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ABSTRACT

Based on a wing section design theory and boundary layer calculations,

a new series of hydrofoil sections with improved cavitation inception character-

fsties were theoretically developed and presented in previous papers. To verify

these thearetical results experimentally, two hydrofoil models, one a newly

developed profile designated YS-920 and the other an NACA 66 (MOD) wing section,

were tested in a high speed water tunnel at California fnstitut.2  of Technology.

The measurements included force and moment data, flow visualization, cavitation

characteristks,  and surface roughness effect on cavitation. In this report,

the measured cavitation-free buckets of YS-920 and RACA 66 (MOD) foil sections

are presented and compared with theoretical predictions. The ability to achieve

a significant delay in cavitation inception with a newly designed profile is

clearly demonstrated experimeatally.

ADMINISTRATIVE INPORMATION

The work carried out in this experimental investigation was supported

by Naval Sea Systems Command, Code 035 under the General Hydrodynamic Research

Program, Element 61153N,  Task Area SR 0230101.

INTRODUCTION

When operated at a practical depth below the free surface, a lifting surface

will develop vortex cavitation and surface cavitation on the foil above a certain

critical speed. Foil cavitation leads to undesirable changes in hydrodynamic and
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a~~W8tic eharactcristics  and possible damage to the foil structure. Conse-

quently, the design philosophy of current hydrofoil and propeller blade

sections is governed by the requirements of (1) providing specified lift, (2)

avoiding or minimixiag  cavitation, and (3) supplying adequate structural

streagth for all operating conditions.

fn a seaway, the lifting surfaces of a hgdrofofl craft experience signif-

icant changes in the angle of attack due to both wave orbital velocities and

craft motion. Sitilarly,  for a propeller operated behind an inclined shaft

and in a ship wake, the propeller blades experience periodic variation in

effective angle of attack.

The physical process associated with inception of cavitation is extremely

complex. Hovever, it has been generally agreed that cavitation inception occurs

01% a full-scale lifting surface when the local pressure falls to or below the

vapor pressure of the flowing fluid. Cavitation inception can be predicted from

the pressure distribution, since the cavitation-inception index c; - c is

equal to the negatfve tinimum  pressure coefficient -C
Pan

- The hydrodynamic

characteristics of a hydrofoil section to delay the oczurrence of surface

cavitation can thea be exasiined in terms of a so-called minimum pressure

envelope, often referred to as the cavitation-free bucket.. For a specified hydro-

foil sectioa the interual region of the minimum pressure envelope defines the

region of cavitation-free section lift coefficients (or angles of attack) as a

function of sectioa cavitation number.

NACA  1 6  -series and NACA 66 (HOD) = series wing sections are known to have

good characteristics for delaying inception of cavitation. Extensive applicatfon

of these two series of NACA ving sections to existing hydrofoil craft and marine

propellers has been well documented [1,2]. Since, the NACA wing sections were
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developed around 1940,  possible areas of improvement have been investigated

both theoretically and experimentally; see Reference [3]. By means of re-

cently developed wing section design theory, a series of new hydrofoil

sections has been theoretically investigated by Shen and Eppler [3,4,5]

with noticeable improvement of predicted surface cavitation inception.

This encouraging result calls for experimental verification=

The present report provides a comparison of experimentally measured

and theoretically predicted cavitation-free buckets of newly designed YS-920

and NACA-66  (MOD) sections.

EXPERIMENTAL EQUIPMENT

WATERTUNNEL

The High-Speed Water Tunnel (HSWT) fn the Graduate Aeronautical Laboratories

of the California Institute of Technology was used in the present investigation.

This water tunnel is equipped with a two-dimensional working section. The model

can be viewed through top, bottom and side windows. Further descriptions of this

water tunnel are given in Reference [6].

HYDROFOfL  MODELS

The design lift coefficient of C
L
= O-2  is a typical value used in hydrofoil

and propeller blade section design. The profile B-920 which has a design lift

coefficient of 0.22 was thus selected from Reference [S] for this investigatioa.

The profile shape, coordinate offset, and the design philosophy of tt.is  profile

were given in Reference (51. A NACA 66 (MOD) wing section with a camber ratio of

f/c - 0.020 was also selected in this investigation. The camber ratio of the NACA

66 (MOD) section was selected in such a way that both foils YS-920 and NACA 66
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(MOD), have about the same lift coefficient of CL= 0.22 at the center of their

cavitation buckets. Furthermore, both profiles have the same maximum thlckness-

to-chord ratio of 0.09.

For testlng in the HSWT, both hydrofoil models had six-inch chord (15.2 cm)

and six-inch span. The models were made from 17-4 PH stainless steel hardened to

the H 1075'F (579'C) condition. To ensure a very accurate surface contour,

both models were cut from the blocks by a numerical controlled machine using a

total of 850 passes on each foil surface. Deviations from the specified sectlon

profiles measured normal to the surface at 3 stations along the span ware found

to be less than 0.0005 of the chord length. The coordinates and profile shape

of YS-920 along with velocity distributions at three foil angles are glvea in

Table 1 and Figure 1, respectively.

DPSTRIBIJ'TED SURFACE KQUCI'RNESS

Profile B-920 was designed to have no flow separation on the foil surface

at a typical full-scale Reynolds number value of 3 x lo7 . Thus, if the YS-920

profile were used for a prototype, boundary layer calculations indicate that

the boundary layer ou the foil surface will go through a natural transition

from laminar to turbulent near the leading edge. The boundary layer calculations

also show that due to the reduction in Reynolds number for the hydrofoil model

tested la the water tunnel (HSWT)  lamlnar boundary layer separation will be

encountered near the trailing edge. To simulate the high Reynolds number phenom-

enon, the models were also tested with surface roughness uniformly distributed

near the leading edge, over 1.5 percent of the chord length on the upper and lower

surfaces. The surface roughness consisted of glass spheres of 0.004 inch

(0.010 cm) nominal diameter bonded to the surface of the fall section with Loctlte

General Purpose Epoxy 53.
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EXPERIMENTAL RESULTS

1

L

The majotftp  of the experiments were conducted at a tunnel water speed of

50 feet  per second (15.2 aaetars  per aecbnd), correspcmding to a Reynolds number

based on the chord length of 2.6 X 10 6 [7]. Fl ow visualization observatfons

confirmed the boundary layal:  calculations, that at the design condition of C *L

0,22  the hydrofoil model of PS-9.20 did experience latinar  boundary layer sepa-

ration near the trailing edge. Without the installation of surface roughness,

the model experienced a band-type cavitation around the measured Laminar  bound-

ary layer separation eon%. With the installation of surface roughness uniformly

distributed around the leading edge, the band-type cavitation associated with

Iautinar boundary  layer  separation was completaly  eliminated, and the model

experienced a travelLag  bubble type cavitation as is to be anticipated in the

prototype. At a large angle of attack, namely a large lift coefficient, the

foil experienced leading edge sheet cavitation.

The measured cavitation-free buckets of E-920  and NACA 66 (MOD) with and

without surface roughness are given in Figures 2 and 3. Without the installation

of surface roughness, the foil surface is denoted as smooth. The  theoretically

computed cavitation-free buckets of these two wing sections are also shown in the

same Figures for a direct comparison.

Without the application of surface roughness, when the foil surface is smooth,

the measured cavitation-free buckets are seen to be much wider than the theoret-

ically predicted bucket. As predicted from the theoretical computations (See

Figure 2), experimental measurements confirmed that the danger of cavitation

inception on the pressure side of Profile YS-920 is greatly delayed as compared

to that on the NACA 66 (MOD) section.

With the application of leading edge surface roughness, the measured cavita-



tion free buckets show a remarkable agreement with the theoretically predicted

buckets. As predicted from the theory, the measured cavitation-free bucket of

Profile YS-920. is significantly wider than that of NACA 66 (MOD) section at the

design cavitation number e= 0.45. The measured bucket widths were found to be

around 3.2 and 2.3 degrees in angle-of-attack for profiles YS-920 and NACA 66

(MOD), respectively. Hate, 1 degree in angle-of-attack corresponds to approxi-

mately 0.1 in lift coefficient. The measured cavitation inception values are

in good agreement with the predicted values given in Figure 11 of Reference f5].

This significant result suggests that at a given desfgu speed, the newly designed

Profile B-920 should be able to tolerate much greater fluctuation (variation)

iu angle-of-attacks than the compared NACA 66 (MOD) section in a non-uniform

wake.

CONCLUDXNG REMARKS

Experimental measurements confirmed the previous theoretical predictions

that at a given design speed, the cavitation-free bucket width of the newly deve-

loped section profile YS-920 is significantly greater than that of the comparable

NACA 66 (MOD) wing section.

The measured bucket widths of Profiles 715-920 and NACA 66 (MOD) were found

to be around 3.2 and 2.3 degrees in angle-of-attack, respectively. Consequently,

Profile PS-920 should  be able to tolerate much greater variation in angle-of-

attack than the comparable NACA 66 (MOD) section in a non-uniform wake or sea

state.

The thickness-to-chord ratio of practical interest is 0.09 on existing naval

hydrofoils. However, the thickness ratio of practical interest on marine pro-

pellers is generally less than 0.09 at the outer radii. Due to the reduction in



leadiag  edge thickness, the cavitation-free bucket widths on thin sectfons

would be smaller than the values quoted previously. This fact makes it

difficult to operate a thin blade section in a non-uniform flow without

cavitation. However, it is believed that a new type of blade section

can be designed to delay cavitarion inception.

The present experimental investigations and previous theoretical predic-

tioas strongly indicate that refining a profile for each application to hydro-

foils and propeller blades sections is possible and advantageous in the

future a

Further  discussion of the measured force and moment data, boundary layer

characteristics and cavitation characteristics of Profile YS-920 will. be given

in a saparate report.
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