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ABSTRACT

This report presents tank test data for a rectangular flapped hydrofoil mounted
to the carriage by a single strut. Tests were carried out separately with flaps
oscillating in smooth water, flaps fixed in regular waves, and then various com-
binations of conditions with flaps oscillating in regular waves. The separate
effects of flap and wave on the force and moment coefficients for the hydrofoil
were obtained, and compared with the results when both flap and wave were

cycled together.
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1 INTRODUCTION

The purpose of the test program described in this report was to experimentally
determine the effects of wave and flap motions and possible intermittent venti-
lation on hydrofoil forces and moments. In order to do this, the program was

divided into four test phases:
a. Tests in smooth water with flaps cycled at various frequencies.

b. Tests in regular waves with flaps fixed, running in both head and

following seas.

c. Tests in regular waves with flaps cycled at various frequencies, in

both head and following seas.

d. Tests with flaps driven through a 1/2 cycle at high frequency in smooth
water, to determine the effect of sudden flap deflections on the hydro-

foil forces and moments.

By comparison of the results of a, b and ¢ it was possible to isolate and
evaluate the force and moment variations caused by wave action and the vari-
ations caused by flap motion. The individual wave profiles were measured and

correlated with the hydrofoil forces and moments.

The hydrofoil tested had an NACA 16-309 section and was capable of being
fitted with four different flap sizes. It was the same hydrofoil model used in
the tests reported in Reference 1. The measurements obtained during unsteady

flow conditions were therefore compared with the results given in Reference 1.



Data is presented in coefficient form (in both tables and graphs) in this
report. In certain cases time histories have been produced to bring out salient

points and to show the effect of having two forcing functions (wave and flap) of

different frequencies.




2 MODEL DESCRIPTION AND INSTRUMENTATION

2.1 MODEL DESCRIPTION

The model used in this test program was the same as that used in tests reported
in Reference 1; consequently, only a brief description will be given here. It
exhibited a span of 24 inches, a chord of 4. 0 inches, and a rectangular planform

with a NACA 16-309 section. The model was fitted with simple flaps as follows:

Flap Configuration cf/c kif_/i
1 0.3 0.6
2 | 0.3 0.8
3 0.2 0.6
4 0.2 0.8

The single center strut was enclosed in a double ogive fairing which did not touch
the foil or strut, and thus strut drag was eliminated from the test results.
Figure 1 shows the model with Flap Configuration No. 3. Figure 2 is a schematic

drawing of the model and balances, and also shows the method of flap cycling.

. The strain gages were waterproofed with Dijell wax, which was melted first
and then brushed on. The gages were then coated with Ten-X waterproofing

compound for mechanical protection.
2.2 INSTRUMENTATION

Forces were measured by means of strain gage balances mounted at the top of

the strut (Figure 1). Data was recorded on a Consolidated Electrodynamics



Corp. (CEC) oscillograph, Type 5-114-P3-26. The circuit incorporated a CEC
3-kc amplifier with an output calibration circuit, and a variable attenuation and
galvanometer damping circuit. This enabled amplifier output to be maintained

within 1%.

Model velocity was obtained from a carriage-mounted photocell, whose
signal on the oscillograph trace was deflected by interrupters placed every five

feet along the carriage rails.

Wave contours were measured during each test by a sonictype wave re-
corder developed and constructed by the University of Minnesota-St. Anthony
Falls Hydraulics Laboratory (Reference 3). The wave recorder was mounted

on the carriage to measure wave amplitudes at the foil 1/4-chord point.

Flap position was recorded continuously by a strain gage balance connected

to the flap bell-crank. No readings were taken of flap forces and moments.

A 16-mm Eyemo motion picture camera was mounted on the carriage to

document possible intermittent cavitation or ventilation on the foil and strut.




3 TEST PROCEDURE

The test program was conducted in the 300-foot General Dynamics/Convair
hydrodynamics towing tank (Reference 2). The model was tested at constant
velocities between 18 and 32 ft/sec. approximately. It was run at fixed depths
(1/4-chord point to smooth water level) of between 3 and 5 inches, and with fixed
wing angles of attack between -5 and + 10 deg. Flap oscillation frequencies which
were constant for any given run, varied between 0.5 and 7.0 cycles per second.
Regular waves from the paddle-type wavemaker, again constant for any run,
were varied between 2 inches and 4 inches in height, and between 3.5 and 8. 25

ft. in length (i.e., 20:1 to 24:1 approx.)

Flap angles were varied through the range -8 to +8 degrees during cycling
tests, between -5 and + 10 degrees for flaps fixed in wave tests, and between 0
and + 16 degrees for 1/2 cycle tests. Positive values denote flaps deflected

downward.

The procedure when testing with flaps cycling in waves was to choose a flap
frequency, wave size and model velocity such that the frequency of ehcounter
with a wave was almost the same as the frequency of oscillation of the flap.
Usually, two runs were carried out under identical conditions in order to get
instantaneous phase relationships between f].a‘,p down and wave peak between

7 radians lag, progressing through the ""in-phase' condition to 7 radians lead.






4 METHOD OF ANALYSIS

4.1 TESTS IN SMOOTH WATER WITH FLAPS CYCLED
AT VARIOUS FREQUENCIES
The purpose of this part of the program was to determine the frequency response

of the system by sinusocidally moving the flaps.

Data from tests covered in Reference 1, with flap cycling frequencies of
0.50 to 1.66 cycles per second, were combined with more recent data with flap

cycling frequencies between 3.0 and 7.0 cycles per second.

Average values of maximum and minimum trace readings for lift, drag,
pitching moment and flap deflection were read from the oscillograph traces.
The force and moment equations were programmed into the IBM 704 computer

and CL’ C.., and CI\ for the foil were read out.

D 1

The lift, drag, and moment traces were read at close intervals (i.e., as
time histories) throughout the force cycles in order to determine the true maxi-
mum and minimum values of drag. Maximum and minimum drag could not be

determined from inspection of the oscillograph traces because of the effects of

balance interactions.

Phase relationships of the force coefficients were read as lead (positive) or
lag (negative) in radians of the maximum values to the maximum flap down posi-
tion. They were obtained by measuring from the oscillograph trace the time
distance between the flap down and the force peak, and arithmetically solving
for ¢ by the equation

b

P _t
27 T1



where T was the time distance from flap down to the next flap down (flap cycling
period). If the force peak occurred later than maximum flap down position it

was defined as lagging.

The frequency of flap oscillation was obtained from the oscillograph trace

by measuring the time interval between successive peaks. Then

6= 2%1 rads/sec.

Force coefficient and flap amplitudes were defined as 1/2 (max. value - min.
value). There was a tendency for the flapping mechanism to deflect slightly
under heavy load, thus causing slight indentations in the sine traces of the almost
simple harmonic motion of the flaps. However, the frequency of oscillation held
very steady and was easily read from the traces.
4.2 TESTS IN REGULAR WAVES WITH FLAPS FIXED —

HEAD AND FOLLOWING SEAS
The data was analyzed in the same manner as for flaps cycling in smooth water
(described previously). Phase relationships of the force coefficients were read
as lead, or lag, of the maximum values to the wave peak. Waves varied in size

slightly during the course of each run, and thus average values of amplitude and

phase angles were read from the oscillograph traces.

The frequency of wave encounter was obtained from the oscillograph trace

by measuring the time interval between successive peaks, T 9 then,

2m ‘
y = — rads/sec.
To

Force coefficient and wave amplitudes were defined as 1/2 (max. value - min,
value). Wave length was determined by solving the following simultaneous
equations: The frequency of wave encounter

2

V:-}\—‘;T{ Uoo:':vw>9 (1)

where (+) indicates head seas and (-) indicates following seas.




The velocity of a trochoidal wave
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b. Following Sea Case

From Equation (1)

A
"'k
v =(u_-
w S © 2m

_em <Uz X " _Uoo”x>
g T
Consequently, the expression for wavelength is the same for both head and follow-
ing seas. Take second term in equation at the bottom of page 9 as positive for
head seas and negative for following seas.
4.3 TESTS IN REGULAR WAVES WITH FLAPS

CYCLING — HEAD AND FOLLOWING SEAS
Data was read from the oscillograph traces in exactly the same way as for the
two previous cases. Phase relationships of the force coefficients were read as
lead or lag of the maximum values to the wave peak. But in addition there was
(at any time during a run) an instantaneous phase relationship between the ﬂa'p
position and the wave. This was defined as a lead if the maximum flap-down
position occurred 7 radians or less ahead of the wave peak. In order to obtain
the phase in radians, the reference was taken as the encounter period of the

wave in seconds — the same as for the force coefficient phase angles.

Because of the varying phase relationship between the flap and the wave, it
was not possible to average the waves to take account of variations in wave size,
and all values had to be read as close as possible to the times at which flap-wave

phases were equal to + m, + /2, 0, - 7/2 and - m. This meant that the results

10




for flaps cycling in waves could not be so accurate as for flaps fixed in waves.
However, errors caused by this source were very much diminished by the fact

that the flap is by far the more powerful forcing function.
Wave lengths were again calculated as for the flaps fixed in waves case.
4.4 DATA ANALYSIS ON TIME BASIS

The purpose of this part of the analysis was to get force and moment coefficients
from 1) Steady-state data, flaps fixed in smooth water; 2) Data for flaps fixed in
waves; and 3) Data for flaps cycling in smooth water. These three sets of data
were added together in a time history and compared with the measured total as

given by tests with flaps cycling in waves.

Because of the difference in frequency of the two forcing functions (wave and
flap), there will be a "beating' of the resultant force and moment coefficients;
i.e., the amplitudes of the oscillations will rise and fall periodically over a
number of oscillations. The period of this ""beating" will be of longer time dura-
tion as the frequencies of the two forcing functions come closer together. This
effect was clearly observed on the oscillograph traces. See Figure 67 for a
typical record, and Figures 34 through 37 for plots of the envelopes of CL with
flap phase.

Wave amplitude AKt = Ak X sin v¢.

At any time from t = 0

Flap Deflection =06p = 6, x sin (wt+ ¢_).
£t 5%

f
Adding wave and flap effects

°L

AC =‘—> XA xsin{v + ¢ J
L(t) AKV K |t L1

CL
+ > x6xsin{<wt+¢>>+q’> }
Similar expressions can be derived for ACp ) and ACpg Values of force and

{t) (t)

moment amplitude ratio and phase relationships are read from Figures 3 through

20.

11






3 DISCUSSION OF TEST RESULTS

5.1 GENERAL

The results of the tests are presented in coefficient form in Tables 2 through
17. CL and CD were obtained normal and parallel to the water surface respec-

tively, and C = was measured at the 1/4-chord point. Total drag measurements

M
were not corrected for interference effects due to the presence of the center

strut, as this was found to be very small. (See Figure 25 of Reference 1.)

There was no evidence of cavitation or ventilation in any of the tests. The
approximate test variables for which data has been obtained are summarized in

Table 1. Not all combinations of the variables were tested: consequently, Table

1 must be read in conjunction with Tables 2 through 17.
0.2 FLAPS CYCLING IN SMCOTH WATER
Graphs have been plotted of

AC,

N and ¢, 5 ( the phase of maxirmum CL to the flap-down position) against
f

a base of flap cycling frequency in radians/sec. Similar graphs have been plotted

for

ACD 5 AC

d 2
an

JAY®

{ Aéf

Figures 3 through 8 show these graphs for all four flap configurations.
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; t AC
It will be noted that L

5
A0

tends to increase with increase of flap cycling frequency, and this may mean
that there is no flow separation at the higher frequencies. However, this pos-

sibility was not investigated.

With regard to
ACD9

Aﬁf

it will be noted that the flap cycling tests of Reference 1 (with the lowest cycling
rates) were performed at foil angle of attack of zero degrees, whereas the later
cycling tests at higher cycling rates were done at angle of attack of +5 degrees.
Now the CD ~ o curves for flaps fixed in smooth water are "trough' shaped
with minimums for the different flap angles occurring at approximately o« = 0°,
Ata = 5°, CD increases progressively when 61_, is moved from negative, .

through zero, to positive. However, at o = 0°, CD may be greater at 6 -5°,

f
for example, than it is at 6f = 0°. This is probably the cause of the scatter in

the tests points for
' ACD2

5
A0

and drag phase angle at the lowest flap frequencies.

Force and moment phase lag increases with increase of cycling frequency,

and would probably reach a value of 7 at very high frequencies.

Average values of CLZ’ CDz .and CM2 were plotted against cycling fre-
quency (Figures 21 through 25) and were found to be close (within limits of
experimental error) to the steady-state values for a = 5° . However, at a = 0°
values of CD2 tended to be negative. No explanation is offered for this, but the
data was carefully checked and is felt to be good. Negative drags did not occur

in any other test.
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5.3 FLAPS FIXED IN REGULAR WAVES

Graphs have been plotted of the non-dimensional coefficient

AK 2

and the phase of maximum CL to the wave peak, against a base of frequency of

wave encounter in radians/sec. Similar graphs have been plotted for

AC

26
AK 2

A

and

2 (8)
AK 2
These are shown in Figures 9 through 20 for all 4 flap configurations, and for

both head and following sea conditions.

It was observed that there was a pronounced difference in the phase relation-
ships between head and following seas. Because of the orbital velocity of the
wave, the maximum lift occurs approximately n/2 radians ahead of the wave
peak in a head sea, and approximately /2 radians after the wave peak in a fol-
lowing sea. This is because of the change of effective angle of attack on the foil

as it passes through the waves.

The frequency of wave encounter was defined as
p=—""(U_ = Vw> radians/sec.

The positive sign is taken with head seas, and the negative sign with following
seas. Other experimenters, notably those discussed in Reference 5, have used
a non-dimensional reduced frequency, which is useful where comparisons have

to be made.
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This is defined as:

Reduced frequency '“,,V =

1l

c ar
¢ — + ,
2U_ X (Uoo Vw>

et (G sy
UOOKK<°° w)’

For head sea tests with flaps fixed,the same wave was used throughout, and
therefore the reduced frequency remained almost the same even though the
velocity changed. Consequently, it was not possible to use this form for graphi-

cal presentation of the results.

The oscillatory lift parameter decreases slowly with increase of v for all
four flap configurations in a head sea, and increases slowly for all configurations
in a following sea. This is in agreement with Reference 4, Page 10, where it
is noted that the unsteady lift effects are decreased in head seas with increasing

velocity for the same range of wave conditions.

In general, it appears that the angle of attack of the foil, and flap angle,

have little effect on the oscillatory lift coefficient in waves. (See Figures 9,

10, 15, 16.) Head sea tests were carried out at @ = -5°, 0°, 5°, 10°, and
0 £ -6°, 0°, 5°, 10°, whereas following sea tests were all carried out at
a =5 and 5f= 10°.

The oscillatory drag parameter decreases slowly with increase of v for all
four flap configurations in a head sea, but is almost constant for all configura-

tions in a following sea.

Drag is out of phase with lift in head seas. It has been suggested that this
may be caused by leading edge suction. If the suction force increases with in-

crease of instantaneous angle of attack in head seas as the foil approaches the
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wave peak. then it would be expected to increase commensurately with increase
of 1ift. This suction force would therefore act in complete opposition to the
drag because of 1ift, and would tend to shift the phase angle of the drag relative

to the wave.

In Reference 6, J. M. Wetzell gives another explanation of how lift and drag
become out of phase, and also how it is possible for even negative drags to
occur. To quote Reference 6, with explanations for Reference 4 that are
applicable to this present report: "The lift and drag were measured perpen-
dicular and parallel to the still water surface. As the instantaneous angle of
attack was increased (up-wash) by the orbital velocity of the wave, the true lift
and drag with respect to the instantaneous velocity vector also increased. How-
ever, the resultant force vector tilted forward, thereby increasing the measured
lift and decreasing the measured drag. A downwash effect would decrease the
measured lift and increase the measured drag. Thus, for quasi-steady condi-
tions the lift and drag should be out of phase about 180 degrees, measurements
in head seas (Figures 6 and 10 of Reference 4) indicate about 230 degrees. It
may also be possible to obtain negative drags if the instantaneous angle of attack
is sufficient to tilt the force vector forward of the vertical for part of the cycle,
and if the steady drag is low. It should be mentioned that the drag reduction in
an upwash can be expected only in a wetted, non-separated flow." These re-
marks are directly applicable to this present report, as flow was fully wetted,
and lift and drag were also measured perpendicular and parallel to the water
surface. In these tests lift and drag were out of phase in head seas by about

220 degrees.

There is considerable scatter in the test points for the oscillatory pitching
moment parameter plotted against frequency of wave encounter in head seas,
but there appears to be very little change in this parameter as frequency is in-
creased (Figures 13, 14). In a following sea the oscillatory pitching moment
parameter increases with increase of frequency for all four flap configurations

(Figures 19, 20). The pitching moment oscillograph traces follow the lift traces
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closely, and the maximum and minimum pitching moments occur at nearly the
same phase angles as the lift maximum and minimums. In head seas the pitch-

ing moment leads the lift slightly, and in following seas it lags slightly.

Figures 26, 27, 28 and 29 show mean values of force coefficients for tests
with flaps fixed in waves, for both head and following seas. Results indicate
that within the range of frequencies tested there is slight decrease in both lift
and drag as frequency of encounter increases. This is true for all positions of
the wing and flap settings, and for all flap configurations, but particularly for

Configurations 3 and 4.

Figure 30 shows mean values of pitching moment coefficient for all flap
configurations in both head and following seas. Within the limits of experimental
error there is very little change of mean pitching moment coefficients from the

steady-state values of Reference 1.
5.4 FLAPS CYCLING IN REGULAR WAVES

The plotting of data from these tests is complicated because there are two forc-
ing functions (flap and wave) of different frequencies. The forces and moments
not only have phase relationships with the wave, but different phase relationships
with the flap. Actually, all measured phases (which are instantaneous in this
case) have been referred to the wave as the basic forcing function. The oscil-
latory force and moment coefficients would vary with both frequency of wave
encounter and frequency of flap oscillation, as well as with the phase relation-
ship of the flap to the wave. Consequently, the best way to analyze this data is
in terms of continuous time histories (described in Paragraph 5. 5). However,
to cover all of the data invthis way would be exceedingly lengthy and time con-
suming, and there are various other ways to plot in order to summarize and
bring out the salient points. Figures 31, 32 and 33 present plots of average CL,
CD and CM respectively, against a combined frequency of flap and wave in
radians per second. In general, there is a slight falling off in CL as frequency

increases, CD remains sensibly constant and CM becomes slightly more
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negative. The points for head and following seas fall very close to the same

curves.

In Figures 34 through 37 instantaneous maximum and minimum lift coeffi-
cients have been plotted against the phase of the flap to the wave, for all flap
configurations in head and following seas. The curves are really envelopes of
the AC and show the harmonic "beating" of AC with change of phase between
the two forcmg functions. This effect can also be seen in the representative
oscillograph trace in Figure 67, where there is a large frequency difference
between the flap cycle and the wave cycle. It will be noted that in head seas
AC is a maximum where the flap-down position leads the wave peak by 7/2
radlans, and that in following seas AC is a maximum where the flap lags the
wave by 7/2. This would be expected since these are the points where there is

maximum disturbance input.

Figures 38, 39, 40, and 41 present curves of instantaneous maximum and
minimum drag coefficients plotted against the phase of the flap to the wave, for
all flap configurations in head and following seas. These curves do not exhibit
so clearly as those of lift coeificient the change of drag with phase change be-
tween the‘ forcing functions. Figures 42 and 43 show that there is little change
of maximum instantaneous CM when plotted against the phase of the flap to the

wave, in head or following seas.

Figure 54 is a summary plot that was prepared of an oscillatory lift param-
eter against frequency in radians per second. With this plot it is possible to
compare on one sheet the tests with flaps cycling in waves, flaps cycling in
smooth water and flaps fixed in waves for all four flap configurations in both

head and following seas:

a. For flaps cycling in waves, the oscillatory lift parameter was taken as

‘AC
< L3 el
Ap - 0, 2
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which brings in the effects of both flap and wave, and the frequency factor was

taken as \/ V. W, radians/sec.

b. For flaps cycling in smooth water, and flaps fixed in waves, a com-

bined oscillatory lift parameter was taken as

AC. + AC
L, Lz)

AK' 5f

2

X

'l

which was again plotted against the combined frequency factor \/ v - w_radians/

f

sec.
Values of ACL3 were read from the Summary Tables 14, 15, 16, and 17 as
maximum values, at maximum flap down leading the wave peak by 7/2 radians -

for head seas, and lagging by 7/2 radians in following seas.

Figures 54 shows that for each flap configuration the oscillatory lift param-
eters for the different cases fall on the same curve for both head and following
seas. Thus, the separate effects of flap and wave can be evaluated and then
added together vectorially to give the combined effects with both flap and wave

acting together.

Figure 55 is a summary diagram of flap and wave effectiveness in lift for
all flap configurations in both head and following seas. It can be seen that for
all flap configurations except No. 3 the flap is a very much more powerful forc-
ing function than the wave and could easily cancel changes in CL caused by run-
ning through waves. Both Figures 54 and 55 show that much more flap effec-
tiveness is derived from increase of flap chord than from increase of flap span.
Phase relationships for flaps cycling in waves are presented in Figures 62
through 66. For Flap Configurations 1 and 2 in head seas, Figures 62 and 63
show that drag lags lift and that pitching moment lags drag fairly consistently
by about 20 degrees each for all phase relationships between flap and wave. As
the phase of flap to wave progresses from lag to lead, the phases of lift, drag

and pitching moment become more leading. However, when the flap is in phase
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with the wave, forces and moments are all lagging the wave. At a higher fre-

quency of wave encounter and flap oscillation all forces and moments are more
lagging to the wave than at a lower frequency. Considering Figures 64 and 65,

for Flap Configurations 3 and 4 in head seas, roughly the same conclusions

apply, but there is much more scatter in the data.

In following seas, the scatter was very bad, and made graph plotting impos-
sible except for Flap Configuration 2 which had the largest flap. Figure 66
shows that Flap Configuration 2 in a following sea exhibited approximately the
same characteristics as in a head sea.

5.5 TIME HISTORY ANALYSIS TO ISOLATE EFFECTS OF

FLAP MOTIONS FROM EFFECTS OF WAVE MOTIONS
All comparisons were made with Flap Configuration No. 1 (cf/c = .3, bf/b = .6),
but a variety of conditions was chosen to show that the method works for head
and following seas, and for different instantaneous phase relationships between

flap and wave. The results are shown in Figures 44 through 53.

Figures 44, 45 and 46 present lift, drag and pitching moment variation
respectively, for Test Run 13191 through two complete cycles starting with /2
radians flap lag and finishing with flap and wave in phase. The wave frequency
of encounter was 4.72 cycles/sec. The wave height (trough to crest) was 1. 73
inches and its length, 3.66 ft. The flap frequency was 6.30 cycles/sec. This

was a following sea case.

C L variation with flaps cycling in waves agrees very closely with CL ob-
tained by adding 1) components caused by flaps fixed in calm water (Reference 1),
2) components caused by flaps cyecling in smooth water, and 3) components caused
by flaps fixed in waves. Agreement is found in amplitude of oscillation, period
and reduction in amplitude (i.e., beating) on going from flap "lag' to "in phase"

conditions.
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With CD it was found that there was good agreement in amplitude variation
and period of oscillation, but the actual values of CD obtained by adding up
separate components were an almost constant amount less than the values for
flaps cycling in waves. This appears to be the result of an increase in the
basic CD of the foil in going from steady to unsteady flow conditions. The same
remarks apply to CM, which was an almost constant amount more positive when

made up of component parts.

Figure 47 shows the separate components of ACL resulting from flap and
ACL caused by the wave for Run No. 13191. It can be seen that the flap is a
very much more powerful forcing function than the wave, and could easily can-

cel out the variations of CL caused by the wave.

Figures 48, 49 and 50 present lift, drag and pitching moment variation
respectively for Run No. 13157 at 7/2 radians flap lead. Only one oscillation
has been plotted since the two forcing functions were very nearly of the same
frequency, and "beating' would be evident over a larger number of waves. The
wave frequency of encounter was 3.42 cycles/sec. The wave height (trough to
crest) was 3.77 inches and its length, 8.31 ft. The flap frequency was 3. 22

cycles/sec. This was a head sea case.

There was good agreement for both lift and drag, but pitching moment was
more positive by an almost constant amount when made up of component
parts. Figures 51 and 53 present lift, drag and pitching moment variation for
Test Run 13154, with flap lagging the wave by 7 radians. Figure 52 and 53 pre-
sent lift, drag and pitching moment variation for the same run, but with flap
and wave in phase. The wave frequency of encounter was 7. 88 cycles/sec. The
wave height (trough to crest) was 1.51 inches and its length, 3.65 ft. The flap

frequency was 7. 35 cycles/sec. This again was a head sea case.

There was very close agreement in CI variation for both flap and wave,

""out-of-phase' and "in-phase,' and not much change in the actual values. CD

again was a constant amount low when made up of component parts, for both
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out-of-phase and in-phase conditions. CM showed very good agreement, both

for actual values and for dimensions of the wave form.

It is felt that this detailed plotting of a small part of the experimental data
obtained in the test program shows fairly conclusively that it is possible to
isolate and evaluate the effects of flap motions from the effects of wave motion
when running with flaps cycling in waves — if test results from flaps cycling in
smooth water and flaps fixed in waves are available separately. It also shows
that if a complicated wave of several superimposed sine waves is built up, it
should be possible to obtain flap motions that would give a constant running CL'
This information would be useful to the hydrofoil boat designer but will require
further analysis.

5.6 COMPARISONS WITH REFERENCE 1

SMOOTH WATER TESTS
Some of the figures that show comparisons with Reference 1 (flaps fixed in
smooth water) were discussed previously in this section of the report. These
are the plots of average force and moment coefficients against frequency of
disturbance in radians per second (Figures 21 through 33). In general, these
average force and moment coefficients show very good agreement, within the
limits of experimental error, with the steady-state values. Sometimes average
lift and drag coefficients are a little lower than steady state, and average pitch-
ing moment coefficients tend to be a little more negative. Figures 56 and 57
summarize some of the this data for average force coefficients. Figure 56
shows average values of lift coefficients for all four flap configurations at a
constant angle of attack of 5°, and for flaps cycling in waves, flaps cycling in
smooth water, and flaps fixed in waves (plotted against frequency in radians per
second). The steady-state value of CL is 0.34. Figure 57 shows average values
of drag coefficients at constant @ = 5°. The steady-state value of CD is 0.024.
No particular trends are discernable from the curves, but it appears that there
is not much change in the force coefficients from the steady-state value within

the range of frequencies tested.
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For the tests of flaps fixed in waves there was sufficient coverage of angle
of attack to plot CL vs. o and CD vs. «. These are compared with the steady-
state curves from Reference 1, at a flap deflection of 10 degrees down in
Figures 58 and 59. Two wave cases were evaluated: one where the wave er-
counter rate was 3 waves per second, and the other at 5 waves per second.
Test points were plotted for head and following seas. The average force coef-
ficients for flaps fixed in waves fall slightly below the steady-state curves, but
are of the same form, and the lift curve slopes are the same. There is very

little difference between the encounter rates of 3 or 5 waves per second, and

these differences can probably be attributed to experimental scatter.

5.6.1 THE EFFECT OF DEPTH — In all of the tests described in this report
the static depth of the 1/4-chord point of the foil was held steady at 1 chord,
with the exception of tests with flaps fixed in waves in a following sea. Figure
60 presents values of the average lift coefficient plotted against the non-dimen-
sional static depth of the foil (h/c) for all four flap configurations at @ = 5° and
éf = 10°. As h/c drops from 1.25 to 0.75 the average CL falls about 10% for
all four flap configurations. It is not possible to exactly compare this data with
Figure 18 of Reference 1, because the Reference 1 plot is for Flap Configuration
2 only, at @ = 2° and foil submergences (h/c) between 0.5 and 1.0, However,
considering this case with a flap deflection of 10° down, as h/c drops from 1.0
to 0.5 the CL falls about 11%. Therefore, the foils running in waves exhibit

approximately the same reduction in average lift on approaching the mean water

surface as in the steady-state conditions.
5.7 COMPARISONS WITH REFERENCE 4

In Reference 4 (hydrofoils in regular waves tests) oscillatory lift parameter
was plotted against wave length in feet, and oscillatory drag parameter against
wave height. The plotting of the lift parameter against wave length had a theo-
retical basis, but the plotting of the drag parameter against wave height was

arbitrarily adopted, since this parameter had little dependence on wave length.



Inthis reportthe only data obtained at a sufficiently large number of wave sizes

was for flaps fixed in waves in a following sea. From Reference 4:

L
Oscillatory lift parameter = e (Reference 4 symbols),
abpV
2
AC LpV bc
= 7 5 (symbols used in this report), and
ZAK - cpV

_ 2% <p>
AK 2

Similarly, oscillatory drag parameter

_ 2% Cg)
AK 2

Figure 61 presents plots of

(‘fﬁ_l_ b
AK /) 2
against wave length ?\K feet, and
¥
2
AK A

against wave height in feet (trough to crest), for Flap Configuration 1 at two
speeds: 21 and 30 feet per second, and a = 5°, 5r = 10°. As in Reference 4,

the oscillatory lift parameter is fairly constant, falling slowly with increase of
wave length. The actual values are lower, since the 16-309 is a low-lift, high-
speed section when compared with the Wright 1903 tested in Reference 4. The
oscillatory drag parameter falls with increase of wave-height; this is in opposi-
tion to Figure 10 of Reference 4. However, the drag change with wave is greater

at the lower speed, which agrees with Reference 4.
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5.8 ONE-HALF CYCLE TESTS IN SMOOTH WATER

Figures 68 through 76 present results of tests in which the flaps were driven
through one-half of one cycle at various frequencies to determine the effect of
sudden flap deflections on the hydrofoil forces and moments. Figure 77 pre-
sents a case where the flaps were driven through one complete cycle at 6. 3
cycles/sec. These tests simulate sudden control motions which may occur dur-

ing the operation of a full-scale hydrofoil vehicle.

It is noted from the curves that there is always considerable over-swing of
CL and CM, and to a much lesser extend of CD. The maximum CL usually
occurs just before the maximum flap-down position, and the maximum CD and
CM just after maximum flap down. CM in particular does not become steady
until about 100% of the flap deflection time has elapsed, after the flap is fully
down. The overswing in CM may be up to 100% of the change resulting from

steady flap deflection.

Except for the very low cycling rate of 1.6 cycles/sec., phase relationships
between the flap, and the hydrofoil forces and moments, do not seem to be much
affected by flap cycling rate within the range of frequencies tested. In the case
where the flap was moved through one complete cycle (see Figure 77 for results
on Flap Configuration 4), the peak values of CL’ CD and CM all occurred after
the flap was in the full down position. As the flap returned to its original neutral
position, CL and CD returned smoothly to their original values without over-

swing, but with CM there was again some overswing.

27






6 RELIABILITY AND ACCURACY OF DATA

In general, the accuracy of the test points can be taken as +5%. However, the
accuracy of faired curves may be considerably better. The maximum frequency
of the transient loads and moments obtained in waves was approximately 7 cycles/
sec. The natural frequency of the complete model system was about 10 times

this value; consequently, the force and moment variations could be read with

good accuracy. Waves sometimes varied slightly both in height and length during

any one run; therefore, the data had to be averaged over three or more waves.

Because the flap and its drive mechanism deflected slightly under very heavy
loads, the flap deflection trace departed slightly at such times from a pure sinu-
soidal form. However, its frequency did not appear to vary. Flaps cycling in
wave tests gave oscillograph traces which were essentially transitory in nature
because of the different frequencies of the flap and the wave; consequently, this
data is probably less accurate than that obtained from the other tests. It was
read later, however, with the experience gained from reading all the earlier
data, and so this may have increased its accuracy somewhat. Also, the flap was
the stronger forcing function, and the flap trace was of more constant form than

the wave trace — giving greater overall accuracy.

Of all the traces, the pitching moment was the worst one from the stand-
point of harmonic distortion, especially with long waves in following seas. The
lift trace exhibited good sinusoidal form (as did the wave), but the drag trace

was masked by gage interactions. (See paragraph 4.1, Section 4.)
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On page 11 of Reference 4 it is stated that an investigation was made of the
wave profile used as the forcing function in the experiments. A harmonic analy-
sis was made of several typical wave forms and a distortion of about 8 to 12%
was found in most cases. In Reference 4 a harmonic analysis was also made on

the lift traces.

No harmonic analysis was made on any of the data in this report. Conse-
quently, the values presented for lift, drag and pitching moment represent peak-

to-peak measurements taken directly from the records, rather than the maximum

+ M
amplitude of the fundamental. Average values are QMax Value 2 Min. Value >

Vs

In measuring phase angles it was found to be more difficult to measure drag
phase angles in following seas than in head seas because the peak position fluctu-
ated between waves. Therefore, it was rather difficult to select an average value.
Also, the peaks were not sharply defined, but spanned a considerable length on
the trace, and the midpoint fluctuated on each peak. In general, all phase angles
were found to be difficult to measure accurately because the peaks were often
not too clearly defined, and in flaps cycling in waves tests, phase relationships
were transitory. This is illustrated in Figure 67, which presents a typical oscil-
lograph record for flaps cycling in waves in a following sea. Note that the wave
trace is inverted in Figure 67. This is a case where the flap frequency is con-
siderably different from the wave frequency, and in three complete wave cycles
the phase of the flap to the wave has changed from "in phase' to " lag" and back

again to "in phase'.
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7 | CONCLUSIONS

a. The oscillatory lift coefficients and the oscillatory drag coefficients
are not apparently affected by flap deflection or angle of attack within the range

-5 degrees to +10 degrees.

b.  The average values of lift, drag and pitching moment coefficients in

unsteady flow do not vary much from the equivalent steady-state conditions.

c. It is possible to isolate and evaluate the separate effects of flap and
wave motion, and then add these vectorially to get the combined effects of flap

and wave acting together.

d. For the range of flap sizes and waves tested, the flap is by far the more
powerful forcing function. Increase of flap chord has more effect than increase

of flap span.

e. Flap 1/2-cycle tests show overswing of the force and moment coeffi-
cients, with center of pressure still moving up to 100% of the flap movement
time beyond flap steady. There are varying phase relationships between force

and moment coefficients and the flap.

f.  No cavitation or intermittent ventilation was observed at any time.
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9 NOMENCLATURE

Meodel Velocity (Ft. /Sec.).

Foil Angle of Attack (Degrees).
Flap Angle (Degrees).

Flap Angle (Radians).
Flap, 1/2 Amplitude of Oscillation (Radians).

Wave, 1/2 Amplitude (Ft.)
Wave Length (Ft.)

Frequency of Wave Encounter (Rad./Sec.).
Wave Velocity (Ft. /Sec.).

Frequency of Flap Oscillation (Rad. /Sec.).

Hydrofoil Chord (F't.).
Hydrofoil Span (Ft.).
Flap Chord (Ft.).

Flap Span (Ft.).

Depth of Foil 1/4-Chord Pt. (Ft. ).
Depth of Foil 1/4-Chord Pt. (In.).

Foil Lift Normal to Water Surface (Lb.).
Foil Drag Parallel to Water Surface (Lb.).

Pitching Moment About Foil, 1/4-Chord Point,
Positive Leading Edge Up (Lb. /Ft.)
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Water Density (Slugs/Ft. 3). ‘
. L . . . _ L
Average Lift Coefficient, Flaps Fixed in Waves = 7 720 U 3, ob.

D

Average Drag Coefficient, Flaps Fixed in Waves = 7 72p U 3 ob

Average Pitching Moment Coefficient, Flaps Fixed in Waves
_ P. M.
1/2p UO% c2b.

Average Lift Coefficient, Flaps Cycling in Smooth Water.

Average Drag Coefficient, Flaps Cycling in Smooth Water.

Average Pitching Moment Coefficient, Flaps Cycling in Smooth Water.

Average Lift Coefficient, Flaps Cycling in Waves.
Average Drag Coefficient, Flaps Cycling in Waves.
Average Pitching Moment Coefficient, Flaps Cycling in Waves.

1/2 Amplitude of CL Fluctuation, Flaps Fixed in Waves.
1

1/2 Amplitude of CD Fluctuation, Flaps Fixed in Waves.
1

1/2 Amplitude of CM Fluctuation, Flaps Fixed in Waves.
1

1/2 Amplitude of CL Fluctuation, Flaps Cycling in Smooth Water.

2

1/2 Amplitude of CD Fluctuation, Flaps Cycling in Smooth Water.
2

1/2 Amplitude of CM Fluctuation, Flaps Cycling in Smooth Water.

2

1/2 Amplitude of CL Fluctuation, Flaps Cycling in Waves.
3




W;bldo 7? lr‘o "

1/2 Amplitude of CD3 Fluctuation, Flaps Cycling in Waves.

1/2 Amplitude of C Fluctuation, Flaps Cycling in Waves.
M3

Phase Lag or Lead Angle of Max. Cy, 1 to Wave Peak (Radians).

Phase (negative lag) or (positive lead) Angle of Max. Cp, to Wave

Peak (Radians).

Phase (negative lag) or (positive lead) Angle
Peak (Radians).

Phase (negative lag) or (positive lead) Angle
Flap Down (Radians).

Phase (negative lag) or (positive lead) Angle
Flap Down (Radians).

Phase (negative lag) or (positive lead) Angle
Flap Down (Radians).

Phase (negative lag) or (positive lead) Angle
Peak (Radians).

Phase (negative lag) or (positive lead) Angle
Peak (Radians),

Phase (negative lag) or (positive lead) Angle
Peak (Radians).

Phase (negative lag) or (positive lead) Angle
Wave Peak (Radians).

of Max.

of Max.

of Max.

of Max,

of Max,

of Max.

of Max.

of Max,

1

CM1 to Wave
CLz to Max.,
CD2 to Max,
CM2 to Max,
CL3 to Wave
CD3 to Wave

CuMm 3 to Wave

Flap Down to

Instantaneous Phase of Flap to Wave, Referenced to Flap Frequency,

and Measured at t = 0.

Time on Oscillograph Trace from Start of Time History (SecondS).

Lift Amplitude Ratio, Flaps Fixed in Waves.

Drag Amplitude Ratio, Flaps Fixed in Waves.
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P. M. Amplitude Ratio, Flaps Fixed in Waves.

Lift Amplitude Ratio, Flaps Cycling in Smooth Water.

Drag Amplitude Ratio, Flaps Cycling in Smooth Water.

P. M. Amplitude Ratio, Flaps Cycling in Smooth Water.
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Table 14.

Flap Configuration 1; cf
and Following Seas, Fla

Run Head ' of CLMaX. CLMin. &CL3 CL3 b1, CDMa.X. CDMin. &.CD3 CD3
No. Following | Rads. Rads.
Sea |
l
13154 | Head ~-7/2 .52 .20 .16 .36 | -2.36 |.0400 |[.0131 .0134 .0266{
-T .58 .15 .22 .36 |+2.24 |.0386 |.0156 .0115 |. 0271
+7/2 .60 .10 25 .35 |+ .883[.0371 L0177 .0097 |.0274
13157 || Mead +7 .49 .18 .16 .33 |+2.375(.0366 |.0134 .0116 |.0250
+7/2 .57 .06 .26 .31 |+1.41 |.0350 [.0155 .0098 |.0232
13160 Head - .44 .19 .13 .32 |+2.50 |.0410 .0109 .0150 |.0260
-m/2 .43 .27 .08 .35 | -1.06 {.0433 .0146 .0144 |.0289
13167 Following | +7/2 .35 .27 .04 .31 | -2.52 |.0412 L0197 .0107 |.0305
+m .51 .09 21 .30 | -1.94 |[.0437 .0215 .0111 |.0326
13182 Following | -7 .48 .07 .21 .28 | -2.07 |.0410 .0216 .0097 |.0313
-/2 .55 .10 .23 .32 | -1.89 |.0417 .0216 .0101 |.0316
13191 | Following | - .50 .16 AT .33 |+1.23 |.0418 . 0207 .0105 |.0313
+m/2 .53 .20 .16 .36 |+1.23 |.0428 . 0204 .0112 |.0316
-1/2 .60 1T .21 .38 | -1.70 |.0435 |.0200 .0117 |.0318




:= 0.3, bg/b = 0.6; Tests in Regular Head
s Oscillating; Static h/c = 1.0, a = 5°

D, |Cm CMyppin. | 2CM3 | Om om b v wg ) A |as

i 5 K f
Rads. Max Min 8 : Rads. Ft./Sec.| Rads./Sec. | Rads. /Sec. Ft. |Ft. [Rads.
-2.78 |-.061 -.005 -.028 | -.033 | -3.14 23.80 49.4 46.1 3.65 |.0628|. 148
+1.96 [-.063 -.003 -.030 -.033 | +1.354 23.90
+ .748|-.069 -.005 -.032 | -.037 0 24,40
-2.085|-.083 -.028 -.027 -.056 | +2.375 22.10 21.5 20.2 8.32 |.157 |.149
+1.09 |-.101 -.007 -. 047 -.054 | +1.15 21.70
+3.06 |-.097 -.026 -.035 | -.062 | +2.68 23. 30 22.1 8.2 8.53 |.163 |. 149
-1.90 |-.114 -.021 -.046 | -.068 -1.193 23.31
+2.68 [-.104 -. 009 -.047 | -.057 | -2.57 20. 83 10.45 12.17 8.58 |.157 |. 149
-2.90 [-.080 -.021 ~-.029 -.051 -1. 965
-2.79 |-.090 -.019 -.035 -.055 | +2.78 20.80 10.57 11.57 8.46 |.154 |. 148
+1.32 |-.081 -.016 -.032 | -.049 | -2.06
+1.04 [-.114 -.012 -.051 | -.063 | +0.44 21.57 29.6 39.5 3.66 |.072 | 145
+2.11 (.116 -.005 -.055 -.061 | +0.44
-1.88 [-.100 -.006 -.047 | -.053 | -2.38




Table 15. Flap Configuration 2; cg/
and Following Seas, Fla-

o el K Clyax.| CLyin. | 2CL3| CL3| L3 | CDyrax.| “Purin, | 2CD3 | CD3

No. Following | Rads. Rads.
Sea

13240} Head -m/2 .Hb .04 .25 .30 | -1.98].0372 .0131 .0120{ .0252
13248 Head + .59 0 .29 .30 | +2.36].0385 .0136 .01251].0260
+7/2 .63 -. 05 .34 .29 |+ .83].0400 . 0142 .0129 | .0271
13256} Head -m/2 .39 .17 .11 | .28 | -1.13].0376 |.0136 .0120 | . 0256
13260 Head +r .48 .02 .23 .25 [+2.741.0340 . 0147 .0096 | .0244
+m/2 .58 -.05 .32 .26 |+1.33].0365 |.0131 .0117 ] .0248
13284 Following | -w/2 .5l .01 .25 .26 | -1.79{.0357 . 0194 .0082].0275
- .49 .02 .24 .25 | -2.07].0401 . 0204 .0098 1.0303
13302 || Following | + /2 .39 .18 i .29 [+1.63].0441 |.0178 .0132 |.0309
13308} Following | -m/2 .58 -.01 .29 .29 | -1.79|.0311 .0131 .0090 | .0221
13310)} Following | -m .57 .04 .27 .30 |+1.87].0375 |.0136 .0119 |.0256
+7/2 .52 .07 .22 .30 |+1.23].0396 . 0143 .0126 |.0270




:= 0.3, bg/b= 0.8; Tests in Regular Head

s Oscillating; Static h/e = 1.0, a= 5°

[
| oD CMm CMor ACM, | Cy dM U v w A A A
g . 3 f K K f

Rads. Max Mia 8 Rads. | Ff./Sec.| Rads. /Sec.| Rads./Sec.| Ft. | Ft. | Rads.
-2.125| -. 105 -.001 -.052 -.053 -3.18 | 23,12 46. 9 45, 2 3.67| .066 . 160
+2,325/-.106 -.011 -. 047 -.059 | +1.56 | 22.73 46.5 44.8 3.66f.063 | .159

| + AT - 117 -.003 -.057 -.060 - .28
-1.775]-.124 +:012 -.068 -.056 -1.80 | 22.64 22.4 27.2 8.16{ .165 . 160
+2.54 |[-.126 -.081 -.023 -.103 | +2.85 | 22.02 22.1 23.5 8.11}.167 |.160
+ .942{-.136 -.010 -.063 -.073 | +1.16
-1.214{-.093 -.006 -.043 -.050 -1.74 | 21.38 11.31 10.46 8.27].166 .162
+2.46 |-.091 -.002 -.045 -.046 | -2.67
+1.315|- .119 -.009 -.055 -.064 | +1.47 | 21.74 11.73 12.55 8.151].140 .163
-1.10 |- .137 +.012 -.075 -.062 -2.44 | 21.83 30,0 35.8 3.671.075 . 158
+2.80 |- .138 +.025 -.082 -.056 | +1.24 | 21.33 30.3 34.9 3.541.068 |.158
+ .868|- .143 +.021 -.082 -.061 | + .54
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Table 16. Flap Configuration 3; c;
and Following Seas, Fl:

Run Head or o CLMax. CLMin. ACLa CL3 d1, CDMax. cDM:in. aCDS CD3
No. Following| Rads. Rads.
Sea
12702\| Head -7 .35 .22 .06 .29 [+1.955[.0282 |.0171 .0056 | .0226
12704)| Head -m/2 .39 «19 .10 .29 |+ .116/.0261 |.0172 .0044 | .0217
12706/ Head +7/2 .44 <A .14 .30 | +1.529(.0287 . 0162 . 0063 | .0224
12760} Head +7/2 .47 .14 .17 .30 |+ .911].0267 .0181 .0043 | .0224
12762 Head -m/2 .39 ial .09 .30 |+2,.710].0264 . 0132 .0066 |.0198
-T .48 .16 .16 .32 | +1.657].0323 .0211 .0056 |.0267
12778\| Following| +m/2 .30 .26 .02 .28 |+2.074].0301 |.0167 . 0067 | .0234
12784 Following | + .39 AT = 1 B .28 | -2.154(.0254 .0199 .0028 |.0226
12824 F Following | +7/2 .35 .24 .05 .30 | - .347].0318 .0175 L0072 |.0246
I
12849 Following | -7/2 .42 .16 .13 .29 | -2.079].0276 . 0156 .0060 |.0216
=T .41 AT .12 .29 |+3.095).0263 .0194 .0035 |.0228
+m/2 .37 .24 .07 .30 |+1.032].0253 |.0206 .0024 |.0229




Je=0.2; bg/b = 0.6; Tests in Regular Head

ips Oscillating; Statie h/c = 1.0; a = 5°

;:aD s. CMM&X' CMMm' ACMS CM3 ggﬁ S. g? /Sec. ;ads. /Sec. ;zfa.ds /Sec. ;‘}f ‘;F I&{:f.{s.
+2.89 |-.031 .014 -.009 -.022 | +2.066 30.77 28.4 29.75 .24 1.157 |.169

-1.40 |-.068 .013 -. 040 -.028 - .781 30.46 26.7 29.9 .74 1.150 |. 167
+1.39 |-.044 .003 -.024 -.020 | +1.119 29, 26 27.65 29.6 .11 ].164 |.169
:+1.57 -.058 .015 -.022 -.036 - .288 22,90 46.8 47.2 .65 [.065 |.127
-2.365(-. 047 .032 -.007 | -.040 | -1.892 21.71 43.3 47.5 .79 1.064 (.124
+2.02 |-.040 . 020 -.010 -.030 | + .741

+ .415|-.067 .016 -.025 | -.042 | +1.566 30.48 18.3 18.95 .25 |.158 |.127
+1.632|-.065 .013 -.026 -.039 -2.428 30.61 18.85 19.0 .07 |.150 |.128
+ .316|-.073 . 025 -.024 -.049 | + .539 30.50 19.0 20.7 .99 1,161 |.124
-2.44 |-.060 .015 -.022 -.038 -2.800 30.37 43.3 42.0 .77 1.066 |.126
+2.41 |-.066 .019 -.024 -.042 | +1.705

- .698|-.061 .020 -.021 | -.040 0
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Table 17. Flap Configuration 4; ct—/ (
and Following Seas, Flap:
Run Head or o CLMax. CLMin. ACLS CLS o1, CDMa.x. CDMin. ACD3 CD3 ’
No. Following| Rads. Rads.
Sea
12996 Head +7/2 .47 .13 A7 .30 |+1.174).0268 .0198 . 0035 .0233-{
12999 Head -1/2 .36 .26 .05 .31 | -1.011).0277 .0189 .0044 {.0233
13002 Head - .41 o | 12 .29 | +1.708].0264 .0132 .0066 .0198;
13012 Head +m/2 .90 . 13 .18 .32 1 +1.024).0269 .0157 .0056 |.0213
+T 4T .14 % Iy .30 [ +1.714}.0291 .0146 .0073 |.0218
-1/2 .42 .21 .11 .31 | -2.405(.0263 . 0160 .0052 {.0211
13005 -r/2 .39 .24 .07 .32 | -2,173|.0286 .0203 .0042 |.0244
} Head
13008 +7/2 .50 i 1 | .20 .30 |+ .879(.0341 .0208 .0066 |.0275"°
12965 Following -m/2 .45 1D .15 .30 | -1.2941.0292 .0199 .0046 |.0246
12967 )| Following| -7 .39 ol s11 .28 | -2,261(.0317 |.0206 .0055 |.0262
12990 Following | + /2 .41 .22 .10 .31 | - .320(.0359 L0175 .0092 1.0267
12947 || Following | -7/2 .45 .13 .16 |.29 | -2.003].0322 |.0188 .0067 |.0255
o .39 .18 .10 | .29 |+2.493|.0292 |.0196 | .0048 |.0244
12952 || Following | + 7/2 .47 .19 +11 .30 |+ .553(.0333 |.0191 .0071 |.0262




0.2, bg = 0.8; Tests in Regular Head

s Oscillating; Static h/c = 1.0, a = 5°

U

gg S CMM&X' Mugin, | 4OM3 M3 ggl s Ft. /Sec. ;lads. /Seec. ;Jig,ds /Sec. ;'It{ ;{{ ﬁ:gs.
‘+ ..328|-.088 0 | -.044 | -.044| + .211| 34.20 |31.4 32.2 8.41 .173 | .124
| -2,01 |-. 072 -. 017 -.027 | -.045 | -2.173] 34.50 30.2 33.4 8.55 .173 | .120
§+2.28 -.069 | -.010 -.029 | -.040 | +1.130| 32.60 |28.9 34.1 8.53 .176 | .119
i+ .752|-.058 | -.038 -.010 | -.048 | + .578| 20.93 |43.3 49.0 3.66 .068 |.120
+1.99 |-.066 -.048 -.009 -.057 | +1.218
F -3.47 |-.062 | -.054 | -.004 | -.058 | +2.229
-3.46 |-.065 | -.040 | -.012 | -.053 | -3.303| 21.90 |45.2 46.9 3.64 .064 |.120
+ .72 |-.068 -.032 -.018 -.060 | + .259] 22.70 48.0 46.2 3.53 .073 |.119
-2.68 |-.072 -.012 -.030 -. 042 -1.595| 30.60 17.6 17.4 8.53 .161 |.127
_+l.57 -.082 -.012 -.035 -.047 | +2.744] 31.30 18.3 20.3 8.49 .160 . 124
+ .9274|-. 033 —. 005 -.014 | -.019 | - .553| 29.80 177 13.6 8.27 .163 |.124
-2.295|-. 073 -.010 -.031 | -.042 | -3.184] 29.65 39.0 39.2 4.04 .065 |.128
+1.385]|-.081 +.001 -.041 -.040 | +1.532
+ .128|-.073 -.021 -.026 | -.047 0 29.10 44.5 39.7 3.51 .065 |.124
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Figure 2. Model and Balances
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FLAP CONFIGURATION NO. 1
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Lift Frequency Response,

Figure 3.
Flaps Oscillating, Smooth Water
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Flaps Oscillating, Smooth Water
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Figure 5. Drag Frequency Response,
Flaps Oscillating, Smooth Water
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FLAP CONFIGURATION NO. 3
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Figure 6. Drag Frequency Response,
Flaps Oscillating, Smooth Water
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FLAP CONFIGURATION NO. 1
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Figure 7. Pitching Moment Frequency Response,
Flaps Oscillating, Smooth Water
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FLAP CONFIGURATION NO. 3
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Figure 9. Lift Frequency Response, Head Seas, Flaps Fixed
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Figure 10. Lift Frequency Response, Head Seas, Flaps Fixed
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Figure 11. Drag Frequency Response, Head Seas, Flaps Fixed
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Figure 12. Drag Frequency Response, Head Seas, Flaps Fixed
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Figure 13. Pitching Moment Frequency Response, Head Seas, Flaps Fixed
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Figure 14. Pitching Moment Frequency Response, Head Seas, Flaps Fixed
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Figure 15. Lift Frequency Response, Following Seas, Flaps Fixed
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Figure 16. Lift Frequency Response, Following Seas, Flaps Fixed
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Figure 17. Drag Frequency Response, Following Seas, Flaps Fixed
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Figure 18. Drag Frequency Response, Following Seas, Flaps Fixed
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Figure 19. Pitching Moment Frequency Response,
Following Seas, Flaps Fixed
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Figure 20. Pitching Moment Frequency Response,
Following Seas, Flaps Fixed
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Figure 21. Flaps Configuration 1 — Mean Values of Force Coefficients, Flaps
Cycling in Smooth Water
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Figure 22. Flap Configuration 2 — Mean Value of Force Coefficients, Flaps
Cycling in Smooth Water
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Figure 23. Flap Configuration 3 — Mean Values of Force Coefficients, Flaps
Cycling in Smooth Water
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Figure 24. Flap Configuration 4 — Mean Value of Force Coefficients, Flaps
Cycling in Smooth Water
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Figure 25.

Mean Pitching Moment Coefficients —
All Models, Flaps Cycling in Smooth Water
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Figure 26. Flap Configuration 1 — Mean Value of Force Coefficients,
Flaps Fixed in Waves
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Figure 27. Flap Configuration 2 — Mean Values of Force Coefficients,
Flaps Fixed in Waves
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Figure 28. Flap Configuration 3 — Mean Values of Force Coefficients,
Flaps Fixed in Waves
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Figure 29. Flap Configuration 4 — Mean Values of Force Coefficients,
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Figure 31. Mean Values of Lift Coefficients — All Models,
Flaps Cycling in Waves, a = 5°

89



0.04

AVE
0.02

0.04

AVE
0.02

0.04

AVE
0.02

0.04

AVE
0.02

STEADY-STATE VALUES FROM REF. 1

O HEAD SEA  CTFOLLOWING SEA FLAP CONFIGURATION NO. 1
r— ——
0O T
m
0 10 20 30 40 50
FLAP CONFIGURATION NO. 2
O
=N
0 10 20 30 40 50
FLAP CONFIGURATION NO. 3
yjtg
0 10 20 30 40 50
FLAP CONFIGURATION NO. 4
O Era e
\—/
18] O
0
0 10 20 30 40 50

Jv.of -RAD./SEC.

Figure 32. Mean Values of Drag Coefficients — All Models,
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91



FLAPS CYCLING IN WAVES HEAD SEA

0.7
0.6 — O
C /_ ¢
/ \ MAX.
0.5 L. -
/“HARMONIC "BEATING "
X o—— OF CL
0.4
cL
0.3
o /:t\
)% \\ £ MIN.
; \\
0.1
\x
m LAG 0 m LEAD
PHASE OF FLAP TO WAVE
O 2 IN. WAVE, HIGH X 4 IN. WAVE, LOW
FLAP FREQUENCY FLAP FREQUENCY
o o FOLLOWING SEA
. /—V E\\
/—x X
0.5¢ \ MAX.
o R
0.4 \\ /
X
€. 0.3

/X

0.2

0.1 %
)J

m LAG 0 m LEAD
PHASE OF FLAP TO WAVE

MIN,

Figure 34. Flap Configuration 1 — Maximum and Minimum CL
Vs. Phase of Flap to Wave
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Figure 36. Flap Configuration 3 — Maximum and Minimum Cy,
Vs. Phase of Flap to Wave

94



0.7

0.6

0.5

FLAPS CYCLING IN WAVES

HEAD SEA

O 21N, WAVE, HIGH FLAP FREQUENCY
X 4 IN. WAVE, LOW FLAP FREQUENCY

C \U/,
c. X
Q5
X
/O\
0.2 m .
--\\
>V v) MIN.
0.1
o LAG 0 7 LEAD
FOLLOWING SEA
0.7
0.6
0.5
e To——) MAX.
P
0.3
fx
o2 - x
: Mé/)’ > MIN.
0.1
7 LAG 0 7 LEAD
PHASE OF FLAP TO WAVE
Figure 37. Flap Configuration 4 — Maximum and Minimum CL

Vs. Phase of Flap to Wave

95



FLAPS CYCLING IN WAVES

HEAD SEA
0'04; ﬁ;\
Ny —
MAX,
Cp
0.02
f%\
>z
0
TLAG 0 T LEAD
PHASE OF FLAP TO WAVE
O 2 IN. WAVE, HIGH X4 1IN, WAVE, LOW
FLAP FREQUENCY FLAP FREQUENCY
0.06 FOLLOWING SEA
L et ——
0.04 X X s
CD
N
0.028 S e ——— Q= VIIN.
T LAG 0 T LEAD
PHASE OF FLAP TO WAVE
Figure 38,

Flap Configuration 1 — Maximum and Minimum Cp
Vs. Phase of Flap to Wave

96



FLAPS CYCLING IN WAVES HEAD SEA

il ———— N Y
et

0.02
=_—____6___=—— =—_;<__:-q§ MIN.
0
TLAG 0 T LEAD

PHASE OF FLAP TO WAVE

O 2 IN. WAVE, HIGH X 4 IN. WAVE, LOW
FLAP FREQUENCY FLAP FREQUENCY

FOLLOWING SEA

/XI\>§
0.04Q3 /"/ ~ VIAX.

MIN.,

TLAG 0 ™ LEAD
PHASE OF FLAP TO WAVE

Figure 39. TFlap Configuration 2 — Maximum and Minimum CD
Vs, Phase of Flap to Wave

97



FLAPS CYCLING IN WAVES HEAD SEA

Q /MAX

p —
o 0.02‘1\ RS .
. _—-—_"" ral

0.04

0
7 LAG 0 « LEAD
PHASE OF FLAP TO WAVE
O2IN. WAVE, HIGH X 4 IN. WAVE, LOW
FLAP FREQUENCY FLAP FREQUENCY
0.04 FOLLOWING SEA

e A

c
b 0.02 _______—/Dmm.

« LAG 0 = LEAD

PHASE OF FLAP TO WAVE
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100



FLAPS CYCLING IN WAVES FOLLOWING SEA
FLAP CONFIGURATION NO. 1

c -0.150 -
Myax. - L o

0
7 LAG 0 7 LEAD

O 2 IN. WAVE, HIGH X 4 IN, WAVE, LOW
FLAP FREQUENCY FLAP FREQUENCY

FLAP CONFIGURATION NO. 2
O O]
"

A A

MI\/IAX, “\———X—/ \

7 LAG 0 a LEAD

FLAP CONFIGURATION NO, 3

MAX.,

o\_% "'j%:;-&

0
™ LAG 0 7 LEAD
FLAP CONFIGURATION NO. 4
Cc -0.1
"aax. V—\ )
0
= LAG 0 7 LEAD

PHASE OF FLAP TO WAVE
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Comparison of Flap and Wave Effects
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Figure 54. Maximum Lift Frequency Response, Flaps Oscillating in Waves,
All Models — Comparisons with Separate Tests
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Figure 56. Mean Values of Lift Coefficients — All Models
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Figure 57. Mean Values of Drag Coefficients — All Models
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