SHIP DESIGN

COMPUTER PROGRAM

Hydrofoil Ship Longitudinal, Static, Trim Load Program

$$
\text { July } 1968
$$

NAVY DEPARTMENT

WASHINGTON D.C. 20360
$\Omega \infty$

0
0
0
H
H
H
H

 General Restrictions
Input Data Preparations
Control Card
Hydrofoil Data Cards
Hull Data Cards
Output Data Editing
Program Validation
Sample Input
Sample Output
APPENDICES
Program Listings
Symbol Iist
Flow Charts
INPUT - OUTPUT REQUIREMENTS General Remarks
References PURPOSE, METHOD AND THEORY
Purpose
Method and Theory
Method
Theory
Coordinate Systems
Lift of Hydrofoils
Drag of Hydrofoils
Wetted Area of Pri
Lift of Prismatic
Drag of Prismatic
HuIl Air Drag
Center of Pressure
Static Equilibrium

CONTENTS

I - IDENTIFICATION

I 1 Title: Hydrofoil Ship Longitudinal, Static:, Trim-Load Program (CASDAC 231011-iNCSA NAVSiIPS O900-U06-5390)
I 2 Brief Description: This program computes the foil control surface deflection angles necessary to produce static equilibrium for a hydrofoil ship operating at a specified hull clearance, pitch angle, and velocity. Assuming the hull can be represented by a prismatic planing hull, the conditions through a quasi-static (i.e. ignoring accelerations and rates) take-off can also be determined. The program computes and tabulates the individual forces acting on the ship and outputs them for ready reference.

There are two subroutines and one non-standard function.
I 3 Author: E. Price, General Dynamics/Convair
W. D. Bauman, NAVSEC Code 6114
F. Woffinden, General Dynamics/Convair
S. Miley, General Dynamics/Convair

Date: July 1968
I 4 Language: FORTRAN IV, IBSYS
I 5 Machine: IBM 7090
I 6 Security Classification: UNCLASSIFIED
I 7 Estimated Running Time: Execution time is approximately 2 minutes per set of data. Time will vary according to the number of iterations required to converge to a solution.

II - PURPOSE, METHOD AND THEORY.

II 1 Purpose

During the past several years as hydrofoil ship design has developed its own special working tools for the rational prediction of ship performance, the area of synthesizing these theoretical and experimental methods of the several arts into tools, to be used in concept formulation or preliminary design studies of 'basic trade-offs, has generally been ignored. Admittedly, the primary concern of first generation ships is to get them working smoothly. However, second generation ship designs should benefit from some optimizations studies of the working designs.

The variations of forces and moments acting on a hydrofoil ship are strongly influenced by the conditions at which it is operating. It would seem natural to study the combinations of hull and foil-strut-nacelle arrays to minimize the forces and moments. In addition, at least the longitudinal mode, stability in the presence of small perturbations should be evaluated about the equilibrium flight condition, which must be foreknown. If the hull can be represented by a prismatic planing hull, then the effects of beam and deadrise angle can be included in the optimization study.

This program is specifically tailored to balance the ship in static equilibrium and then list out the details. It is left to the designer's art to gain insight from the details and produce a workable design. The longitudinal stability
calculations are deferred to a planned revision when the hull stability derivatives are firmly established.

2.1 Method

A moving body will be in static equilibrium if the sum of its external forces and moments is zero. For the longitudinal motion of a hydrofoil ship, an equilibrium condition can be obtained by trimming the foil control surfaces so that for a specified operating depth and velocity, the drag of the ship is equal to the horizontal component of the thrust vector and the sum of the vertical forces and pitching moments are within specified tolerances. The hydrofoil configuration analyzed in the worked example is shown in Figure 1. The particular development of the total lift and drag from the contributions of their various components will be detailed in the following sectlons.

An iteration technique is used to determine the control surface deflection angles necessary for equilibrium. The input data contains the initial estimated control surface deflection angles, on which the Initial summations of lift and pitching moment are calculated. A control surface deflection increment is then applied to the forward foil (s) and the change in summations of lift and moment are determined. The forward foil control surface is reset to Its former position, a control surface deflection increment is then applied to the aft foil(s), and the summations of lift and pitching moment are recalculated. As a result, the summations of lift and moment errors due to incrementing the forward and aft control surfaces are obtained and used to generate new, Initial control surface deflection -5-
angles that will reduce the lift and pitching moment errors. If at the end of the input number of iteration sequences, the control surface deflection limits have been exceeded, the flying height of the craft will be adjusted so as to bring the control surface deflection angles within the input limits. In the hullborne mode, the percent of load carried by the hull is adjusted, which In turn adjusts the foil submergence. When the lift and pitching moment errors are less than the arbitrarily established input limits, then the ship issald to be in equilibrlum and the details are output.

II 2.2 Theory

2.2.1 Coordinate Systems

The three coordinate systems commonly used In studying
hydrofoil ship dynamics are: the body axes, the earth axes and the water or "wind" axes coordinate systems, each of which are "right-hand" orthogonal systems. The body axes coordinate system generally used In the study of ship motions has the origin at the ship's center of gravity and is fixed relative to the ship. Its X axis runs forward longitudinally through the craft and the Z axis is down through the kel.. The weight engineer will locate the ship's center of gravity either from the mid-ship section or from the fore perpendicular and the baseline. On the other hand the planing hull analyst will prefer the body axes origin at the aft perpendicular and the baseline. All three can be called "body axes fixed relative to the ship". For the purpose of this program the lift, drag and pitching moment
equilibrium equations are written with respect to the center of gravity. However, the ship's center of gravity and foil components are located with respect to the origin at the aft perpendicular and the baseline. The justification for this is that the designer can change the location of the ship's center of gravity or relocate a foil-strut-nacelle array or even consider water-jet propulsion rather that water propellers, with minimum changes to the input data. Let the computer calculate lever arms. The aft perpendicular is preferred in consideration of the equations developed for the prismatic planing hull.

The earth axes coordinate system fixed relative to the earth's surface is typically used In a full dynamic analysis of the ship's motion. This program assumes the quasi-dynamic situation of the ship's motion being without acceleration and therefore independent of the flight history. Thus the earth axes are always centered on the ship's center of gravity and serves as a measure of craft pitch attitude. The program user may specify a ship pitch angle as part of the input.

The water axes coordinate system is the basis for lift and drag force directions. Clearly lift and weight or thrust and drag are opposing forces all normally thought of as positive. Typical hydrodynamic model test data is taken and presented as plots of non-dimensional coefficients In terms of the water axes coordinate system. The simultaneous equations this program solves are written in terms of thrust, drag, lift, weight, center
of gravity above the baseline, foils located below the baseline, etc. all being positive where historical designs have clearly established an orientation.,

The result is that the "Coordinate System" is a conglomeration of all three axes where past usage dictates a particular preference. Hopefully, the naval architect will find the various axes rational rather than whimsical.

II 2.2.2 Lift of Hydrofoils
The lift characteristics of hydrofoils operating well submerged are directly equivalent to the airfoil in an infinite fluid, assuming all-wetted flow and allowing for the change in fluid density. There are several theories currently available for reliably estimating the all-wetted lift curve slope as a function of foil gemetry. However, the effects of the free surface on the hydrodynamic characteristics of operating hydrofoils, remains a prime concern to the hydrofoil ship designer. The presence of a free surface (a) leads to an increase in the drag of the foil as represented by a visable loss in energy through the trailing wave train and (b) leads to a loss in lift through a change in the pressure field as the flying draft is reduced.

The total foil lift is developedby contributions from camber, craft pitch angle and control surface deflection. For the present time, we assume the effects of the free surface are
felt on the total lift coefficient rather than on just one component:

$$
\begin{equation*}
C_{L}=\left[C_{L_{d}}+C_{L_{\alpha}^{\alpha}}^{\alpha}+C_{L_{6}}^{\delta}\right] \frac{\mathrm{dC}_{L_{h}}}{\mathrm{dC}_{L_{\infty}}} \tag{2.1}
\end{equation*}
$$

where: C_{L} total lift coefficient (L/qA)
CL_{d} design lift coefficient, infinite depth
$\mathrm{C}_{\mathrm{L}_{\boldsymbol{\alpha}}} \begin{aligned} & \text { change infinite } \\ & \text { infe } \\ & \text { lift }\end{aligned}$ coefficient with pitch angle,
$\mathrm{CL}_{\boldsymbol{\delta}} \begin{aligned} & \text { change in lift coefficient } \\ & \text { deflection angle, infinite depth }\end{aligned}$
$\mathrm{dC}_{\mathrm{L}_{\mathrm{h}}} / \mathrm{dC}_{\mathrm{I}_{\infty} \text {. }}$ change in in lift coefficient with submergence,
$\boldsymbol{\alpha}$ craft pitch angle,+ bow up
$\boldsymbol{\delta} \begin{aligned} & \text { control surface deflection angle, trtrailing } \\ & \text { edge down }\end{aligned}$
Note that the graphical function of $\mathrm{dC}_{\mathrm{L}_{\mathrm{h}}} / \mathrm{dC}_{\mathrm{L}_{\infty}}$ versus depth/ chord ration (h/E) as shown in Figure 2 is Input for subsequent interpolation at the depth/chord ratio of Interest. There is some controversial evidence that the angle of zero lift changes with depth and that the $C L$, change with depth is not equal to the $\mathrm{C}_{\mathrm{L}_{\boldsymbol{\delta}}}$ change. However, these changes are, typically, quite small and outside the program's intended use in concept formulation and preliminary design. The lift is presumed to act at $1 / 4$ chord point of the mean hydrodynamic chord.

II 2.2.3 Drag of Hydrofoils
The total drag of the hydrofoil-strut-nacelle array is
assumed to be composed of five parts: (a) foil drag,
(b) strut drag, (c) nacelle drag, (d) ventral fin drag and (e) strut spray drag. The strut drag is based on only the wetted area from the flying waterline to the top of the nacelle. Two dimensional flow is assumed based on the nacelle and freesurface acting as "end plates" to eliminate any spanwise flow. The foil drag is based on total planform area Including the area covered by the nacelle. It has thus been assumed that the inclusion of this extra foil drag and the exclusion of the extra strut drag results in a realistic allowance for anycomponent, mutualinterferencedrag.
2.2.3.1 Foil Draq: The general expression for the total drag coefficient of subcavitating foils is (ref (1)):

$$
\begin{equation*}
C_{D}=2\left(C_{D_{f}}+\Delta C_{f}\right)+C_{D}{ }_{p m i n}+\Delta C_{D}+C_{D_{i}}+C_{D_{W}} \tag{3.1}
\end{equation*}
$$

where: $\quad C_{D} \quad$ total drag coefficient (D/qA)
$C_{\mathrm{D}} \quad$ Schoenherr skin friction drag coefficient
$\Delta C_{\mathbf{f}} \quad$ roughness allowance for foils
$C_{D} \quad$ minimum profile drag coefficient Pmin
$\Delta C_{D} \quad$ change in profile drag coefficient due to control surface deflection
$\mathrm{C}_{\mathrm{D}_{1}} \quad$ induced drag coefficient, due to lift
$C_{D_{W}} \quad$ wave drag coefficient

The Schoenherr skin friction drag coefficient is used throughout the entire program. A special library function is used since $C_{D_{f}}$ only depends on the Reynolds number, $R n$. The characteristic length for calculating $R n$ for the hydrofoil is the mean hydrodynamic chord. A single roughness allowance is input for all hydrofoil-strut-nacelle arrays.

The minimum profile drag may be input or, if it is unkown and the appropriate input field is left blank, the program estimates a value based on Reference 2:

$$
\begin{equation*}
\mathrm{CD}_{\mathrm{pmin}}=2{\left.\mathrm{C}_{\mathrm{D}_{\mathrm{f}}}\left(1.2 \frac{\mathrm{t}}{\mathrm{c}}+60.0 \frac{\mathrm{t}}{\mathrm{c}}^{4}\right)\right)} \tag{3.2}
\end{equation*}
$$

Note that when the emperical formulation is used, the roughness allowance is not included, but $60.0(t / c)^{4}$ is included.

The lift coeffident changes from the design value as the flaps are deflected or as the foil Incidence is changed, with a corresponding increase in the foil profile drag. The change in profile drag coefficient ΔC_{D} due to control surface deflection must be determined from model test results as it cannot be calculated theoretically. Figure 3 is a typical plot of graphical functions ready for inputing. When the foils will be operating well submerged at a high pitch angle, as during take-off, the corresponding, control surface deflection induced profile drag coefficient taken about that high pitch angle should be input as shown.

The induced drag due to lift and the induced drag due to wave generation are both Internally generated from the formulas, (ref (1) \& (3)):

$$
\begin{align*}
& C_{D_{1}}=C_{L}^{2}\left[\frac{1}{\pi \mathcal{R}}+\frac{K_{1} c}{8 \pi}\right] \tag{3.3}\\
& C_{D_{W}}=C_{L}^{2}\left[\frac{\psi g c}{4 U^{2}}\right] \tag{3.4}
\end{align*}
$$

where: $\boldsymbol{A}=$ foil aspect ratio (b^{2} / A)

$$
\begin{aligned}
y & =1 / \mathrm{e}^{2 \mathrm{gh} / \mathrm{U}^{2}} \\
\mathrm{~K}_{1} \mathrm{c} & =\frac{4{ }^{2}}{\mathbb{R}^{2}+16(\mathrm{~h} / \mathrm{c})^{2}} \quad\left[\frac{1}{\sqrt{R^{2}+16(\mathrm{~h} / \mathrm{c})^{2}+1}}+1\right]
\end{aligned}
$$

2.2.3.2 Strut Drag

The minimum profile drag of a strut is treated in the same manner as for the hydrofoil. Since the programis written for straight ahead flight only, the other drag components are not applicable. The program estimates a strut minimum profile drag coefficient based on Reference 4:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{D}_{\mathrm{P}} \text { strut }}=2 \mathrm{C}_{\mathrm{D}_{\mathrm{f}}}\left[1+10(\mathrm{t} / \mathrm{c})^{2}\right] \tag{3.5}
\end{equation*}
$$

Then the total profile drag coefficient of the strut is found as:

$$
\begin{equation*}
C_{\text {strut }}=2\left(c_{D_{f}}+\Delta c_{f}\right)+c_{D_{\text {Pstrut }}} \tag{3.6}
\end{equation*}
$$

2.2.3.3 Nacelle Drag

Nacelle drag is based on whetted surface, rather than a projectedarea, in keeping with the presentations of the popular DTMB Series 58 bodies of revolution, (References 5
and 6). Any nacelle applied to a hydrofoil ship design must be carefully evaluated for a high cavitation inception speed. Model 4162 of the DTMB Series 58 has shown the most promise for pure applications (Reference 7) with Model 4156 another possibility where some parallel middle-body must be inserted (Reference 8). Specifically, the nacelle drag is calculated by: $D_{\text {nacelle }}=\left(C_{D_{P}}+C_{D_{f}}+\Delta C_{f}\right) q S_{\text {nacelle }}$
where $S_{\text {nacelle }}=$ wetted surface of nacelle ($C_{w s} \pi l_{n} D_{n}$)
The user must input the nacelle length (ln), length/diameter ratio (\ln / Dn), and wetted surface coefficient $\left(C_{w s}\right)$. Whenever a Series 58 nacelle is used, the wetted surface coefficient is readily obtained from Reference 6 . The user may input the nacelle profile drag coefficient of his choice or if the appropriate data field is left blank the program will make an estimate based on Reference 2 :

$$
\begin{equation*}
C_{p}=C_{D_{f}}\left[1.5\left(\frac{D_{n}}{I_{n}}\right)^{1.5}+7.0\left(\frac{D_{n}}{I_{n}}\right)^{3}\right] \tag{3.8}
\end{equation*}
$$

2.2.3.4 Ventral Fin Draq

Certain problems in the area of dynamic lateral stability arise when the steering hydrofoil-strut-nacelle array either vents as in a tight turn or broaches in short high waves. As a result of some rather dramatic experiences, ventral fins may be installed for directional control below the nacelles. The ventral fins can be mounted on either the forward or aft arrays, or both. This program assumes that if they are mounted,

It is one per array following the common practice. The ventral fin drag is calculated as:

$$
\begin{equation*}
D_{v . f i n}=\left(2 C_{D_{f}}+2 \Delta C_{f}+C_{D_{P}}\right) q A_{v . f i n} \tag{3.9}
\end{equation*}
$$

where $A_{v . f i n}=$ projected area of ventral fin
The user must input the ventral fin length, thickness/ chord ratio and projected area. If no ventral fin length is input, then the program rightly assumes no ventral fin is to beincluded. Whenever used, the ventral fin profile drag coefficient is estimated from Reference 2 as :

$$
\begin{equation*}
C_{D_{p_{V, f i n}}}=2 C_{D_{f}}\left[1.2\left(\frac{t}{c}\right)+60\left(\frac{t}{c}\right){ }^{4}\right] \tag{3.10}
\end{equation*}
$$

fhere are some indications that a negative, squared term should be included in Equation 3.10 for tip effects. However, substatiating data would also provide the correct profile drag coefficient, which should be used rather than the estimated value.

2.2.3.5 Strut Spray Drag

Wherever a strut pierces the surface, additional energy is carried away in the form of spray. This drag is primarily a function of the thickness and the sharpness of the leading edge. At the relatively high speeds of hydrofoil ships, the spray drag coefficient apparently does not vary appreciably with either Reynolds number or Froude number. For the present, the computer program calculates spray drag from:

$$
\begin{equation*}
D_{\text {spray }}=C_{D_{\text {spray }}} q t^{2} \tag{3.11}
\end{equation*}
$$

For typical hydrofoil strut sections, Reference 2 suggests using $C_{D}=0.24$. Additional strut studies were reported in reference 9 and an alternate emperical relationship for the spraydragpresented. Certainly more effort in this area is desirable to settle on a 'best' formulation.

II 2.2.4 Wetted Area of Prismatic Planing Hulls (ref 10)
Generally speaking, for planing hulls there are three wetted areas, 1) the wetted pressure or load carrying area, 2) the spray wetted area and 3) the side wetted area. At the pre-take-off condition, hydrofoil ship hulls are predominatly supported by dynamic pressure over the wetted pressure area. The spray wetted area is typically small and is assumed to contribute only to the drag. Since the present program is based on hard chine, planing hulls there is no side wetting on the hull.

The wetted pressure area needs to be clearly defined as it is the cornerstone of the subsequent calculations. The wetted pressure area is defined as that portion of the wetted area over which water pressure is exerted, excluding the forward thrown spray sheet but including all the hull bottom area aft of a line drawn normal to the planing surface and tangent to the spray root curve.

For the Vee-shaped planing hulls, aft of the initial point of contact 0 , the rise of the water surface is along the two oblique spray root lines ($0-B$, see Figure 4) which are ahead of the line of calm water intersection ($0-C$). Thus the mean wetted length of a deadrise planing surface is defined as the average of the wetted keel and the wetted chine lengths measured from the transom to the Intersection with the spray root line.

The mean wetted length to beam ratio, which defines the length of the wetted pressure area, is then:

$$
\begin{equation*}
\frac{L_{k}+L_{c}}{2 B}=\frac{T_{k}}{\sin r B}-\frac{1}{2 \pi}\left[\frac{\tan \beta}{\tan \tilde{T}}\right]=\lambda \tag{4.1}
\end{equation*}
$$

where B average wetted beam, ft.
T_{k} draft of keel at transom, ft.
$\boldsymbol{\beta}$ deadrise angle, deg.
$\boldsymbol{\tau}$ trim angle, deg.
If we define a speed coefficient, as the Froude number based on beam:

$$
\begin{equation*}
c_{v}=\frac{U}{\sqrt{g B}} \tag{4.2}
\end{equation*}
$$

where $U=$ velocity of ship, ft/sec.
$g=$ acceleration due to gravity, ft/sec ${ }^{2}$
then the experimental evidence collected by Davidson Laboratory indicates that equation (4.1) is applicable for all deadrise angle and trim angle combinations such that the speed coefficient, ${ }^{C}$ v, is greater than two. For lower speed coefficients, the user should consult Reference 10 or model test results. The product $\lambda^{B^{2}}$ thus sizes the wetted pressure area.

The spray wetted surface area is forward of the spray root line and the total spray area, both sides of the keel, is given by:

$$
\begin{equation*}
S_{h p}=\frac{B^{2}}{2 \cos \beta}\left[\frac{\tan \beta}{\pi \tan \tau}-\frac{1}{2 \tan \Phi \cos \beta}\right] \tag{4.3}
\end{equation*}
$$

where $\Phi=$ angle between the keel and the spray edge measured in the plane of the bottom

$$
\begin{aligned}
& \text { tang }=\left(a+k_{1}\right) /\left(1-A k_{1}\right) \\
& A=\frac{\sqrt{\sin ^{2} \gamma(1-2 K)+K^{2} \tan ^{2} r\left[\left(1 / \sin ^{2} \beta\right)-\sin ^{2} \gamma\right]}}{\cos \gamma+K \tan \boldsymbol{\operatorname { s i n } \gamma}} \\
& k_{1}=k \tan \boldsymbol{P}^{\prime} / \operatorname{sinp} \\
& K=\frac{\pi}{2}\left[1-\frac{3 \tan ^{2} \beta \cos \beta}{1.7 \pi^{2}}-\frac{\tan \beta \sin ^{2} \beta}{3.3 \pi}\right]
\end{aligned}
$$

An average wetted length for the Reynolds number and
Schoenherr skin friction drag coeffident is:
$\mathrm{L}_{\text {spray }}=\frac{\mathrm{B}}{2}\left[\frac{\tan \beta}{\pi \tan \tau}-\frac{1}{2 \tan \Phi \cos \beta}\right]$
Recall the assumption of a hard chine, planing hull so there is no side wetting! As this computer program finds wider acceptance and use in developing preliminary hydrofoil ship designs, then (in cooperation with the users) perhaps a bter revision will allow for rounded chines or wetted sides.

II •2.2.5 Lift of Prismatic Planing Hulls (Ref. 10)

The lift of a planing surface at fixed trim and draft can be attributed to two separate effects; the dynamic reaction of the fluid against the moving surface and the buoyant contribution. Taking both effects into consideration, the emperical planing lift equation for a zero deadrise surface was given in Reference 10 as:

$$
C_{L_{\beta=0}}=C_{L_{d}}+C_{L_{b}=\boldsymbol{q}^{1.1}}\left[\begin{array}{ll}
0.012 & \left.\lambda^{1 / 2}+\frac{1.0055 \lambda^{5 / 2}}{C_{V}{ }^{2}}\right] \tag{5.1}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{L} \boldsymbol{\beta}=0}=\operatorname{total}_{\text {planing }} \text { lift corface } \\
& C_{L_{d}}=\underset{\text { planing }}{\text { dynamic }} \text { lift coefficient of ace } \text { zero deadrise } \\
& C_{L_{\mathbf{b}}}=\begin{array}{l}
\text { buoyancy } \\
\text { planing }
\end{array} \text { lift coefficient of a zero deadrise }
\end{aligned}
$$

For a given trim and mean meted length to beam ratio, the effect of Increasing the deadrise angle is to reduce the planing lift due to the reduction in stagnation pressure at the leading edge of the wetted area. The lift coefficient of a Ne surface was compared with that of a flat plate at the identical values of τ, λ and C_{v} by the staff of Davidson Laboratory. Based on that comparision, an emperical equation for the planing lift of a deadrlse surface was found:

$$
\begin{equation*}
C_{L_{\beta}}=C_{\beta=0} \quad-0.0065 \beta{ }^{C_{L}}{ }_{\beta=0} \tag{5.2}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{L}_{\boldsymbol{\beta}}}$ =total lift coefficient of a deadrise planing surface.
The total lift coefficient required of a deadrise planing surface is fixed by the hull design:

$$
\begin{equation*}
C_{L_{\beta}}=\frac{W}{\frac{1}{2} \rho U^{2} B^{2}} \tag{5.3}
\end{equation*}
$$

where W = weight on hull, pounds

$$
\rho=\text { mass density of water, slugs } / \mathrm{ft}^{3}
$$

Recall that in Section II 2.2.4, the cornerstone of these calculations is determining the meted pressure area λB which provides the hydrodynamic lift. With $\mathrm{C}_{\mathrm{L}_{\boldsymbol{\beta}}}$ known by equation (5.3), we find $\mathrm{CL}_{\boldsymbol{\beta} \boldsymbol{\beta}=0}$ from equation (5.2) by iterating. The iteration formula used, by applying the Newton-Raphson method and consolidating terms, is:
where the iteration is repeated until $\left[\left[^{C_{L}}{ }_{\beta=0}\right]_{n+1}-\left[{ }^{C_{L}}{ }_{\beta=0}\right]_{n}\right]$
< 0.0001 . Now with an assumed planing surface trim angle, which is the ships pitch angle, the only unknown in equation (5.1) is the desired mean wetted length to beam ratio. After applying the Newton-Raphson iteration formula and consolidating

$$
\begin{aligned}
& \text { terms again, we have: } \\
& \lambda_{n}+1=\frac{0.6 \lambda_{n}^{3}-0.4363 c_{v}^{2} \lambda_{n}+72.7272\left(c_{L_{\beta}}=0 / \tau 1.1\right) c_{v}^{2} \sqrt{\lambda_{n}}}{\lambda_{\mathrm{n}}^{2}+0.4363 \mathrm{c}_{\mathrm{v}}^{2}}
\end{aligned}
$$

where here again the iteration is repeated until $/ \lambda_{n}+1=\lambda_{n} /$ <0.0001. With the mean wetted length to beam ratio known, then the drag of the planing surface, the wetted keel and chine lengths, the spray drag and the skeg drag are all quickly calculated.

It should be mentioned that the manipulations and consolida tions leading to equations (5.4) and (5.5) were accomplished to speed up the computations. With the IBM 1620, FORTRAN II version of Reference 10 (Reference il), the time required to balance the hull at an Input speed was HALTED. Another item that should be mentioned here is that for certain combinations of high deadrise and high speed, the computer will find a very low (or even negative) value of mean wetted length to beam ratio will satisfy equation (5.5). In those cases the output would show $L_{c}<0$ which means that the intersection of the spray root line with the chine is aft of the transom. This chines dry condition is quite possible for a hydrofoil ship hull just prior to take-off but it is outside the range of applicability of these emperlcal planing equations. Such cases should be rexfon using a reduced beam such
that $L c \geq 0$. The hull subroutine is set up to return to the main program and increase the weight fraction carried by the hull whenever $L_{c}<0$, which is to say the program is self correcting of this situation.

II 2.2.6 Drag of Prismatic Planing Hulls

The total hydrodynamic drag of prismatic planing hulls as evaluated by this program is composed of three parts: (a) pressure drag developed by forces acting normal to the inclined hull, (b) viscous drag acting along the hull bottom parallel to the keel in the pressure area, and (c) viscous drag acting along the hull bottom parallel to the keel in the spray area, (see Figure 5). Since this analysis is restricted to hard chine hulls there is no additional component of viscous drag due to side wetting.
(a) The hull pressure drag force is taken in the horizontal direction:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{h}_{\mathrm{p}}}=\Delta \tan ?^{\prime} \tag{6.1}
\end{equation*}
$$

It is assumed to act at the ship's center of gravity and so produces no moment.
(b) The viscous drag in the wetted pressure area is computed by:

$$
\begin{equation*}
D_{h_{f}}=\frac{1}{2} \rho U_{m}^{2} \quad\left(C_{D_{f}}+\Delta C_{f}\right) S_{h_{f}} \tag{6.2}
\end{equation*}
$$

where $U_{m}=$ mean or average hull bottom velocity

$$
\Delta C_{f}=\text { roughness allowance for hull }
$$

$$
S_{h_{f}}=\text { wetted pressure surface of hull, } \lambda B_{0}^{2} / \cos \beta
$$

The mean velocity over the bottom of the hull in the wetted
pressure area is less than the planing velocity due to the increase in pressure. The mean hull bottom velocity corrected for deadrise angle in the wetted pressure area is:

$$
\begin{equation*}
U_{m}=u \sqrt{1-\frac{0.012 \lambda \cdot 5 \gamma^{1.1}-0.0065 \beta\left(0.012 \dot{\lambda}^{5} \tau^{1.1}\right) \overline{0.6}}{\lambda \cos \tau}} \tag{6.3}
\end{equation*}
$$

Note that U_{m} is used to calculate the Reynold 's Number on which the Schoenherr skin friction drag coefficient is based. The viscous drag-is assumed to act parallel to the keel at a point $1 / 2$ the chine height, measured from the keel. The lever arm as shown in Figure 5 is then:

$$
\begin{equation*}
l_{h_{f}}=V C G-\frac{B}{4} \tan \beta \tag{6.4}
\end{equation*}
$$

(c) The viscous drag of the spray is computed by:

$$
\begin{equation*}
D_{h_{s p}}=\frac{1}{2} \rho v^{2} \cdot\left(c_{D_{f}}+\Delta C_{f}\right) s_{h_{s p}} \tag{6.5}
\end{equation*}
$$

where $S_{h_{s p}}=$ surface of hull wetted by spray (Equation 4.3). Note that the reflection of the spray about the spray root line means that the ship velocity must be used. The spray drag is assumed to act parallel to the keel at a point $2 / 3$ of the chine height measured from the keel. The lever arm as shown in Figure 5 is then:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{h}_{\mathrm{sp}}}=\mathrm{VCG}-\frac{\mathrm{B}}{3} \tan \beta \tag{6.6}
\end{equation*}
$$

It should be polnted out that the spray does not act parallel to the keel and Savitsky does not advocate its inclusion in the performance prediction when the keel trim angle is less than 4°. Therefore, this program does not include spray drag when the keel trim angle is less then 4°. Since the spray
drag vector direction is debateable, so is the lever arm and average wetted length. However, the justification for refining this portion of the prediction method must rest in an evaluation of the correlation with full scale trials data. The validity of restricting the inclusion of the spray drag to trim conditions greater than \boldsymbol{r} equal to 4° will then also become apparent.

II 2.2.7 Hull Air Drag

Hull air drag of hydrofoil ships is nearly impossible to estimate from scratch what with the unknown Interference effects of the superstrucutre and "appendages", such as antennas, ordnance items, cowlings, etc. In some cases, parametric studies for example, the designer may justifiably ignore the air drag. The alternate is to resort to wind tunnel test results. Non-dimenslonallzlng the wind tunnel data leads to defining a projected area, which continually and radically changes with wind azmiuth angle. Certainly the "best" reference area should Include the length of the ship. To-date, the problem has no uniformly accepted solution. For the purposes of this program, the hull air drag side-steps the issue by defining this drag:

$$
\begin{equation*}
D_{\text {air }}=c_{D_{\text {air }}^{\prime}}^{\prime} v^{2} \tag{7.1}
\end{equation*}
$$

where $\quad c_{D_{\text {air }}}^{\prime}=\frac{1}{2} \boldsymbol{\rho}_{\text {air }} \boldsymbol{C}_{\boldsymbol{D}} \boldsymbol{A}_{\text {hull }} 1.6889^{2}$
$\boldsymbol{P}_{\text {air }}=$ density of air
$C_{D}=$ drag coefficient from model tests
Ahull hull projected area used on model tests
$\mathrm{V} \quad=\mathrm{ship}$ velocity, knots

2.2.8 Center of Pressure and Thrust Moment

The center of pressure of planing surfaces can be evaluated by considering the buoyant and dynamic forces separately. Take the dynamic component at $33 \frac{1}{3} \%$ forward of the transom. With the two forces as given in equation (5.1) then Savitsky (Reference 10) found that the hull center of nressure lever arm would be:

$$
\begin{equation*}
{ }^{1} \text { c.p. }=\operatorname{LCG}-\lambda B\left[.75-\frac{1}{5.21\left(C_{v} / \lambda\right)^{2}+2.39}\right] \tag{8.1}
\end{equation*}
$$

With the advent of waterjets as candidate propulsion systems, greater flexibility is required in locating the thrust vector. However, rather than distract the designer with laying out the geometry every time the center of gravity shifts or the propulsor is moved, the program calculates the thrust lever arm. Referring to Figure 6, the thrust lever arm is:

$$
\begin{aligned}
1_{T} & =\left[(V C G \quad D 2 T)^{2}+(L C G-X L 1 T)^{2}\right]^{1 / 2} \sin \boldsymbol{\xi} \\
\text { where } \boldsymbol{\xi} & =\tan ^{-1} \frac{(V C G+D 2 T)}{(L C G-X L 1 T)}=\boldsymbol{\epsilon} \\
\boldsymbol{\epsilon} & =\text { "shaft" angle to keel }
\end{aligned}
$$

II. 2.2.9 Static Equilibrium Condition

Static equilibrium is satisfied by setting the thrust equal to the drag and then adjusting the fore and aft lift distribution such that the summation of vertical forces and longitudinal moments are within the Input error limits. If the control surfaces do not provide a sufficient range of deflection angles to balance the ship statically, the program automatically adjusts the height of the ship's center of gravity relative to the water surface so as to alleviate the imbalance. No provisions are made for adjusting the ship's pitch angle nor speed to hasten the balancing. The user does exercise control over the number of Iterations per depth as iwell as the overall job time. Specifically, the static equilibrium equations are: $\Sigma \mathrm{F}_{\mathrm{xx}}=\mathrm{T} \cos (\boldsymbol{\tau}+\boldsymbol{\xi})=\mathrm{D}_{\text {air }}+\mathrm{D}_{\text {strut }} \quad$ (spray) $^{+\mathrm{D}_{\mathrm{v} . f i n s}+}$ $D_{\text {nacelles }}+D_{\text {struts }}$ (profile§friction) $+D_{\text {foils }}+D_{\text {hull }}$ (pressure) +

$$
\begin{equation*}
D_{\text {hull }} \text { (friction) }+D_{\text {hull }} \text { spray } \tag{9.2}
\end{equation*}
$$

$\Sigma \mathrm{F}_{\mathbf{Z Z}}=\mathrm{L}_{\text {fo1ls }}-\mathrm{A}+\mathrm{T} \sin (\tau+\boldsymbol{\xi})+\mathrm{L}_{\text {hull }}$
$\Sigma M_{y y}=-D_{\text {strut }}(\text { spray })_{c . g .} D_{V . f i n}\left(V C G+d_{V . f i n}\right)-D_{\text {nacelle }}\left(V C G+d_{n a c e l l e}\right)$
$-D_{\text {struts }}$ (profile4 friction) $\left(d_{c . g .}+{ }^{\frac{1}{2}} d_{\text {strut }}\right)=D_{\text {foils }}\left(d_{c . g}+d_{\text {foils }}\right)$
$T I_{\text {thrust }}+L_{\text {foils }} I_{\text {foils }}-D_{\text {hull }}$ (pressure) $I_{\text {c.p. }}$
$-D_{\text {hull }}$ (friction) 'hull (friction) ${ }^{-} \mathrm{D}_{\text {hull }}$ (spray) ${ }^{\text {l hull }}$ (spray)
(9.3)

It should be mentioned that in equations 9.1 through 9.3 the separate contributions from the fore and aft foils have been omitted for brevity. Of course they appear in the program, along with an occasional lever arm sign change to reflect the physical location of the aft hydrofoil being aft of the center of gravity. When equations 9.2 and 9.3 are satisfied within the input error limits, the hydrofoil ship is said to be in equilibrium and the results are output.
II. 3 General Remarks

This program was developed from the one reported in General Dynamics/Convair Report GDC 66-075-2, Reference 12, which was written under Navy contract NOBS-90430. The program and documentation have been throughly revised from the special needs of that contract to the more general design requirements of the Naval hydrofoil ship design program. Some effort has been made to minimize the proliferation of diverse mathematical models by incorporating much of the excellent material reported in Reference 1, which was written under Navy contract N61339-1630. It is not intended that this program will remain static but rather will be revised and updated as new material, including the hullborne mode, becomes available. Some expansion into the foilborne stability area could be incorporated immediatly, however the hullborne stability problem definition 'is immenient.
II. 4 References

1) Jamieson, J.J., "Hydrofoil Simulation Equations Study: Mathematical Model Report, Vol. I. Foilborne Eq uations of Motion" Tech. Rpt NAVTRADEVCEN 1630-2-1, Naval Training Device Center, Orlando, Fla., Dec. 1956.
2) Hoerner, S. F. Fluid Dynamic Drag, published by the author, 1958
3) Wadlin, K. et al, "A Theoretical and Experimental Investigation of the Lift and Drag Characteristics Speeds," NACA Report 1232, 1955.
4) Michel, W.H., Editor "Hydrofoil Handbook, Vol. II., Hydrodynamic Characteristics of Components' Gibbs \& Cox, Nonr-507(00), 1954.
5) Clement, E.P. and Moore, W.L., "Resistance Data and Potential Velocity Distributions for a Systematic Series of Streamlined Bodies of Revolution (Series 58) for Application to the Design of Hydrofoil Boat Nacelles", DTMB Report C-1382, April 1962.
6) Gertler, M., "Resistance Experiments on a Systematic Series of Streamlined Bodies of Revolution For Application to the Design of High Speed Submarines," DTMB Report C-297, April 1950.
7) Moore, W.L. "Bodies of Revolution with High Cavitation Inception Speeds - For Application to the Design of Hydrofoil Boat Nacelles' DTMB Report 1669.
8) Price, E.V. "The Subcavitating Hydrofoil (HYSTAD) Program Phase I Final Technical Report" General Dynamics/Convair Report GDC-66-075-1, June 1966.
9) Savitsky, D. and Breslin, J.P., "Experimental Study of Davidson Laboratory Report 1192, Dec 1966.
(10) Savitsky, D. "Hydrodynamic Design of Planing Hulls" Marine Technology, Vol. 1, No. 1, Oct. 1964
10) Bauman, W. D., "Hydrodynamic Design of Prismatic Planing Huils", Ship Design Computer Program, navships 0900-006-5310, June 1966.
11) Price E.V., "Addendum to the Subcavitating Hydrofoil (HYSTAD) Program Phase 1 Final Technical Report General Dynamics/Convair Report GDC 66-075-2, Contract Nobs 90430, June 1966.

III - INPUT OUTPUT REQUIREMENTS

III

1. General Restrictions

The input data format is set up to facilitate running multiple trim-load problems on each job. After the foil geometry, foil characteristics and initial hull data have been read $I n$, only the hull data is necessary for subsequent problems on the same job. The following numerical values are assumed:
$\boldsymbol{g}=32.17 \quad$ acceleration due to gravity
$e=2.7182818$ Naperian log. base
$\pi=3.1415927 \mathrm{pI}$
$\mathrm{deg} / \mathrm{rad} .=57.29578$ change of angular unit
$\mathbf{V} / \mathbf{V}_{\mathbf{k}}=1.6889 \quad$ conversion from kts. to fps
$\boldsymbol{\delta}_{\text {max }}= \pm 10^{\circ} \quad$ maximum foil control surface deflection angle, fwd and aft foils
$\log / \ln =0.43429448$ conversion of base
No special tapes are required.
No non-standard hardware is required. However, page turn control is provided by a 1 in output card column 1. Each output page is numbered for comparison with the input number of problems per job.

Ten one-column arrays are used with the largest having 20 elements. All four graphical Inputs must utilize monotone Increasing numerical values on the abscissa.

There are no special operating instructions; however, the user and the machine operator are not without responsibility. During the development of this program, several potential
calculation flow fumbles were spotted and suitable self-correction features provided. Typical CONFORM parametric studies range from the absurd to the ludicrous as regards ship configurations. Naturally at either extreme some inexplicable difficulty in obtaining a static trim-load solution may be expected. The user is therefore cautioned to input extreme hull-foil-propulsion configurations by steps from working designs. An alerted machine operator can abort the program if the total time becomes excessive.

III 2. Input Data Preparations

III 2.1 Control Card
Program control is accomplished by the five numbers:
Kinematic Viscosity of Water (VS2), No. of Problems/This Job (XJOBS), Lift Error Bound (ZL), Moment Error Bound (ZM), and No. of Iterations/Each Problem (XNTRYS). The kinematic viscosity of water is checked numerically to see if a job follows. XJOBS Indicates how many problems are to be run with the input foil configuration; i.e., how many pairs of hull data cards are to be read. Both the lift and moment error bounds influence the accuracy of the final force and moment trim; indirectly they influence the computation time. Finally, XNTRYS specifies the number of times the control surface deflection angles are adjusted prior to re-evaluating the foil submergence.

III 2.2 Hydrofoil Data Cards
The first set of hydrofoil data cards applies to the forward foil(s) while the second set applies to the aft foil(s).

The three initial cards in each set identify configuration constants such as area, thickness to chord ratios, number of foil-strut-nacelle arrays fwd or aft, drag coefficients, etc. The last four cards in each hydrofoil data set are used to input graphical information typified by Figures 2 and 3. These figures are derived from model test results.

III 2.3 Hull Data Cards
Cards 17 and 18 describe the hull, how much of the total load it carries and how fast the ship is moving. These latter two cards are input XJOBS times, with the desired changes. Input data specifications are presented with sample numerical values in Table 1.

Card Column	Input Format	Program Symbol	Definition	Typical Value
Card Number 1				
1-12	~ 12.4	vs2	Kinematic viscosity	0.0000128
13-21	F9.0	DE1W	Density of water	2.000
22-27	F6.0	DLICF1	Roughness allowance, hull	. 0004
28-32	F5.0	XJOBS	Number of problems	5.0
33-37	F5.0	DLICF2	Roughness allowance, foils	. 0001
38-42	F5.0	2L	Lift error bound	200.0
43-47	F5.0	ZM	Moment error bound	50.0
48-52	F5.0	XNTRYS	Number of control surface angle iterations	13.0

Card Number 2
1-80 20A4 DATAID Title (centered)
Card Number 3 (fwd foil-nacelle-strut array)
1-10 F10.3 D2F Depth below B.L., foil 9.00
11-20 F10.3 D2N Depth below B.L., nacelle 9.00
21-30 F10.3 D2V Depth below B.L., ventral fin 0.00
31-40 F10.3 XLILT Length to center of lift 88.30
41-50
F10. 3
XLICM
Mean foil chord length
3.68

51-60 F10.3 XLICS Mean strut chord length 4.25
61-70 Fl0.3 XLIV Mean ventral fin chord length 0.00
71-80 F10.3 XLIN Nacelle length 6.12

Card Column	Input Format	Program Symbol	Definition	Typical Value
Card Number 3 (fwd foil-nacelle-strut array)				
1-10	F10.3	AlP	Planform area, foil	65.63
11-20	F10.3	AlPV	Planform area, ventral fin	0.00
21-30	F10.3	R1TCM	Thickness/chord, foil	0.09
31-40	F10.3	R1TCS	Thickness/chord, strut	0.12
41-50	F10.3	R1TCV	Thickness/chord,ventral fin	0.00
51-60	F10.3	R1LDN	Length/diameter, nacelle	7.00
61-70	F10.3	A 3DD	Initial control surface deflection angle	2.00
71-80	F10.3	XN2SN	, Number of arrays, fwd	1.00
Card Number 4 (fwd foil-nacelle-strut array)				
1-10	F10.3	CILD	Design lift coeff. ∞ depth	0.22
11-20	F10.3	DRIPT	$\mathrm{C}_{\mathbf{L}_{\boldsymbol{\gamma}}}$, $\boldsymbol{\infty}$ depth	4.302
21-30	F10.3	DR1PD	$C_{\text {'a }}, \boldsymbol{\infty}$ depth	2.109
31-40	F10.3	CldSP	Strut spray drag coeff.	0.24
41-50	F10.3	ClDFP	Foil pressure drag coeff.	0.00
51-60	F10.3	CldNP	Nacelle pressure drag coeff.	0.00
61-70	F10.3	C1WSN	Nacelle wetted surface coeff.	0.7742
71-80	F10.3	RlAS	Poll aspect ratio	6.60
Card Number 5 (fwd foil-nacelle-strut array)				
1-8				
-•	9F8.2	R1HCT	Foil depth/chord ratio (from Figure 2)	

65-72

Card
Column

Card Number 6 (fwd foil-nacelle-strut array) 1-8
... 9FU. 2 RlCLT
$\frac{C_{L_{h}}}{C_{L_{\infty}}}$ at each $\underset{C}{h}$ of card 5
(from Figure 2)

65-72
Card Number 7 (fwd foil-nacelle-strut array)
1-8
... 9F8.2 ClLEA 3-D C_{L} by control surface deflection [from Figure 3)
65-72
Card Number ४ (fwd foil-nacelle-strut array)
1-8

$$
\begin{aligned}
& . \quad \text { CIDICA } \quad \mathbf{C}_{\boldsymbol{D}_{\mathbf{i}}} \text { at each } \mathbf{C}_{\mathbf{L}} \text { of Card } 7 \\
& \text { (from Figure 3) }
\end{aligned}
$$

65-72
Card Number 9-15 (aft foil-nacelle-strut array)
These cards duplicate the input data layout format of cards
3 through $\%$; the data is applicable to the aft array however. Card Number 16 (first hull data card)

l-10	F10.3	D	Height of C.G. above W.L.	12.96
$11-20$	F10.3	ClDAIR	Hull Air drag coeff.	0.772
$21-30$	F1W.3	XL1T	Length to thrust, fwd of	$\mathbf{2 2 . 0 0}$
$31-40$	F10.3	PClH	\% of $\boldsymbol{\Delta}$ carried by hull1	$\mathbf{0 . 0}$

III 3 Output Data Editing

Program output is presented as three tables of data.
The first table Itemizes the equilibrium conditions. These numbers should be carefully reviewed, for Internally generated, required changes to the Input Initial conditions. The enclosed sample data shows five problems using the "flying" data from Figure 3 followed by ten problems using the "takeoff" data of Figure 3.

Sampling the first table for the $\mathbf{5 0}$ kts, foilborne problem note the following: (a) a 2^{0} flaps down was Input for both the forward and aft foil whereas -0.9° fwd and -0.6° aft are requlred, reducing the pitch angle or slowing to approximately 47.5 kts would eliminate the necessity for any flaps, and (b) .the keel draft aft (on centerline at the transom) is a -4.6^{\prime}, which is Indicative of an ample keel clearance. Later on, when the hull carries some of the load, the keel draft aft goes positive In accordance with expectations.

The second or middle table presents the drag breakdown into lever arms, characteristic lengths, drag coefficients of the elements, areas and finally the net drag of the various elements. This middle table is Invaluable for discerning the causes for wide variations In total drag. Note, for example, that in slowing to $\mathbf{3 0}$ knots (page 5, foilborne data) that the
increment In profile dras due to control surface deflection has increased from $A C, P_{P}=0.00502$ to $\Delta C_{\mathcal{O}_{\mathcal{P}}}=0.05948$ for the forward foil and the variation is even greater for the aft foil. Clearly, an Increase in pitch angle at lower speeds should be investigated to relieve the requirement for flaps with their associated, induced profile drag.

The third and last table presents the drag and lift summary. Recall that hull drag is omitted unless the pitch angle is greater than 0° and spray drag is omitted unless the trim angle is greater than 4°. The summation of the lift and drag components equals their respective totals within the Input error bounds.

Some familiarization with the program, Its Input and output is to be expected. NAVSEC will work with the program's users and try to accommodate suggested revisions, additions or deletions. This program is particularly intended for CONFORM and Preliminary Design Studies to quickly predict credible propulsion requirements considering the sensitivity to such hull parameters as beam, deadrise angle, center of gravity and location of the thrust vector.

III 4
Validation
Program validation was certified by hand calculation of the 30 knot hullborne case with 10% of the weight carried by the hull at a 2.5^{0} bow up attitude. Input data as listed was used and the results compared with page 2 of the hullborne output. No significant differences were found.

III 4.1 Sample Input
The sample input shown is for the two situations of low trim angle for full foilborne operations and moderate trim angles for low foilborne and takeoff operations. The basic difference is in the choice of data from Figure 3,which must be established from model or full scale test data. Refer to Table 1 for the definition of the various data.
$\frac{\text {-DATA }}{0.0}$

III 4.2 Sample Output
The sample output enclosed is for the sample Input and may be used to validate proper operation on other machines. Figure 7 is a graphical presentation of the salient data. For design purposes, many more data runs would be made, varying speed, trim angle and percent load carried by the hull. Considering those three variables-as most strongly Influencing total resistance, and the net results being a four dimensional "saddle," then this program finds application In defining the path of minimum total resistance through takeoff to full flying speed.

HYDRODYNAMIC DESIGN OF HYDROFOIL SHIPS
 NAVSEC PROGRAM WOB-061, REF. NAVSHIPS 0900-006-5390

hydrofoil patrol craft validationdata, foilborine

-45-

HYDRUDYNAMIC DESIGN OF HYOROFOILSHIPS NAVSEC PRUGRAMWDB-061, REF. NAVSHIPS 0900-006-5390 HYDROFOI L PATROL CRAFT VALIDATIONGATA,FOILBORNE 9/30/68

RESULTSF UR V=35.0 KTS, $\theta=3494$. PSF

LC G FROMTRANS $=4$	0	F T	DEADRI SE ANG* $=$	8.0 DEG	T	BELOW KEFL 11.2	F T
VCGFROVK E E L =	8.0	F T	SHAFT ANGLE	0. DEG	T	FWПTRANS. 22.0	F T
CG ABOVE Fidl	13.0	FT	TRIMANGIE	0.5 DFG	F	DRAFT FWD. 3.7	FT
MEAN BEAM	22.0	FT	CONT D E F L FWin=	5.6 LEG	F	DRAFT AFT. 6.5	FT
WETTED KEEL	0.	FT	CONT DEFL AFT=	4.6 DEG	K	DRAFT AFT. - 4.6	F T
WETTED CHINE	0.	FT					

HULLAIR DRAG
HULL SPRAY DRAG
HULL FRICTION DRAG
hULL PRESSURE DRAG
945.7
0.
0.
0.

FWOFOIL LIFT 91285.A
AFT FOIL LIFT 164536.9

TOTALS *DRAG, LBS
20317.4 * * $4 * * * * * *$ LIFT, LHS
256000.0
-46-

HYDRGDYNAMIC DESIGN OF HYDROFOIL SHIPS
NAVSEC PROGRAN WDE-061, KEF. NAVSHIPS 0900-006-5390
HYDROFOIL PATROL CRAFT VALIDATION UATA, FOTLBERNE
$9 / 30 / 68$

RESULTS FUR $V=30.0 \mathrm{KTS}, \quad 0=2567 . \mathrm{PSF}$

(1)	DFADRISE ANG* $=8.0$ DEG	T BELOWKFEL 11.7 FT
VCG FROM KEEL $=8.0 \mathrm{FT}$	SHAFT ANGLE $=0$. UEG	T FWIITRANS. 22.0FT
CG ABUVE FWL $=12.8 \mathrm{FT}$	TRIMANGLE = 0.5 DEG	F DRAFT FUn. 3.9 FT
ME4N BEAM $=22.0 \mathrm{FT}$	CONT DEFL FWU= 10.0 UEG	F DRAFT AFT. 6.7 FT
WETTED KEEL $=0$. FT	CONT DEFL AFT= 8.3 DEG	K DRAFTAFT. - 4.4 FT
JETTED CHTNE $=0 . \mathrm{FT}$		

HYDRDDYNAWIC DESIGN OF HYDROFOIL SHIPS
NAVSEC PROGRAM WDB-061, RFF. MAVSHIPS 0900-006-5390
hydrofoil patrol craft validation data, hullborne
$9 / 30 / 68$

RESULTS FOR V $=30.0 \mathrm{KTS}$,		S F
LCG FROM TRANS $=46.0 \mathrm{FT}$	DEADRI S F ANG. $=8.0$ UFG	T BELOWKEFL 11.2 FT
VCGFROM KEEL $=8.0 \mathrm{FT}$	S H A F T ANGLE $=0$. DEG	T FWD TRANS. 22.0 FT
CG ABOVE FWL $=13.0 \mathrm{FT}$	TRIM ANGLE $=2.5$ DFG	F DRAFTFWD. 2.2 FT
MEAN BEAM $=22.0 \mathrm{FT}$	CONT DEFL FWO= 7.1 DEG	F DRAFT AFT. 7.3 FT
$\begin{array}{ll} \text { WETTED } & \text { KEEL } \\ \text { WETTED } & \text { CHINE } \end{array}$	CONTDEFLA F T $=3.3$ UEG	K DRAFT AFT. 3.0 FT

-48.

HYDRODYNAMIC DESIGN OF HYDROFOILSHIPS NAVSEC PROGRAH WOH-061, REF. NAVSHIPS 0900-006-5390

HYOROFOILP A T R O CRAFTVAIIDATION DATA, HULLBDRNE
$9 / 30 / 68$

RESIJLTS FOR V $=30.0 \mathrm{KTS}$,		$0=25$	PSF
LCG FROM TRANS $=46.0 \mathrm{FT}$	DEADRISE ANG. $=$	8.0 LEG	T BELOW KFEL 11.7 FT
VCG FROMKEEL $=8.0 \mathrm{FT}$	SHAFT ANGLE	0. DEG	İFWD TRAMS. 22.0 FT
C G ABOVEFUL $=8.5 \mathrm{FT}$	TRIM ANGLE	2.5 UEG	F DRAFT FW0. 6.2 FT
MEAN BEAM $=22.0 \mathrm{FT}$	CONT DEFL FWD=	5.3 UEG	F DRAFT AFT. 11.3 FT
WETTEDKEEL $=24.4 \mathrm{FT}$	CONT DEFL AFT=	0.4 UEG	K DRAFTAFT. 1.1 FT
WETTED CHINE $=1.8 \mathrm{FT}$			

	FORWARD A R R A Y			AFT	T ARRAY	
FOIL	STRUT	POD V-FIN	FOIL	STRUT	POD	V-FIN
L BELOWKEEL 9.0		9.00	11.2		11.?	0
L FWO TRANS 88.30			22.00			
T/C OR L/D 0.09	0.12	7.000	0.09	0.1 ?	4.83	0
$L=R E Y N . N O \quad 3.68$	4.25	6.120	4.75	4.25	12.33	0.
TYPE OF @RAG CDEFF	COEFF	COEFF COEFF	CDEFF	COEFF	COEFF	CDEFF
PROFILE 0.00062	0.00618	0.00026-0.00000	0.00059	0.00618	$0.00001-$	0.00000
FRICTION (2) 0.00276	0.00270	0.002550	0.00265	0.00270	0.00230	0 .
ROUGHNESS(2)0.00010	0.00010	0.000100 .00010	0.00010	0.00010	0.00010	0.00010
INDUCED 0.01861			0.00717			
DPROFILE 0.00662			0.00009			
WAVE OR SPRkY0.00300	0.24000		0.00142	0.24000		
TOTAL COE FF 0.03457			0.01478			
AREA-PROFILE 65.63	24.50	13.010	74.82	42.77	95.01	0.
AREA-SPRAY	0.26			0.26		
DXAG-ELEMENT 5825.2	740.8	97.20	5677.9	2586.2	1174.0	0
DRAG-STRUT SPRAY	160.3			320.5		
HULL AIR DRAG	694.8		FWD FOIL	LIFT	92860.2	
HULL SPRAY DRAG	0		AFT FOIL	LIFT 1	136653.6	
HULLFRICTIOND R A G	1936.1		HULL	LIFT	25600.0	
HUL L PRESSUREDRAG	1117.7					
TOTALS*DRAG, LBS	20330.8	* * * * * $*$ * $*$	* LIFT	, LBS 2	256000.0	

HYDRODYNAMIC DESIGN OF HYDROFOIL SHIPS
 NAVSEC PROGRAM WDB-061, REF. NAVSHIPS 0900-006-5390

HYDROFOIL PATROL CRAFT VAL IDAT ION DATA, HULLBORNE
$9 / 30 / 68$

```
RESULTS FOR V= 30.0 KTS, 昨 2567. PSF
```


HYDRODYNAMIC DESIGN OF HYDROFOIL SHIPS NAVSEC PROGRAM WDB-061, REF. NAVSHIPS 0900-006-5390

HYDROFOIL PATROL CRAFT VAL IDAT JON DATA, HULLBORNE

RESULTS FOR V= $27.0 \mathrm{KTS}, \quad \Theta=2079$. PSF

FOIL	FORWARD STRUT	$\text { RD } \underset{\text { POD }}{\text { ARRAY }}$	Y V-F IN	FOII		T ARRAY	V.FIN
L BELOW KEEL 9.0		9.0	0 .	11.7		11.2	0.
L FWD TRANS 88.30				22.00			
T/C OR LIO 0.09	0.12	7.00	0.	0.09	0.12	4.82	0.
L-REYN.NO 3.68	4.25	6.12	0.	4.75	4.25	12.33	0.
TYPE OF DRAG COE FF	COEFF						
PROFILE 0.00062	0.006280.	0.00026-0	0.00000	0.00059	0.00628	0.00001-0	0.00000
FRICTION (2) 0.00281	0.002750.	0.002590	0.	0.00270	0.00275	0.002330	0.
ROUGHNESS(Z) 0.00010	0.000100.	0.000100	0.00010	0.00010	0.00010	0.00010	0.00010
INDUCED 0.02407				0.00784			
D PROFILE 0.01265				0.00005			
WAVE OR SPRAY0.00463	0.24000			0.00176	0.24000		
TOTAL COEFF 0.04779				0.01585			
AREA-PROFILE 65.63	28.84	13.01	0.	74.87	47.11	95.01	0.
AREA-SPRAY	0.26				0.26		
DRAG-ELEMENT 6521.6	718.0	79.9	0.	4931.2	2345.5	965.1	0.
DRAG-STRUT SPRAY	129.8				259.6		
hULL AIR DRAG	562.8			FWD FOIL	LIFT	'97037.7	
HULL SPRAY DRAG	0.			AFT FOIL	LIFT	116770.9	
HULL FRICTION DRAG	3963.7			HULL	LIFt	'51200.0	
hull pressure drag	2235.4						
totals *DRAG, LbS	22712.7 *	* * * * *	* * * *	* LIFT,	LBS	256000.0	

HYORGDYNAMICDESIGN OF HYDROFOIL SHIPS NAVSEC PROGRAMWDB-061, REF. NAVSHIPS 0900-006-5390

HYDROFOI IPATROL CRAFT VAL IOAT TONDATA, HULLEBORNE
$9 / 30 / 68$

RESULTS FOR V=27.0 KTS, $\quad 0=2079$. PSF

HYDRODYNAMIC DESIGN OF HYDROFOIL SHIPS NAVSEC PROGRAM WDG-OG1, REF. NAVSHIPS 0900-006-5390

HYDROFOIL PATROL CRAFT VAL JDAT ION DATA, HULLBORNE
$9 / 30 / 68$

RESULTS FOR $V=24.0$ KTS, $\quad \theta=1643 . \quad$ PSF

HYDRODYNAMICDESIGN OF HYOROFGILSHIPS,
NAVSECPROGRAM WDB-061, REF. NAVSHIPS 0900-006-5390 hyorofoil patrol craft validationdata, hulleorne
$9 / 30 / 68$

RESULTS FORV=24.0KTS, $\theta=1643$. PSF

FIGURE IDEALIZED HYDROFOIL SHIP
-58 -

FIGURE 2 three dimensional C_{L} RAtios vs. FOIL depth to chord ratio.

FIGURE 3 INDUCED DRAG COEFFICIENT vS. 3-D LIFT COEFFICIENT.

FROM REF. io

Water line intersections for prismatic planing hulls.
FIGURE 4

figure 5 frictional forces a lever arms.

FIGURE 6 External forces 8 Lever arms.

APPENDICES

A	Program Listing
B	Symbol Table
C	Flow Chart

A-1

$$
A-1
$$

```
C
    SET OR RESET RUN CONSTANTS AT THEIR INITIAL VALUES.
    21 DELTNF-0.5
    DELTNR-0.5
    NTRYS=XNTRYS
    VG=1.6889#UISK
    DP1PH=DP 1P*PC1H
    R1DLN =1.0/RILDN
    RIDLNA=1.0/R1LONA
    P2K=0.5#DE1W*V6**2
    A3TAR=A3TAD/57.29578
    A3SHR =A 35HD/57.29578
    SINT = SIN(A3TAR)
    cost = COS(A3TAR)
    TANT = TAN(A3TAR)
    A3THR = A3TAR + A3SHR
C EQUATION 8.2, COMPUTE THRUST LEVER ARM.
    CONST=(CGIVB+D2T)/(CG1LT-XL1T)
    A3XI =ATAN(CONST)-A3SHR
    ZCGIT=SIN(A3XI)*SQRT((CGIVB+D2T)**2 + (CGILT-XLIT)**2)
C EQUATION 7.1, COMPUTE HULL AIR DRAG.
    DGIAIR=CIDAIR*U1SK**2
    EQUATION 3.11, COMPUTE STRUT SPRAY DRAG.
    AIWSS=(R1TCS*XLICS)**2
    AlWSSA=(RITCSA*XLICSA)**2
    DG1SP=C1DSP*P2K*A1WSS*XN2SN
    DG1SPA=C1DSPA*P2K*A1WSSA*XN2SNA
C Compute component reynolds numbers.
    XN1R=XLICM*V6/VS2
    XN1RN=XLIN*V6/VS2
    XNIRS=XLICS*V6/VS2
    XNIRA=XLICMA*V6/VS2
    XN1RNA=XL1NA*V6/VS2
    XNIRSA=XLICSA*VG/VS2
C
C COMPUTE VENTRAL FIN DRAG WHEN APPLICABLE.
    I F (XLIV)45,45,50
    45 DGIV =0.000
    QC1DFR(4)=0.00
    GOTO 65
    5 0 XN1RV=XLIV*V6/VSS2
    QC1DFR(4)=CIDSF(XN1RV)
    EQUATION 3.10, FWD VENTRAL FIN(S) PROFILE DRAG COEFFICIENT.
    CIDVP =2.0*QC1DFR(4)*(1.2*R1TCV +60.0*RITCV**4)
C EQUATION 3.9. FWD VENTRAL FIN(SI DRAG.
    DG1V=(2.0*(QC1DFR(4)+DL1CF2)+C1OVP)*A1PV*P2K*XN2SN HY-01000
    65 FGIV=(2.0*(OC)
    65 FG (XLIVA)70,70,75
    O DGIVA=0.000
    QC1DFR(8)=0.000
    GO TO 90
    75 XNIRVA=XLIVA*V6/VS2
    QCIDFR(8)=CIDSF(XNIRVA)
C EQUATION 3.10, AFT VENTRALFIN(S)PROFILE DRAG COEFFICIENT.
    CIDVPA=2.*QCIDFR(8)*(1.2*R1TCVA+60.*R1TCVA**4)
    HY-0 510
    HY-O 520
    HY-O 530
    HY-0 540
    HY-O 550
    HY-O 560
    HY-O 570
    HY-0 580
    HY-0 580
    HY-0 600
    HY-0 610
    HY-O 620
    HY-O 630
    HY-0 640
    HY-O 650
    HY-0 660
    HY-0 670
    HY-0 670
    HY-O 690
    HY-0 690
    HY-0 710
    HY-O 720
    HY-0 730
    HY-O 740
    HY-O 750
    HY-O 760
    HY-0 770
    HY-O 780
    HY-O 790
    HY-0 800
    HY-0 810
    HY-0 820
    HY-O 830
    HY-O 840
    HY-0 850
    HY-0 860
    HY-O 870
    HY-0 880
    HY-O 890
    HY-0 900
    HY-O 910
    HY-O 920
    HY-0 930
    HY-O 940
    HY-0 950
    HY-O 960
    HY-O 970
    HY-O 980
    HY-O 990
    HY-01010
HY-01020
HY-01030
HY-O 1040
HY-01050
HY-01060
HY-01070
HY-01080
```



```
C
c
c
c
COMPUTE FOIL LIFT COEFFICIENTS.
135 A3DR=A30D/57.29578
    A3DRA=A30DA/57.29578
    CALL INTERP(RIHC,9,RIHCT,RICLT,RICIL)
    CALL INTERP(RIHCA,9,RIHCTA,RICLTA,RICILA)
    EQUATION 2.1, FWD FOIL(S)LIFT COEFFICIENT.
    ClL=(ClLD + A3TAR*OR1PT +A3DR*DR1PD)*R1CIL
    EQUATION 2.1, AFT FOIL(S)LIFT COEFFICIENT.
    C1LA=(C1LDA + A3TAR*DRIPTA +A3DRA*DR1PDA)*R1C1LA
    COMPUTE FOIL LIFT.
    XLFIK=C 1L*AlP*P2K*XN2SN
    XLF1KA=C1LA*A1PA*P2K*XN2SNA
    COMPLETE FORWARD FOIL DRAG CALCULATION FOR THIS DEPTH.
    QKIC =4.0*RIAS *(1.0/SQRT(RIAS **2+16.0*R1HC **2+1.0) +1.0)/
    1 (R1AS **2 +16.0*R1HC **2)
    XN1FH =V6**2/(Gl*H1F)
    QPSI =1.0/QE**(2.0/XN1FH)
    EQUATION 3.4, FWD FOIL(S) WAVE DRAG COEFFICIENT.
    ClDW =C1L ** 2*(QPSI *G1*XLICM /(4.0*V6**2))
    EQUATION 3.3, FWD FOIL(S)INDUCED DRAG COEFFICIENT.
    CIDI =CIL ** 2*(1.0/(QPI*RIAS) +QKIC /(8.0*QPI))
    CALL INTERP (CIL,9,CILE;CIDIC,CIDIP)
    EQUATION 3.1, FWD FOIL(S)TOTAL DRAG COEFFICIENT..
    C1D=2.0*(QC1DFR(1) +DLICF2)+C1DFP+C1DIP+C1DI +C1DW
    DG1=C1D*P 2K*A1P*XN2SN
    COMPLETE AFT FOIL DRAG CALCULATION FOR THIS DEPTH.
    QKICA = 4.0 # R1ASA* (1.0/SQRT(R1ASA**2+16.0*R1HCA**2+1.0) +1.0)/
    1 (R1ASA**2 +16.0*R1HCA**2)
    XN1FHA=V6**2/(G1*H1FA)
    QPSIA =1.0/QE** (2.0/XNIFHA)
    EQUATION 3.4, AFT FOIL(S)WAVE DRAG COEFFICIENT.
    CIDWA =ClLA**2*(QPSIA*G1*XLICMA/(4.0*V6**2))
    EQUATION 3.3, AFT FOIL(S)INDUCED DRAG COEFFICIENT.
    CIDIA =ClLA**2*(1.0/(QPI*RIASA) +QKICA/(8.0*QPI))
    CALL INTERP(CILA,9,CILEA,CIDICA,CIDIPA)
    EQUATION 3.1, AFT FOILISITOTAL DRAG COEFFICIENT.
    C1DA=2.0*(QC1DFR(5)+DLICF2)+C1DFPA +C1DIPA +C1DIA C C1DWA
    DG1A=A1PA*C1DA*P2K*XN2SNA
    COMPUTE TOTAL SHIP DRAG.
    DG1T=DG1AIR+DG1SP+DG1SPA+DG1V+DGIVA+DG1N+DGINA+DG1S+DG1SA+DGI+DG1AHY-02210
    1 +DGIPH+DG1FRH+DGISPH HY-02220
    T=DG1T/COS(A3THR) HY-02230
HY-02230
    COMPUTE LIFT ERROR.
HY-02250
```

```
    ERRL=XLFIK+XLFIKA-DP1P+T*SIN(A3THR)+DP1PH HY-022OO
C
    COMPUTE MOMENT ERROR.
C COMPUTE MOMENT ERROR.
        CGM=CGM-DGIS#ZCGIS = DGlSA*ZCGlSA - DGl*(D+HlF) - DGlA*(D+
    1HIFA)-DG1SPA*D-DGIVA*(CGIVB+D2VA)+T* 2CGIT
    CGM=CGM+XLF1K*(XLILT-CGLLT+(CGIVB+D2F)*TANT)*COST
    CGM=CGM-XLFIKA*(CG1LT-XLILTA-(CG1VB+D2FA)*TANT)*COST + X M 2
    I F (IND5-NTRYS)140,140,210
    140 GO TO (145,160,165),IND4
    145 IF (ABS(ERRL)=2L)15 0, 150,1 5 5
    150 I F (ABS(CGM)-ZM) 210,210,1 5 5
    155 TNFO=A3DD
        TNRO=A30DA
        ERRO=ERRL
        CGMO=CGM
        INO4 =2
        A3DD=A3DD+DELTNF
        GOTO 135
    160 A3ODA=A300A+DE LTNR
    DLT =ERRL -ERRO
    DMT =CGM-CGMO
    A3DD=TNFO
        INO4=3
    GO TO 135
    165 DMD=CGM-CGMO
        DLD=ERRL-ERRO
    DEN=DMD*DLT-DLD*DMT
C COMPUTE FOIL CONTROL SURFACE ANGLE CORRECT IONS.
    TNRGOR=DELTNR* (DMT*ERRO-DLT*CGMOI IDEN
    TNFCOR=DELTNF#(DLD#CGMO-DMD#ERRO)/DEN
    A3DD=TNF0+TNFCOR
    I F (ABS(TNFCOR)-1.0)1175,175,-170
    170 A3DD=TNFO+TNFCOR/ABS(TNFCOR)
    175 A3DDA = TNR0+TNRCOR
        I F (ABS(TNRCOR)-1.0)185,185,180
    180 A3DDA=TNRO+TNRCOR/ABS(TNRCOR)
    1.85 IND4=1
    IF (DELTNR-ABS(TNRCOR)) 195, 195, 190
    190 DELTNR = ABS(TNRCOR)
    195 I F (DELTNF-ABS(TNFCOR))205,2 0 5, 2 0 0
    200 DELTNF=ABS(TNFCOR)
    205 IND5=IND5+1
    GO TO 135
C
C CHECK IF FOIL INCIDENCE ANGLE LIMITS ARE EXCEEDED.
    210 I F (A3DD+10.)230,215,215
    215 I F (A30DA+10.) 230,220,220
    220 l F (A3DD-10.)225,225,245
    225 I F (A3DDA-10.) 265,265,245
C
C DECREASE FOIL DEPTH.
    230 I F (PCIH)235,235,240
    235 D=0 +0.1
    GOTO 260
    240 DP1PH=DP1PH*0.9
240 OPOTO 260
C
HY-02270
HY-02270
HY-02280
    HY-02290
C
230 1F (PC1H1235,235,240
    HY-02310
HY-02320
HY-02330
HY-02340
HY-02350
HY-02360
HY-02370
HY-02380
HY-02390
HY-02400
HY-02400
HY-02410
HY-02420
HY-02430
HY-02440
HY-02450
HY-02460
HY-02460
HY-02480
HY-02490
HY-02500
HY-02510
HY-02520
HY-02530
HY-02540
HY-02540
HY-02550
HY-02560
HY-02570
HY-02580
HY-02590
HY-02600
HY-02610
HY-02620
HY-02630
HY-02640
HY-02650
HY-02660
HY-02670
HY-02680
HY-02690
HY-02700
HY-02710
HY-02720
HY-02730
HY-02740
HY-02750
HY-02760
HY-02770
HY-02780
HY-02790
HY-02800
HY-02810
HY-02820
HY-02830
HY-02830
```

```
C INCREASE FOIL DEPTH. HY-02850
    245 I F (PC1H)250,250,255
    250 D = D-0.1
        GO TO 260
    25 DP1PH=DP1PH*1.1
C
C RESTORE FOIL INCIDENCE ANGLE INCREMENTS TO THEIR ORIGINAL VALUES.
    260 DELTNF-0.5
        HY-02920
        DELTNR=0.5 HY-02930
            GO TO 115
C
C WRITE HULL DESCRIPTION OUTPUT.
    265 WRITE (6,277) NPAGE
            W RIT E (6,10)DATAID
            WRITE (6,295) UlSK,P2K
            NRITE (6,275) CG1LT,A3BD,D2T,CG1VB,A3SHD,XL1T,D,A3TAD,HIF
            WRITE (6,276) B1A,A3OD,H1FA,XLIKW,A3DDA,D1KT,XL1CW
            WRITE (6,300)
                    B1A,A3OD,H1FA,XLIKW,A3DDA,D1KT,XLICW
            W RITE (6,280) D2F,D2N,D2V,D2FA,D2NA,D2VA,XLILT,XL1LTA,RITCM,R1TCS,HY-03030
```



```
            1 RILDN,RITCV,RITCMA,RITCSA,RILDNA;RITCVA,XLICM,XLICS,XLIN,XLIV, HY-03040
            2 ~ X L I C M A , X L I C S A , X L I N A , X L I V A ~
            WRITE 16,301)
            WRITE (6,305)CIDFP,C1DS,CIDNP,C1DVP,CIDFPA,CIDSA,C1ONPA,CIDVPA,
            1 QC1OFR,DLICF2,DL1CF2,DL1CF2,DL1CF2,DL1CF2,DL1CF2,DL1CF2,DL1CF2
            WRITE (6,315) CIDI,CIDIA,CIDIP,CIDIPA
            WRITE (6,325) C1DW,C1DSP,C1OWA,C1DSPA,C1D,C1DA
            WRITE (6,330) AlP,AlPS,AlWSN,AlPV,AlPA,AlPSA,AIWSNA,AIPVA,AIWSS,
            1 AIWSSA
            WRITE (6,335) DG1,DG1S,OGIN,DG1V,OGIA,DG1SA,OGINA,DGIVA,DGISP,
            1 DGISPA
            WRITE(6,340) DGIAIR,XLFIK,OGISPH,XLFIKA,DG1FRH,DP1PH,OG1PH,OOLT,
            1 DP1P
            =NPAGE + 1
            XJOB =XJOB + 1.0
            IF(XJOBS - XJOB)1, 20,2 0
C
C ALL OF THE OUTPUT FORMAT STATEMENTS. HY-03210
    275. FORMAT / / 2X15HLCGFROM TRANS=F5.1,3HFT 3X14HDEADRISE ANG.=F5.1,4HD H Y-0 3220
        1EG4X12HT BELOW KEEL F5.1,3HFT/2X15HVCGFROM KEEL=F5.1,3HFT 3X14HHY-03230
        2SHAFT ANGLE =F5.1,4H DEG4X12HT FWD TRANS.F5.1,3H FT/2X15HCG ABOVEHY-03240
        3 FWL =F5.1,3HFT3X14HTRIMANGLE =F5.1,4HDEG4XL2HFDRAFT FWD. HY-03250
        4F5.1,3H FT)
                            HY-03260
    276 FORMAT (2X15HMEANBEAM =F5. 1,3H FT3X14HCONT DEFL FWD=F5,1,4H DEHY-03270
        1G4X12HF DRAFT AFT.F5.1,3HFT/2X15HWETTEDKEEL =F5.1, 3H FT 3X HY-03280
        214HCONT D E F L AFT=F5.1,4HDEG4X12HKD R A F T AFT.F5.1,3HFT/2X15HWETTEHY-03290
        3DCHINE =F5.1,3H FT )
                                    HY-03300
    277 FORMAT I LHI// 20X38HHYDRODYNAMICDESIGN OF HYDROFOIL SHIPS 15X
    HY-03310
        14HPAGE 12,/14X52HNAVSECPROGRAM WDB-061, REF. NAVSHIPS 0900-006-HY-03320
        25390 //1
                            HY-03330
    280 FORMAT(13HL BELOW KEEL 2(F8.1, 8X2F8.1)/13HL FWD TRANS F8. 2, 24XHY-03340
        l F8.2/13H T/C OR L/O 8F8.2,/13HL_REYN. NO 8F8.2//| HY-03350
    295 FORMAT (//17X14HRESULTSFO R V=F5.1,5HKTS,4X2HQ=F7.0,4HP S F I HY-03360
    300 FORMAT /// 25X14HFORWARD ARRAY2OXIOHAFT ARRAY/1 3X2/4X4HFOIL 3X5HSTRHY-03370
        1UT4\times3HPOD 4 X5HV-FIN) )
                                    HY-03380
    301 FORMAT(13H TYPE OF DRAG 8(3X5HCOEFF)/) HY-03390
    305 FORMAT (8HPROFILE5X8F8.5/13HFRICTION (2)8F8.5/13HROUGHNESS(2) HY-03400
        1 8F8.5)
    3 15 FORMAT(8HINDUCED5XF8.5,24XF8.5/10HD PROFILE3XF8.5,24XF8.5) HY-03420
```

 A-6
    ```
325 FORMAT(14HWAVE OR SPRAYF7.5,F8.5,16X2F8.5/1)NTOTAL COEEF F8.5, HY-034,0
    1-24XF8.5) HY-03440
330 FORMAT(/13H'AREA.PROFILE 8F8.2/11H AREA-SPRAY10XF8.2,24XF8.2) HY-03450
335 FORMAT(/1 3HDRAG-ELEMENT 8F8.1/17HDRAG.STRUT SPRAY4XF8.1, 24XF8.1)HY-03460
340 FORMATI//14HHULL AIR DRAG7XF8.1,16X14HFWD FOILLIFT F10,1/ HY-03470
    1 16H HULL SPRAY. DRAG 5X F8.1,16X14HAFT FOIL LIFT F10.1/20H HULL FRHY-03480
    2ICTIONDRAG F9.1,20X9HHULLLIFT Fll.1/2OH HULL PRESSURE DRAG HY-03490
    3 F9.1//20HTOTALS * DRAG,LBS F9.1,9(2H*)2X9HLIFT,LBS F1l.l) HY-03500
10,0 STOP'
END

\section*{A-7}

A-8


\[
A-10
\]
```

SIBFTCHY-020 HY-0 0
SUBROUTINE INTERP (X,NO, Z,Y,VALUE)
HY-0 10
HY-0 20
HY - O 30
C LINEAR GRAPHICAL INTERPOLATION.
C
C HYDROFOIL SHIP LONGITUOINAL STATIC, TRIM LOAD PROGRAM
C CASDAC 231011-MCSANAVSHIPS DOC NO 0900-006-5390 JULY 1968
C WB BAUMAN NAVSEC6114C
C HY-0 C3O
DIMENSION Y(16),L(16)
NL-NO-1
D O 2 I=1,NL
IF(X-Z(I+1)) 1,1,2
1 DX=(X-Z(I))/(Z(I+1)-Z(I))
VALUE=Y(I)+(Y(I+I)-Y(I))*OX
RETURN
2 CONTINUE
VALUE=Y(NO) + (X-Z(NO))*(Y(NO)-Y(NL))/(Z(NO)-Z(NL))
3 RETURN
HY-0 40
HY-0 50
HY-0}6
HY-0}7
HY-0}8
HY-0}9
HY-0 100
HY-0}11
HY-0 120
HY-D 130
END HY-0 140

```



\section*{\(B-2\)}


\section*{\(B-3\)}




PAGE 1/5



\section*{EQUATION 2.1}

EQUATIONS 3.1, 3.383 .4

HAVE "NTRYS" ITERATIONS BEEN PERFORMED



\section*{SUBROUTINE PHULL}

HYDRODYNAMIC ASPECTS OF PRISMATIC PLANING HULLS


PAGE \(1 / 2\)
\[
\text { c. } 6
\]


PAGE 2/2
c- 7

\section*{FUNCTION GIDSF}

SCHOENHERR SKIN FRICTION DRAG COEFFICIENT \(C_{D_{i}}\).


PAGE

\section*{SUBROUTINE INTERP}

LINEAR GRAPHICAL INTERPOLATION


Vitain'…
Security Classification
onem

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{KEY WORDS} & \multicolumn{2}{|c|}{LINk A} & \multicolumn{2}{|c|}{LINK \({ }^{\text {a }}\)} & \multicolumn{2}{|c|}{Link C} \\
\hline & ROLE & WT & ROLE & \({ }^{W}{ }^{\text {T }}\) & ROLE & \({ }^{*}\) T \\
\hline \begin{tabular}{l}
(a. 32NTM \\
HYDROFOIL SHIPS \\
SHIP DESIGN \\
NAVAL ARCHITECTURE \\
COMPUTER PROGRAM \\
COMPUTER-AIDED'SHIP \\
DESIGN
\end{tabular} & & & & & & \\
\hline
\end{tabular}

\section*{ISNSTRECCITIONS}
1. ORIGINATING ACTIVITY: Enter the \(" * m e\) and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appmpriate security regulations.
26. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial \(M\) anual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Groúp 4 as authorized.
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
4. DESCRIPTIVE NOTES If appropriate, enter the type of report, e.g., interim, progress, summary. annual, or final. Give the inclusive dates when a specific reporting period is covered.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last "*me, first name, middle initial, If military, show rank and branch of service. The name of the principal author is an ahsolute minimum requirement.
6. REPORT DATE: Enter the date of the report as day. month, year; or month, year. If more than one date appears on the report. use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information
76. NUMBER OF REFERENCES Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written
\(8 b, 8 c, \& 8 d\). PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, 'task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
9b, OTHER REF'ORT NUMBER(S): If the report has bee" assigned any other report numbers (either by the originator assigned any other report numbers (either b
or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those
imposed by security classification. using standard statements /such as:
(1) "Qualified requesters may obtain copies of this report from DDC"
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U, S. military agencies may obtain copies of this report directly from DDC Other qualified users shall request through
(5) "All distribution of this report is controlled Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if know".
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the "*me of the departmental project office or laboratory sponsoring (pay ing for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shal be attached.

It is highly desirable that the abstract of classified report be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms 14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade "**me, milital project code name, geographic location. may be used as key words but will be followed by \(a^{\prime \prime}\) indication of technical context. The assignment of links, rales, and weights is optional.```

