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NOTATION

Real constants

The drag coefficient based on a characteristic
body dimension, c

The drag coefficient based on the cavity length, £

A characteristic body dimension

The pressure coefficient on the body

The acceleration of gravity
Denotes'the imaginary part of"

A wave number, g£/2U02

& non-dimensional length, gﬁ/EUOZ

The cavity length in the absence of gravity

The ambient pressure at the position of the
forebody

The pressure in the cavity

Denotes "the real part of"
The wake or cavity thickness at infinity

The cavity thickness

The speed on the cavity
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speed at infinity

velocity perturbation in the undisturbed flow

direction

The

The

The

The

The

The

The

veloclity perturbation normal to u

total volume of the cavity

ordinate in the undisturbed flow direction
ordinate normal to x

vertical ordinate of the cavity boundary

vertical ordinate of the body

complex variable, x + iy

Real constants

The

The

The

The

- The

The

pressure at the forebody, o =

The

circulation around the cavity

, + 1
non-dimensional complex variable, §f7§_l

complex velocity, u - iv

non-dimensional horizontal ordinate, Z§§

density of the flowing fluid

cavitation number based on the ambient
Py~ pc
2

2pU

entering incidence
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The

The

The

The

The

~iv-

complex potential, ¢ + iy

non-dimensional complex potential,

real velocity potential

real stream function

non-dimensional stream function,

~—¢L—
U_. /2

¥
U_.1/2
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INTRODUCTION

A great deal of interest has recently been shown in super-
cavitating flows. This interest seems due in part to the sub-
Ject's practical importance in connection with supercavitating
and ventilated propellers, turbines, and hydrofoils; in part to
the traditional mathematical interest in free streamline flows —
as boundary value problems; and perhaps in part to the stimulation
afforded by the observation of actual supercavitating flows as
created in experimental water channels. Indeed, "cavity-watching"
can be a rewarding past-time, and no better way to become fa-
miliar with cavity flows can be imagined. Sometimes interesting
phenomena which are not yet well understood may be observed, and
occasionally one is moved to ask quite general questions about
the shape of cavities in supercavitating flows. The latter forms

the subject of this paper.

Some of the most interesting cavities in nature are un-
steady and three-dimensional. Here, however, we shall discuss

only certain questions about steady, planar flows.

Perhaps the most interesting new result given here concerns
the effect of a transverse gravity fleld on the Helmholtz flow
(0 = 0) past a small forebody experiencing drag alone. The
first-order boundary value problem for this flow is solved in
closed form. It 1s shown that the cavity behind such a body is
of a finite length which corresponds to a definite Froude number
[flow speed/(g x cavity length)%] with a value of 1/\f_. The

cavity 1s, quite contrary to intultion, deflected in the same
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direction in which gravity acts, so that the bulk of the cavity
lies below the forebody; the cavity is symmetric fore and aft

and terminates at the depth of the forebody.

Other flows are also discussed here including the dragless
cavity, and some new non-linear finite-cavity models are dis-
cussed; these models feature cavity termination in spiral vor-

tices followed by trailing wakes.

STEADY, PLANAR CAVITIES IN THE ABSENCE OF GRAVITY

The length of a cavity which is at least several times in
length the size of the body that produces it, depends primarily
on the drag of the forebody (which is assumed to be non-zero )
and the cavitation number of the flow. The form of the well-

known asymptotic law,

L/c ~ C o7 % (1]

may be deduced from some rather simple considerations, Tulin
(1964), of which the most important is that the cavity drag of
the forebody manifests itself in the flow in the form of mixing
momentum losses; these are assumed to occur in a localized
region where the cavity terminates or "collapses." Irregular,
turbulent flow has often been observed in this region, Fig-

ure la,.




HYDRONAUTICS, Incorporated
-3-

In the special and historically very important case of the
Helmholtz flow (o = O and gravity, surface tension, etc. are
absent) the cavity becomes infinite in extent. The drag of the
forebody then manifests itself in a convection of momentum aft.

If the possibility of asymptotic waves on the cavity is ignored,
then 1t may easily be deduced from momentum consideration that

the drag of the forebody is finite but non-zero only if the cavity
width increases asymptotically as the square root of the down-

stream distance; in fact, it is necessary that

Nf-

m (x/c

/

)5

2
v/~ | o 2)

This is indeed the correct asymptotic behaviour in this case,
for waves certainly cannot occur on the cavity without the
presence of gravity, surface tension, a basic shear flow, or
some other agency which might cancel the inevitable undulations

in dynamic pressure which must occur along the wavy free stream-

line.

It is clear that the presence of gravity, regardless of
its strength, must cause a complete alteration of the asymptotic
field as given by [2], for a cavity of unbounded width cannot
exlst at constant pressure in the presence of even the slightest
transverse gravity field., Later on we shall quantitatively de-
scribe the very interesting effect of gravity, but for now we

continue to ignore 1it.
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The shape of finite cavities (o > 0) cannot be defined
throughkideal flow considerations alone, for a steady finite
cavity at constant pressure cannot exist in a perfect fluid.
Observations indicate, however, that unsteady and viscous ef-
fects are important in the cavity flow, only in the immediate
region of cavity collapse, and in the wake of the cavity which
trails downstream. Starting with Zhukovsky (1890) various as-
sumptions about the flow behind the cavity and/or at closure
have been made in the form of mathematical models which allow
solutions. These are perhaps best evaluated with regard to

thelr relevancy by considering briefly the real cavity flow.

A viscous wake, trailing to infinity downstream, must exist
behind a real finite cavity in nature, Figure 1b. Momentum con-
siderations require that the forebody drag experienced by a real
supercavitating body be manifested by a momentum defect in the
far wake behind the body and its cavity. Cavity drag must there-
fore manifest itself in much the same way as friction and form
drag do in the flow past a body without a cavity. In this latter
case, it 1s a matter of experience that the displacement thick-
ness of the wake generally decreases continuously from the re-
gion right behind the body, toward an asymptotic value equal to
the momentum thickness; this behaviour 1s due to the continual
downstream smoothing of the blunt wake profile found close to
the body 1tself. We should expect precisely the same behaviour
of the cavity-wake displacement thickness since the wake pro-
file must be most blunt in the turbulent region just behind

cavity collapse — the region where the momentum losses are ac-

tually experienced by the fluid. The effect of the wake on the
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outer potential flow may be determined by replacing it with a
body whose thickness is taken equal to the wake displacement

thickness. The asymptotic thickness of the trailing wake is thus,

C
be) D (3]

C

For blunt bodies, whose drag coefficient is O(l), the wake thick-
ness according to [3] is about the same size as the body itself,
and should not therefore be neglected in any proper model of the
flow. At the same time, the wake thickness is seen to be some-
what thinner than the body width for CD < 2, as is always the
case for small and moderate value of o(o < 1); therefore, a
proper model must neither ignore the wake nor involve too wide

a tralling wake,

For slender bodies, whose drag coefficient is of the order
of the body thickness or inclination squared, the wake thickness
according to [3] need only arise in connection with second-order
terms; that is, a linearized or first order theory may properly

neglect the wake.

All well-known wake models may be divided into two categories.
They either involve no trailing wakes at all: Riabouchinsky
(1920); Efros (1946) - Kreisel (1946) - Gilbarg (1946); and
Tulin (1953); or they involve thick wakes whose thickness is
generally greater than that of the frontal projection of the body:
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Zhukovsky (1890) - Roshko (1955) - Eppler (1954%), and Wu (1962) -
Fabula (1962). The former of these groups is clearly more suit-
able for the treatment of slender bodies, and the latter for
blunt bodies. Note, however, that even in the case of blunt
bodies, the latter group of models will generally very much ex-
aggerate the wake thickness. In any case, none of the models
mentioned is suitable for the proper representation of supercavi-

tating flow past both blunt and slender bodies.

In Figure 2 are presented two cavity flow models involving
cavitles which terminate in spiral vortices and are followed by
trailing wakes. These flows resemble in a number of Important
respects our description of real cavity flows. Their asymptotic
wake thicknesses are adjusted always, to be in proper relation
to the drag coefficient. In the case of the double spiral vortex
model, the trailing wake thins downstream, imitating the down-
stream reduction in the displacement thickness of a real wake.
The double spiral vortex model further attempts to reflect reali-
ty roughly by taking into account the loss in pressure recovery
which must surely accompany mixing at cavity collapse; it does
this by assuming that ambient, rather than stagnation pressure
exlsts in the wake just behind the region of cavity collapse as
well as far downstream. These models, in the particular case
where the wake is closed at infinity, were first suggested by
Tulin (1964), in connection with a discussion of small perturba-
tion theory. As noted then, the use of either spiral vortex
model may also afford satisfaction through their representation

of the turbulent mixing at cavity collapse by the physically
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impossible (the physical plane is infinitely covered in their

neighborhood) but nevertheless highly suggestive spiral vortices.

Mathematlically, these spiral vortex models offer important
advantages. The single vortex termination involves a wake which
is closed in the physical plane to the first order, which 1s con-
tinuous across ¢ = O in the ¢, ¥ plane, and which affords a par-
ticularly good model from which to proceed with a small perturba-
tion expansion; the reason for the latter lies in the fact that
the boundary value problem for the second order expansion for
this model 1s with the exception of‘the wake closure condition,
identical in form with the first order problem, while the latter
is identical with that which provides the usual starting point
for the linearized theory, Tulin (1964). The double spiral
vortex model corresponds to a flow in a simply connected region
in the ¢, ¢ plane. This affords a very considerable advantage
when treating the problem of a foll beneath a free surface at
high speeds, and has just recently been used in a first order
theory to treat that problem with very good agreement between

theory and experiment, Yim (1964).

- Linearized, or first order theory, may be used to produce
quite general results about cavity shapes in supercavitating
flows. When the trailing wake is thin or non-existent, the
cavity behind a body approaches an elliptic éhape, whose thick-
ness ratio is Jjust o/2, Tulin (1953). 1In this first order theory
the region of cavity collapse shrinks down to a point singularity.
If the cavity length is £, then the complex velocity near cavity

termination takes the form:
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va (2 - g)F | Drae (4]

2pU 2. or

If the cavity is much longer than the forebody, then the latter
may sometimes be represented by a similar singularity placed at
the leading edge of the cavity; such a "point body" can be very

useful, and has been used to derive many of the results presented

below.

The first order solution corresponding to the single spiral

vortex model and to a point body is:

Vo= %,_ié:éﬁl_: + %. (5]
[z(z-£)]°
where
Vi :
B4 = g_a,@:a_f_
T.3pU
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If wake closure at infinity is assumed, then this solution

requires that:

This is the result of the usual linearized theory, Tulin (1955).

If, however, a non-zero asymptotic wake is allowed according

to [3], then 8 > 1/2 and:

so that the cavity is shortened due to the thickness of the
trailing wake. The first order wake 1s of constant thickness

from cavity termination to far downstream.

The model with constant pressure wake (double spiral vortex)
produces quite a different first order solution for the flow

past a point body. For a closed wake at infinity,

I Y e
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The length of the cavity is:

[9]

50 that the cavity is shorter in the ratio 7°/16 than with the
usual closed cavity model, [5]. The cavity is now no longer
elliptic in shape, and it has of course, a non-zero thlckness

at cavity termination.

Regarding the relative validity of these models there is some
evidence that [9] is closest to reality, but more experimentation
i1s needed to finally decide upon the relevancy of these and other
proper cavity models. Such experiments must carefully take heed
of the important influence on cavity length of walls, free sur-

faces, three-dimensional effects, gravity, etc.

Dragless Cavities

Not all supercavitating bodies possess drag. In the design
of ventilated struts for high speed hydrofoil craft it is very
important to minimize their cavity drag, and it has been shown
how this may be done, even in some cases to the extent that the
drag vanishes, Tulin (1962), Johnson and Starley (1962). In that
case, however, the questions arise: what is the law for the
cavity length, replacing [6], [7] or [9] and what is the flow

like in the region of cavity termination?
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These questions are readily answered for slender bodies

and for long cavities, which allow us to consider again a point

forebody (placed at z = 0). The singularity representing this

forebody must, however, be of higher order than in [5] or [8],

since 1t produces no drag. If the cavity is of length £, then

we may show that the pertinent first order solution is:

Vo= {y -5 z] + 0/2 [10]

where

1 dyo
2 o — .  —— e 2
Y = b f Cp dz z=dz [11]

forebody

In this expression, op 1s the pressure coefficient, so that the
integral represents a second moment of the drag. There should
exist no wake behind a dragless cavity, so that the cavity

should be closed. Then lim v ~ 1/z%, which requires that:
A




HYDRONAUTICS, Incorporated

-1p-

This is the law for the cavity length of supercavitating bodies
with no drag; as might be expected, the length of these cavities
increases much less rapidly with decreasing cavitation number
than those produced by bodies with drag.

The shape of the dragless cavity is cusped at its trailing
)§é

edge, 1. e, Vo ™ (z-4

The Influence of Lift

The meanline of the cavity is warped by 1lift in the direc-
tion opposite to that in which the 1ift acts. The deflection
of the cavity approaches fn x and is thus unbounded in the case
of the Helmholtz flow (o = 0). This warping is the main effect
due to 1ift (gravity absent); the thickness distribution remains
relatively undisturbed. According to first order theory, Tulin
(1955), the asymptotic cavity length depends only on the body
drag, while the cavity thickness distribution only depends upon
the thickness of the forebody; and neither depends upon the
incidence or 1ift of the body — except insofar as these change

the forebody shape or drag.

STEADY, PLANAR CAVITIES IN THE PRESENCE OF GRAVITY

Gravity can exert an extraordinary influence on the shape
and length of cavities in supercavitating flow. The actual
magnitude of its effect depends upon a Froude number (UU/\ﬂgz),
and upon the orientation of the gravity field relative to the

flow direction.
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Longitudinal Fleld

A gravity fileld co-incident with the flow direction (longi-
tudinal field) which acts upon a cavity created by a point drag
forebody does not disturb the vertical symmetry of the flow, but
does élter the shape and length of the cavity. We shall see that
regardless of the sign or magnitude of g, its effect is to prevent

the existence of cavities of infinite length (o = 0).

In the case of a field pointing in the same direction as
the flow the cavity is shortened; if the cavitation number is
taken as based on the pressure immediately at the forebody, then
clearly the cavity length is finite even in the case where ¢ = O,
The cavity becomes squashed-elliptic in shape; the after part

being more blunt than the forward part.

When the field points in a direction opposed to that of the
flow, the cavity is lengthened and its after part becomes less
blunt than its forward part. Finally, the field strength having
increased to a critical value, the trailing edge of the cavity
becomes cusped, rather than blunt. For stronger fields, no
steady cavity flow seems to exist. All of these effects were
pointed out in earlier studies of the problem by Acosta (1961)
and Lehau'(1963). |

The squashing effect of the gravity field upon the cavity
is not difficult to explain. The total drag of the body plus
cavity due to dynamic pressures (i.e. excluding gravity) must be
null, as the body plus oavity is closed. At the same time, the

actual pressure on the cavity is constant except at the singular
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point which represents cavity collapse. As a consequence, the
buoyancy force on the cavity must be precisely equal to the dif-
ference between the drag of the body and the upstream force which
would act on the cavity at 1ts very end if it were a solid body.
For a gravity field in the direction of flow, the buoyancy acts
upstream; therefore the upstream force must be larger than the
body drag. This requires that the cavity be more blunt at its
downstream end. The opposite is true when gravity points up-
Stream, and in this case, the cavity becomes cusped (no upstream
force) when the forebody drag is precisely equal to the buoyancy
force acting upon the cavity. For stronger fields this buoyancy

force cannot be balanced, and so no steady solutions exist.

The first order solution for the point drag forebody and

for the usual closed cavity model is:

(ﬂg/huoz)- g[(zg/euoz) + 00/2]- Cz(ﬂg/2U02)

(2- 1)°
/

(e}
+ 7§»+ (¢ + 1)g/2u 2 [13]
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where,
8 ‘p
L/c = 5 [14]
vcz vl + -£5~
ou %g
o)

In the case of positive g fields (acting downstream), the

maximum cavity length, which occurs when o = 0, is

(g > 0) [15]

(gc/QUoz )gé

while the maximum length, corresponding to the cusped cavity

condition, for negative g fields is,

(£/c) o) ()" (& % 0) [16]
6] = |= g X 0 1
and this occurs when,
3 gt
c=-2= [17]
2ypz2
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It is useful to note that the cavity length according to
[14] corresponds in the general case precisely to that for a
cavity-free field, [5], providing that the cavitation number for
the flow 1s based not in the usual way on the amblent pressure
at the forebody itself, but rather on the ambient pressure at a

distance £/4 downstream of the forebody.

The case of the longitudinal gravity field produces in-
teresting results, but 1t should be apprecilated that it involves
a somewhat artificial situation. A body actually moving vertically
through the ocean would have to adjust 1ts cavity pressure con-
tinuously in order to maintain a constant cavitation number at the
forebody, and in addition the speed of the body would in the gen-
eral case itself be varying. Thus real cavity flows involving
longitudinal gravity fields are in most cases unsteady and the
effects of unsteadiness can easily predominate. Of course, steady
fields of this kind can be created in water tunnels with vertical
sections and, artificially, through interference fields due to

neighboring bodies,

Transverse Gravity Fields

A more natural situation involves a horizontal supercavi-
tating flow in the presence of a vertical or transverse gravity
field. This flow has received some attention, Parkin (1957),
Street (1963), and Ivanov (1961), but in each case at the ex-
pense of rather broad assumptions which restrict the applicabil-
ity of the resulfs. Typically the assumption has been made that

the ambient pressure 1s constant on each of the free streamlines,
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being lower than the reference pressure at the forebody on the
upper, and higher than this reference pressure on the lower
streamline., These "average" amblent pressures are determined

as the average head of each streamline as 1t passes between the
forebody and the point of cavity collapse. The rather basic
question regarding the form of the steady two-dimengional cavity
in the case of zero cavitation number (that is, the Helmholtyz
flow with transverse gravity) has been completely untouched. An
answer to this question based on first order considerations and
the usual closed cavity model i1s given here; an exact solution
of the first order problem is obtained. It would seem clear
that this answer to the question of transverse gravity effects
is not a mere product of the perturbation approximations, but
applies, in general, to the non-linear situation, assuming that
either the re-entrant Jet, single spiral vortex, or Riabouchinsky
models are used. The first order solution given here includes,

not only the case ¢ = 0, but the general case o > 0.

We begin by phrasing the first order boundary value prob-
lem, assuming a cavity of unknown length,f, created by a point
drag. The pressure ig constant, pc, on the cavity everywhere
except at the point forebody and at the point of cavity collapse,
z =+ f/2. Taking into account a gravity field directed down-

ward, Bernoulli‘s eguation becomes to the first order,

p- P gy

o Co =2 |2+ =) on the cavity 18]
—J‘~)U 2 UO U z
2F o o
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or,

p - P

— C oo =0 é£~— ey on the cavity [19]

jl;;pU 2 @] U 3

o) 0
where use has been made of the relation,
X
1
yc(x) = v/U, dx = - E—-[w(x) -y (-4/2)] [ 20]
o
-4/2
and where ¢ (-£/2) is taken to be zero.
Equation [19]) may be written in terms of the complex po-
tentlial,

GUO

R{e + 1 ~&;<® = —~ on the cavity [21]

g 2
o

or, in non-dimensional form,

R[T'+ ik $] = o/2 on the cavity
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where R denotes "real part of"; k = 27— ; 3

4
e

Since the pressure 1s constant on the cavity everywhere
except at z = * £/2, and since the net drag on the body must be
null, a "counter-force" must exist at z = + £/2 just equal in
magnitude to the forebody drag (of course, this force does not
really act on the cavity, but rather represents momentum loss

in the flow). Therefore,

1 ~ Cd
m (5 1)7 . $]% = 5 [23]
=+ 1 T
where
¢ . _Drag
a 2
-%pUO -4/2
Further the cavity is closed. Therefore,
T . v ac = 0 [24]

where I denotes lmaginary part of and the contour integral is

taken completely around the body and cavity.
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The asymptotic nature of the solution may be deduced 1in
advance. The closed cavity plus body must possess no net 1ift
since the pressure or the cavity is constant and the forces at
the ends are purely longitudinal (the body has drag, but no 1ift).
Therefore a dynamic 11ft equal and opposite to the net vertical
buoyancy must exist on the body. As a result the asymptotic ex-

pansion of the velocity field must have the following form,

3 L
wonzﬂ

where L 1s the dynamic 1ift. The coefficient bi is real and is
assoclated with the longitudinal asymmetry of the cavity (it

happens to vanish in the present case).

The analytic function [&" + ik &'] must exhibit the fol-

lowing characteristics, according to [22], [23], and [25]:

R . [3" + 1k ©'] = 0 on the cavity [26]
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[B" + ik &) ~ -

1im [
& —+ 1

_07 -
KL b L e arge
oy 2y 4
mo o
C./m
ik $1] ~ :

These requirements are met by the function,

where,

= .
"+ ik
O5%
(0 5=)
(04
O

ao + o 0+ azéz

B -
(2 - 1]%
= 0
Pl —kL“_
rpU 2
U b
+ e = -ji
g = T

(28]




HYDRONAUTICS, Incorporated

-Do_

It may be shown by inspection of the asymptotic field that
the asymmetry about £ = O of the vorticity represented by [29] is
proportional to ai; in the present case, then, this vorticity is
symmetric. There are a number of important consequences: the
camber line of the cavity must be symmetric fore and aft, so that
the cavity terminates at the depth of the forebody; and the cavity

thickness must be symmetric fore and aft.

The cavity shape may be found from the following relation-

ships,
s N de} ~ g
I . [&" + ik ¢'] = —— + K3y = k [33]
2 2
dg
or,
dZ%C N -2(a_ + az£2)
~ + k2t = 37 [34]
2
¢ (1 - %)=
and,
a2y
mo,oeey o o4 9k
+ Ky =+ [35]
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These differential equations for the cavity thickness (tc)

and camber (ym) may be solved, making use of available conditions.

g

N (Cto‘l‘ ag)ﬁ' -1
t = -2 cos k(é-¢t) tVTTETE—_-+ az cos TE€' - Tas | dE

[36]
where the last term (-7maz) within the brackets has been chosen

in order to make %c symmetric about € = O, An alternative ex-

pression which is more suitable for numerical computation is,

€ d
%c = - 2(ao+a2) cosk:gjr g'COSkiwié' + sinlcé/ é'sin,k&idgf
(1-6'%) (1-£'2)
-1 -1
2a : € .
+ —Ei-sin k%/r cos keldél - cos k%/’ SELE ké'dé' [37]
) (1-612)° (1-£12)°

-1 -1
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The cavity must be closed, tc(+l) = 0, so that,
+1 +1
_ 'sin kE€'dé§! (az) cos ké&'dé!
((1 + 062) é ] =
O '\’ l—€‘2 k \,1_€¥2
-1 -1
or,
Qo _ kJ](k)A
= : -
(uo + Qg ) Jo(k

The camber, again symmetric fore and aft, is the integral of

[35]:

— e O e
m 2k cos k

<2

(cos ké - cos k)

[40]

This camber generates a dynamic 1ift which may be calculated

according to thin airfoil theory, with the result,
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so that in view of [31],

0, _ OkJ1 (k) 4o

2 cos k

and, combining [39], [42], and [32], a relation between wave
number, drag coefficlent, and cavitation number is finally ob-

tained,

In the case k = 0 (no gravity), it follows from [43] that,

4 = %.;Qgﬁi_ ._%? [44]
pU02/2

which 1s the correct result for this model.

When k # O, we may derive from [43] the result,

4/, = cof [45]

where ﬂo is the length when k = 0, [44].
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In the special case of the Helmholtz flow (20 = ), the
cavity length corresponds to a particular value of k, which is

independent of the drag. It is given by cos®k = 0, or

This is a central result of this analysis, for it reveals
that a transverse gravity field causes the cavity length to be
finite even in the case o = 0, and that the resulting cavity

length corresponds to a definite Froude number,

Uo ]

Ver Vr

: [&7]

The cavity shape has been calculated on a digital computer, using
[38] and [L40], and the result is shown in Figure 3. The camber
line 1s deflected downward but has positive curvature (negative

camber ). The cavity is symmetric about its midpoint.

Clearly, the effect of transverse gravity on the cavity
length will be extraordinary for suitably small o. The impor-
tance of gravity in the general case is revealed by computations
based on [45]. The result is shown in the Table below, where ﬂo

is given by [44].
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TABLE 1
The Effect of Transverse Gravity on Cavity Length

0) (g 1 0)

O =i

L/4 .02 .05 [.09] .19 .29 .39 .50| .71 .82| .97 | 1.0

gl

U 2

U S,

It appears that in order to reduce the effect of transverse

gravity on the cavity length to the extent that ﬂ/ﬂo > .97, a
U
Froude number based on cavity length, —2 , 1n excess of about

gl

1.25 is required.

A further effect of gravity is %o cause the flow Jjust in
front of the forebody to enter with a negative incidence, as was
deduced earlier by Ivanov (1961); this may be seen from the
negative slope of the cavity camber line at the forebody, Fig-

ure 3. The entering incidence v for o = O is:
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This incidence, which tends to produce a negative 1ift on the
forebody, may take on significant values. Take, for example,

Cp= .03, ¢ =5 ft., and U_ = 70 ft. sec.; then 7 = -1.5°.

Forebody 1ift will clearly have a marked effect on cavity
shape in the presence of transverse gravity — in contrast to the
case where gravity is absent. This effect will be due in the
first place to the warping effect of the 1ift on the cavity camber
line, which results in alterations of the local cavitation num-
bers. It seems clear that positive 1ift, which deflects the
cavity downward, will result in further shortening of the cavity,
while negative 1ift should cause its length to increase. The
entering incidence due to gravity warping will as a result be
altered., In addition, the effect of gravity on cavities of finite
span may be quite different than we nave revealed here for two-
dimensional cavities. In fact, 1t seems most probable that cavi-
ties of very low aspect ratio (as shed from bodies of revolution,
for instance) will not be deflected downwards by a downward

pointing gravity field but will, on the contrary, float upwards.

These and many other interesting and important problems
regarding the shape of cavities in supercavitating flows yet re-

main to be explored.
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FIGURE I(a)-PHOTOGRAPH OF CAVITY CALLAPSE AND WAKE
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FIGURE I{b)-SCHEMATIC OF A WAKE REAL CAVITY FLOW




SINGLE SPIRAL VORTEX — SMOOTH WAKE

DOUBLE SPIRAL VORTEX — CONSTANT PRESSURE WAKE
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FIGURE 2— SPIRAL VORTEX, TRAILING WAKE MODEL
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FIGURE 3— THE CAVITY SHAPE IN A TRANSVERSE GRAVITY FIELD (g =0)
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