and has been used to derive many of the results presented 

below. 

The first order solution corresponding to the single spiral 

vortex model and to a point body is: 
. 

where 

151 

I I 
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If wake closul-e at infinity is assumed, then this solution 

requires that: 

This is the result of the usual linearized theory, Tulin (1955). 

If, however, a non-zero asymptotic wake is allowed according 

to [3], then p > 1/2 and: 

hl 

so that ,the cavity is shortened due to the thickness of the 

t-railing wake. The first order wake is of constant thickness 

from cavity termination to far downstream. 

The model with constant pressure wake (double spiral vortex) 

produces quite a diffelaent first order solution for the flow 

past a point body. Par a closed wake at infinity, 
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The length of the cavity is: 

[91 

so that the cavity is shorter in the ratio 7r2j16 than with the 

usual closed cavity model, [5]. The cavity is now no longer 

elliptic in shape, and it has of course, a non-zero thickness 

at cavity termination. 

Regarding the relative validity of these models there is some 

evidence that [g] is closest to reality, but more experimentation 

is needed to rinally decide upon the relevancy of these and other 

proper cavity models. Such experiments must carefully take heed 

of the important influence on cavity length of walls, free sur- 

faces, three-dimensional effects, gravity, etc. 

Dragless Cavities 

Not all supercavitating bodies possess drag. In the design 

of ventilated struts for high speed hydrofoil craft it is very 

important to minimize their cavity drag, and it has been shown 

how this may be done, even in some cases to the extent that the 

drag vanishes, Tulin (1962), Johnson and Starley (1962). In that 

case, however, the questions arise: what is the law for the 

cavity length, replacing [6], [7] or [g] and what is the flow 

like in the region oP cavity termination? 
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These questions are readily answered for slender bodies 

and for long cavities, which allow us to consider again a point 

forebody (placed at z = 0). The singularity representing this 

forebody must, however, be of higher order than in [5] or [83, 

since it produces no drag. If the cavity is of length ,J, then 

we may show that the pertinent first order solution is: 

y = (z-a)3 
z~ b - ; * z] + o/2 

where 

Y2 = &- 
/ 

dy 
c . -0 . z2dz 
P dz 

DOI 

forebody 

In this expression, c 
P 

is the pressure coefficient, so that the 

integral represents a second moment of the drag. There should 

exist no wake behind a dragless cavity, so that the cavity 

should be closed. Then lim V - l/z2, which requires that: 
Z--,03 

WI 
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This is the law for the cavity length of supercavitating bodies 

with no drag; as might be expected, the length of these cavities 

increases much less rapidly with decreasing cavitation number 

than those produced by bodies with drag. 

The shape of the dragless cavity is cusped at its trailing 

edge, i. e. y 
C 

- (z-R)* . 

The Influence of Lift 

The meanline of the cavity is warped by lift in the direc- 

tion opposite to that in which the lift acts. The deflection 

of the cavity approaches h x and is thus unbounded in the case 

of the Helmholtz flow (a = 0). This warping is the main effect 

due to lift (gravity absent); the thickness distribution remains 

relatively undisturbed. According to first order theory, Tulin 

(1955), the asymptotic cavity length depends only on the body 

drag, while the cavity thickness distribution only depends upon 

the thickness of the forebody; and neither depends upon the 

incidence or lift of the body - exce,pt insofar as these change 

the f'orebody shape or drag, 

STEADY, PLANAR CAVITIES IN THE PRESENCE OF GRAVITY 

. 

Gravity can exert an extraordinary influence on the shape 

and length of cavities in supercavitating flow. The actual 

magnitude of its effect depends upon a Froude number (Uo/fi), 

and upon the orientation of the gravity field relative to the 

flow direction, 

i I I ~ I II 
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Longitudinal Field 

A gravity field co-incident with the flow direction (longi- 

tudinal field) which acts upon a cavity created by a point drag 

forebody does not disturb the vertical symmetry of the flow, but 

does alter the shape and length of the cavity. We shall see that 

regardless o.f the sign or magnitude of g, its effect is to prevent 

the existence of cavities of infinite length (CT 2 0). 

In the case of a field pointing in the same direction as - 
the flow the cavity is shortened; if the cavitation number is 

taken as based on the press-ure immediately at the forebody, then 

clearly the cavity length is finite even in the case where CI = 0. 

The cavity becomes squashed-elliptic in shape; the after part 

being more blunt than the forward part. 

When the field points in a direcftion opposed to that of the 

flow, the cavity is lengthened and it,s after part becomes less 

blunt than its forward part. Finally, the field strength having 

increased to a critical value, the trailing edge of the cavity 

becomes cusped, rather than blunt. For stronger fields, no 

steady cavity flow seems to exist. All of these effects were 

pointed out in earlier studies of the problem by Acosta (1961) 

and Lenau (1963). 

The squashing effect of the gravity field upon the cavity 

is not difficult to explain. The total drag of the body plus 

cavity due to dynamic pressures (i.e. excluding gravity) must be 

null, as the body plus cavity is closed. At the same time, the 

actual pressure on the cavity is constant except at the singular 
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point which represents cavity collapse. As a consequence, the 

buoyancy force on the cavity must be precisely equal to the dif- 

ference between the drag of the body and the upstream force which 

would act on the cavity at its very end if it were a solid body. 

For a gra'vity field in the direction of flow, the buoyancy acts - 
upstream; therefore the upstream force must be larger than the 

body drag. This requires that the cavity be more blunt at its 

downstream end. The opposite is true when gravity points up- 

stream, and in this case, the cavity becomes cusped (no upstream 

force) when the forebody drag is precisely equal to the buoyancy 

force acting upon the cavity. For stronger fields this buoyancy 

force cannot be balanced, and so no steady solutions exist. 

The first order solution for the point drag forebody and 

for the usual closed cavity model is: 

a, = 
(Rg/4U02)- Cl (&@uo2) + oo/21- C2(&/2U02) 

1 
(c"- l)F 

B 

+ 9 -I- (< + 1)ag/2u 2 
0 D31 



HYDRONAUTICS, Incorporated 

-15- 

where, 

D41 

In the case of positive g fields (acting downstream), the 

maximum cavity length, which occurs when 0 = 0, is 

El51 

. 

while the maximum length, corresponding to the cusped cavity 

condition, for negative g fields is, 

and this occurs when, 

1161 

n71 
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It is useful to note that the cavity length according to 

[14] corresponds in the general case precisely to that for a 

cavity-free field, [5], prov-iding that the cavitation number for 

the flow is based not in the usual way on the ambient pressure 

at the forebody itself, but rather on the ambient pressure at a 

distance R/4 downstream of the forebody. 

The case of the longitudinal gravity field produces in- 

teresting results, but it should be appreciated that it involves 

a somewhat artificial situation. A body actually moving vertically 

through the ocean would have to adjust its cavity pressure con- 

tinuously in order to maintain a constant cavitation number at the 

forebod,y, and in addition the speed of the body would in the gen- 

eral case itself be varying. Thus real cavity flows invol.ving 

longitudinal gravity fields are in most cases unsteady and the 

effects of unsteadiness can easily predominate. Of course, steady 

fiel,ds of this kind can be created in water tunnels with vertical 

sections and, artificially, through interference fields due to 

neighboring bodies. 

Transverse Gravity .Fields - 

A more natural situation involves a horizontal supercavi- 

tating flow in the presence of a vertical or transverse gravity 

field. This flow has received some attention, Parkin (1957), 

Street (1963), and Iwanov (1961), but in each case at the ex- 

pense of rather broad assumptions whjlch restrict the applicabil- 

ity of the .results, Typically the assumption has been made that 

the ambient pressure is constant on each of the free streamlines, 
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being lower than the reference pressure at the forebody on the 

upper, and higher than this reference pressure on the lower 

streamline. These "average" ambient pressures are determined 

as the average head of each streamline as it passes between the 

forebody and the point of cavity collapse. The rather basic 

question regarding the form of the steady two-dimensional cavity 

in the case of zero cavitation number (that is, the Helmholtz 

flow with transverse gravity) has been completely untouched. An 

answer to this question based on first order considerations and 

the usual closed cavity model is given here; an exact solution 

of the first order problem is obtained. 3t would seem clear 

that this answer to the question of transverse gravity effects 

is not a mere product of the perturbation approximations, but 

applies, in general, to the non-linear situation, assuming that 

either the re-entrant jet, single spiral vortex, or Riabouchinsky 

models are used. The first order solution given here includes, 

not only the case CI = 0, but the general case cs > 0. 

We begin by phrasing the first order boundary value prob- 

lem, assuming a cavity of unknown le:ngth,R, created by a point 

drag. The pressure is constant, pc, on the cavity everywhere 

except at the point forebody and at the point of cavity collapse, 

z = -f: R/2. 'Taking into account a gravity field directed down- 

ward, BernoulliBs equation becomes to the first order, 

%3- PC 
on the cavity [ 1.81 
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Pa- Pc 
111_, 
&Jo* 

on the cavity [I91 

where use has been made of the relation, 

n 

Y,(X) = 
/ 

v/u0 dx = - +- [q(x) - 7&l/2)] 
0 

-a/2 

EQI 

and where 7$(-R/2) is taken to be zero. 

Equation [Ilg] may be written in te:rms of the complex po- 

tential, 

or", in non-dimensional form, 

on the cavity II221 

[ 21.1 
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gJ where R denotes "real papt of"; k = -~- ; Z(c) = ;,:.'" ; and 
:2u 2 0 

0 

Since the pressure 5s constant on the cavity everywhere 

except at z = -1: R/2, and since the net drag on the body must be 

null, a "counter-force" must exist at z = * ,l/2 just equal in 

magnitude to the forebody drag (of course, this force does not 

really act on the cavity, but rather represents momentum loss 

in the flow), Theretore, 

1 i.m 
c -+r!I 1 

where 

Drag .-- 
+pIJo 2 * a,/2 

[231 

Furjther the cavity is closed. Therefore, 

I . & d2", = 0 [211-l 

w.here :I denotes imaginar>y part of and the contour integral is 

taken. csompletely around the body and cavity, 
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The asymptotic nature of the so.lution may be deduced in 

advance. The closed cavity plus body must possess no net lift 

since the pressure or the cavity is (constant and the forces at 

the ends are purely longitudinal (the body has drag, but no lift). 

Therefore a dynamic lift equal and opposite to the net vertical 

buoyancy must exist on the body. As a result the asymptotic ex- 

pansion of the velocity field must have the following form, 

where L is the dynamic lift. The coefficient bi is real and is 

associated with the longitudinal asyrnmetry of the cavity (it 

happens to vanish in the present case). 

Th'e analytic function [%" + ik %"] must exhibit the fol- 

lowing 'characteristics, according to [22], [23], and 11251: 

R. ]=o on the cavity WI 
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[ 281 

‘These requirements are met by the function, 

[ 291 
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It may be shown by inspection of the asymptotic field that 

the asymmetry about 5 = 0 of the vorticity represented by [29] is 
. proportional to al; in the present case, then, this vorticity is 

symmetric. There are a number of important consequences: the 

camber line of the cavity must be symmetric fore and aft, so that 

the cavity terminates at the depth o.f the forebody; and the cavity 

thickness must be symmetric fore and aft. 

The cavity shape may be found from the following relation- 

ships, 

or, 

d2% -2(Clo + a&') 

.-.-12 + k2Zc = -- 
de2 (11 - e2 )3/' 

and, 

d”?, 

de2 
+ k2ym := + 9 

[331 

[341 

[351 
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These differential equations for the cavity thickness (tc) 

and camber (ym) may be solved, making use of available conditions. 

4 
zc=-2 cos k&e') 

C 
bo+ (32 >P 

Kp 
- i- ~12 COS-~~!) - 7ra2 de' 

7 I 
-1 

[361 

where the last term (-Tcx~) within the brackets has been chosen 

in order to make 2 c symmetric about 4 = 0. An alternative ex- 

pression which is more suitable for numerical computation is, 

[371 

.._ -- 

HYDRONAUTICS, Incorporated 
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The cavity must be closed., tc(-t-l) = 0, so that, 

-1 -1 

[381 

kJ1. (k:) 
J,(k) 

The carrlber, again symmetric fore and aft, is the integral of 

[351: 

,-a (5 
Y, = - --- (cos k$, - cos k) 2k cos k 

[391 

[401 

This camber generates a dynamic lift which may be calculated 

according to th.in airfoil theoray, with the result, 

L cl77 -- = - 
pU2/?//2 cos k * Jdk) c411 
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so that in view of [ 311, 

c12 = okJl (:J) 
2 cos k [ 421 

and, combining [jg], [42], and [32], a relation between wave 

number, drag coefficient, and cavitation number is finally ob- 

tained, 

cos k v=-- 
CT 7r J(, 04 [431 

In the case k = 0 (no gravity), it follows from [43] that, 

a =& Drag-.& 
0 

T puo2/:r c7 

which is the correct result for this model. 

When k # 0, we may derive from 11431 the result, 

[441 

II451 

where ,l 
0 

is the length when k = 0, [;+4]. 



-... -- 

HYDRONAUTICS, Incorporated 

-26- 

In the special case of the Helmholtz flow (a0 = w), the 

cavity length corresponds to a particular value of k, which is 

independent of the drag. It is given by cos2k = 0, or 

[461 

This is a central result of this analysis, for it reveals 

that a transverse gravity field causes the cavity length to be 

finite even in the case 0 = 0, and that the resulting cavity 

length corresponds to a definite Froude number, 

uO 
=-- . 

-&7 ;- % 

[471 

The cavity shape has been calculated on a digital computer, using 

[381 and [401, and the result is shown in Figure 3. The camber 

line is deflected downward but has positive curvature (negative 

camber), The cavity is symmetric about its midpoint. 

Clearly, the effect of transverse gravity on the cavity 

length will be extraordinary for suitably small 0. The impor- 

tance of gravity in the general case is revealed by computations 

based on [45]. The result is shown in the Table below, where R. 

is given by [44]. 
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TABLE :L 

The Effect of Transverse Gravity on Cavity Length 

cc 

.02 

80 

--..- 
. 05 

29 

-_--- 
. 09 

_-_. 

16 

_--- 
. 19 

__.. .--_- 

7 

. 29 

-...---._ 

4 ! 
.39 

;' . 8 

.50 

2.0 

.-- 

c 
.71 -82 .g7 1.0 

----.-- 

1.1 -73 .31 0 

It appears that in order to reduce the effect of transverse 

gravity on the cavity length to the extent that J/,/Z0 > .97, a 
U 

Froude number based on cavity length,, o 
d- 

, in excess of about 
&?a 

1.25 is required. 

A further effect of gravity is '~0 cause the flow just in 

front of the forebody to enter with a negative incidence, as was 

deduced earlier by Ivanov (1961); this may be seen from the 

negative slope of the cavity camber ILine at the forebody, Fig- 

ure 3. The entering incidence 7; for 0 = 0 is: 

s 
'G = - -= - [431 
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This incidence, which tends to produce a negative lift on the 

forebody, may take on significant values. Take, for example, 

CD = .03, c = 5 ft., and U = 70 ft. sec.; then "G = -1.5’. 
0 

Forebody lift will clearly have a marked effect on cavity 

shape in the presence of transverse gravity -in contrast to the 

case where gravity is absent. This effect will be due in the 

first place to the warping effect of the lift on the cavity camber 

line, which results in alterations of the local cavitation num- 

bers. It seems clear that positive lift, which deflects the 

cavity downward, will result in further shortening of the cavity, 

while negative lift should cause its length to increase. The 

entering incidence d,ue to gravity warping will as a result be 

altered. .In addition, the effect of gravity on cavities of finite 

span may be quite different than we have revealed here for two- 

dimensional cavities. In fact, it seems most probable that cavi- 

ties of very low aspect ratio (as shed from 'bodies1 of revolution, 

for instance) will not be deflected Idownwards by a downward I- 
pointing gravity field but will, on the contrary, float upwards. 

"These and many other interesting and important problems 

regarding the shape of cavities in supercavitating flows yet re- 

main to be explored. 
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FIGURE I(a)-PHOTOGRAPH OF CAVITY CALLAPSE AND WAKE 

i 
WAKE VELOCITY PROFILES 

CAVITY / \ 

FIGURE I(b)-SCHEMATIC OF A WAKE REAL CAVITY FLOW 
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FIGURE 3- THE CAVITY SHAPE IN A TRANSVERSE GRAVITY FIELD (c7=0) 
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