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LIST OF SYMBOLS

Span of the rear foil

Lift Coefficient L/(3pV°c¢c) in two dimension
L/(pV¥es) in three dimension

dydrofolil chord

Depth of foll below undisturbed free surface
Acceleration of gre-ivy

Imaginary parc of
=g/l\rz
Strength of source per unit length of span

Nondimensional strength of scurce

Strerngth of doublet
Real part of

Semi-apan of front foil
Veloclty at Infinity

Reccangular carteslan coordinate given 8s in
Figure 1

Angles defined by Equation [151

Nondimer.sional downwash
Fictitious friectional force

¥ coordinate of the location of sink related
to the length of cavity

Total veloclty potential

Velocity potent a2l due to vortex and source
respectively, ‘
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INTRODUCTION

Two problems which have become lmportant due to the de-
veiopment of supercavitating hydrofoil boats are consldered., One
1s the form of the cavity produced by a hydrofoll under the free
surface; the other is *he flow field dues toc the cavitating hydro-
Tfoil under the free surface. These problems are so closely re-
lated that they can hardly be separated. However, the former
problem has been dealt with, In the linearlized version, for the
case of zero cavitation number and infinite Froude number
(ﬁuslaender, 1962). For the case of finite cavity (non-zero
cavitation number), and infinite Froude number, a point drag
cavity model has been used to calculate the approximate size of
the cavity. Also the approximate three dimensional effect has
been discussed (Yim, 1962). The latter problem, without the
cavity, has been studied by Wu (1954) Maruo (1953), Nishiyams
(1957}, Knplaﬁ, Breslin, and Jacobs (1960), and many others.

Even without the cavlty, this problemr is such an immensely dif-
ficult one that it has never been fully investigated. The pro-
blem is much more diffieult with the cavity. Because of this
the problems have been treated separately.

It is well known that a body in a uniform fluid flow can be
represented by a dlstribution of singularities such as vortices
and sources. When there exists a free surface, singularity distri-
butions suitable for the infinite fluid case must be corrected to
take this into account

In-this pepert, attention 1s especially pald to the downwash
far downstream of the“;avitated hydrofoil. This result should be
¢f use in the estimatlion of the influence of the forward foll on

-

T 3o 7

the rear foll of the hydrofoil craft,.
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" S8ince the point where the downwash is calculated is far from
the cavitated hydrofoll, the effect of the detalled shape of the
hydrofoil is small. Therefore, for the sake of simplicity, the
cavitated hydrcfoil.under the free surface is assumed to have the
form of a simple model made of a vortex line and a uniferm source
plus a line sink. Due to the linearity of the potential, the
downwash due to the vortex and due to the source?ﬁay be dealt
with separately.Nng?@wﬁhmvﬂuwnwgshMﬁue to vortex, the recommended
expression by Kaplaﬁjngﬁﬁrﬁﬂnggg%i?ccbs (1960) is used. For the

downwash due to the source distributiony..yhe problems are formu-

R I
-

lated for the cases of both two and three dimensiens Z#Numerical
et 41 21 TS T I OMpUTEr Tt HYDROSAUDI GS,
~;@£nmpana$eéifnr tne downwash at varioun downstream and spanwise

computations made; oa=Thé-

positions at tne same depth as the nydrofoll, and coverling a iarge

range of Froude numbers, are given in the form of curves.,{ ;

~

FURMULATTON OF PROBLEM AN

A coordlirate system ls fixed with respect Lo a hydrofoil
which is moving with constant forward velocity V, so that the flow
picture would appear tc be stationary with a2 uniform free stream
veloecity V approaching the hydrofcil. The origin of the right
handed rectangular ccordirate systen O-xy~ is located on the mean
free surface, the x axis is directed along the free stream,
and the z axis 1s positive upward (See Figure 1). The liquid
medium i8 assumed to be inviscid, incompressible, and homogeneous
80 that the condition of irrotationallity and continulty implies

the exls.ence of the velocity potential ¢ which satisfles
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v%¢ = O (1]

The bcundary condition on the free surface 1is

9.9 g¢ L. [
2 o Kodz tha T - e

on z = 0, where ko = g/Vz, g denotling the acceleration of gravity

and p & flectitious frictional force (Lamb, 1945). At infinity

[ ]
LAY
[ YO 4

v = O

Suppose the cavitated hydrofoll is represented by a distri-
bution of vorticity, and sources. Then, the linearity of the
governing equation and the boundary condlitions for ¢ allows us
to write

. ¢ + ¢ 3!

where ¢ 18 the ve'oecity potential Aue to the vorticity distri-
i

bution and @2 due to the source distribution.

S1-ce the aft part of the cavity is known to be approximately
similar vo an ellipsoid (Tulin 1953; ¥im, 1352) we may consider
the cavitated foil at the depth h, in its simplest form, to be
represented by singularities on z = ~h as follows. A vortcex
line, representing the 1lift due to the foll is iocated along the

span at one quarter chord from the leading edge. Representing
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the cavity, 1s a uniform source distribution with strength,<gg
‘per unit ares extending over the hydfofoil; that 1is,

(0 € x<e)and (s £y <s). 1In addition a sink line is located
at x = £ along the spar (s € y £ s8). 1t must have the same

magnitude of strength Mb per unit span as the toral source

strength along the chord for a uni.lt span to satisfy the closure
requirement for the cavity

We first determine ¢ for the cases of two dimensions and
a

three dimensions separately.

DOWNWASH DUE TO SOURCE DISTRIBUTION

TWO DIMENSiONAL CASE

Since it IS more convenient to deal with a doublet distri-
bution in this case we represent the body by doublets, The

doublet distribution n equlivalent to the source distribution
mentioned above 4s

Mox
N = =2 e for 0O €£ x £ ¢
(5]
N = - EMO for e £ x £ ¢

BRefore determining the downwasn al. (x,-f) due to this doublet dis-
tribution, we first Investigate the downwash due to a single point
doublet,

In an infinlte medium, the potential due to a polat doubiet
of strength N is
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N(x-€) .
(2-£)% + (z+1)

@2(x;z) =

If we use the integral representation for this (Bateman, 1954)

¢2(x,z) = Imj['N exp(-k(z+f) + 1k(x-£)ldk z+ >0
°
To obtain the potential which IS produced by a point doublet

under the free surface where the boundary condition (2)

3%¢ d¢ 3 ‘
+ K zg + W 525- = 0 on z = 0

ax®?

holds, we put

¢a = I?jr?F exp(kz + 1kx) + N exp(-k(z+f) + ik(x-£)}]dk [6]

o

which certainly satisfies the Laplace equation,

Substituting Equation [6] into [2] we obtain

oy
Iéijk [k«ko~1u + N(k+kg~1u) exp(~kf-1ké)} exp(ikx) dk = O

O

for any x. Hence we may Write
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—N(k+k0~iu)

o . - s
F k-ko*iu exp(-kf-1ke)

Henre

o0

k+k0 1w
¢ =1m| Nlexp(-k(f+z) + 1k(x-£))- KX T exp({-k(f-z) + ik(x*i)}dk
0

— N ) L (X"g) ‘ _ X“ﬁ
| (z4£)2 + (x-£)° (z-£)% + (x-€)?

dk

© 2K exp{k(z-f) + 1k(x-£)]
-~ Im : ‘ :
k-komip
o)

The downwash due to she point doublet is

0, bq< -2(zef)(x-£) . ___2(z-£)(x-¢)
((24£)° + (x-€)%)%  {(z-1)® + (x-£)7)*

('QR k  explk(z-f) + 1k(x-£))
- Im r: T
OJ

dk [7]



By substition of Equation [5] in the above Eguation [7],
the downwash due to a given doublet distribation [5] 1is obtained

as follows,

36 oM [ © } | k( -1 )+ik(x-£),
6w2 - CO{—[ + Qi(X~§1€ dg + kmi[ ( yor: -iu dkdﬁ
- o [(z41)? 4 (x-€)7)° 0
€o Eo o K(z-f)+ik(x-€)
&r(x- )d; axkoe ¢
+ c!' + Im [ R Tin -dkdgi
¢ lz+f)®+(x-€)7)° &’ & fe
My o g . 2f ¢
¢ ) o ;
¢ e (ke B0 4 (x-g
o0 7 - - " o -2k - ,‘ -
g k(z-f)+1k(x-€) 12k _ce kE+ik(x-€_)
-l f P dkdE + Im aic]
S &k n,,) Kk - |
o o o

Carrylng out tne contour integration similar to that indicated 1n
Appendix I,

3¢ 2M

G - K- 2f ¢

an  =w o+
ZLF’E -+ X - 2
(x E,)

H
o
m
S

~ £

024(31_ 4
- 4 eomk e“fkof sin k_(x-€ )
O O o

4 - - - Y
+ b7 exp( akof)(cos ko(x c)-cos k %)

? zexp{hm(x—gg}gjkoccs amf4+msin2mf e

- ' ~ +

J me 4 ka

o)

f” ¢ oexp Pm(x~g)chos 2mf+msinmfﬁc

f 0] x&de {8]
od o m® + k 2

0
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The last two integrals on the right hand side of the above
equation represent local disturbances which die down rapidly with
increasing dlstance x downstream and become negligible at values
of x of interest. Hence they may be neglected In the present In-
vestigation. Values of downwash obtained from the resulting
equation are shown plotted along with the three dimensional case
in Figures 4 - Q.

THREE DIMENSIONAL CASE

in a manner similar to that; used In two dimensional case the
velocity potential due to a given source distribution can be ob-
tained.

In an infinite medium, the potential ¢ due to a scurce
2

distribution M(a) per unit area is

o zj’ M(a) da
2B T {ixE)® + (y-1)° + (z-1)%)

a
ks o3
= é; jﬁ’[M{a) exp({ikw-k(f-z)) dkdeda
a -1 ¢

where f-z 2 0, w = (x-£)ecos € + (y-n)sin 8 and da reprecents
a surface element of the basic plane 2z = ~f and the real part of

the integral representation 1s taken.

As in the two dimensional ecase, from the boundary condition
(2) on the free surface x = O, the veloclty potestis] moy te

written as
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¢ = - VK + 0 + O
2 21 k2

T o
= - VX + é%rJ[:jrq/rm(a)[exp[ikw~k(f+z)}
a -r o :

Ekosecee exp{ikw-(f~z)]
-~exp{ikw-k(f-2)]}- ‘ f}dkd@da
k-ko sec®6 - iusecH

[9]
for f + z 20and f - 2z 2 0.

Now 1f M{a) is taken for our model as

M A
Mz{-per unit area 1IN0 < x < ¢
-8 £y £ 8
) [10]
M= Mo per unit length on X = go
-8 £y £8
/

Then, the downwash at the point (x,0,-f) may be written as
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=]l

3 C
. -8
/ 2f ((x-£)% + 1 4+ 4£%) dedn

oY,
(oY)
&
Nin
it
=
——

4
c

p -

-3 0

8 ¢ T

' wan?
M [ [ kk _sec®6 exp (1kw_~2kf) |
- — dkdodtdn
cn J

k-koseeae-iu sec 6

-8 O -T O

s
-2
+ M J[' of(x-¢ )® + n° + 4f%) dn
1

-3

5 T
M kkosecza exp(ikw -2kf)
4+ — = dkdedn
)
o

k-k secaewiu sec 6
-5 -T O

where

Wy = (x-€) cos 6=-7 sin 6

w = (x-£ ) cos 6-7m sin 6
1 1

[11]

All the orders of integrations can be changed here althcugh they

look quite different because of the conmplicated singularity

(See Appendix II1).

As 1n the two dimensional case the 2nd and the 4th integral

can be simplified by the use of the contour integration (See

Appendix 1) 1.e.,



[12]

/2
I = —E}ilﬁkcsecee escf exp(~2fkcsec29)cos[(xﬁgl)cosa~s Bin@]kosecgs<

..;;;;-/2

8 7!‘/2

+ Bwjf;/. koesec*e exp(~2fkose026)sin{(x~§ )cose~qsin6}kosee2@}d :
' 1

i
z " %
g 1;é-t¢ 0 | ;
[ exp[~-(x-€ )mcos6+nmsind] |

+ 4 = mkaseaﬂe[kaﬁecaecos(sz)

- ) kz sec*o + n ‘

o ~ma-{, .
+ m sin(émr)] dmdédn [12.1]

where ( = Arctan {n/(x~&l)}

For the change of the order of Integration in the 2nd term for

example, Figure 3 should be noted. The domain of the integration
i s the shaded area in the figure. Thus,




HYDRONAUTICS, Incorporated

T/2
I = -16fjfkosec2coseca exp(-?fkcsecze)sin{x~g )kosecéﬂsih{skosine sec®0]
‘ 1 :
o
T/2
+ 8w/fkose029 cosec§ exp(-2fk_sec®0)cos(k,(x-€ )sec6 —sKosinEBSecze}-ll de
e
it
Pa-{ w
1 oexp{-(x-¢ )mcosfd + mmsing }
+ 4 2 kosecea{kbseceécos(2mf)+msin(2mf)}dmd8
' (k ®sec*s + m®)sin @
- o= ©
X
T."/Q o0

f kbseczé{kosecge cos(2mf) + msin(2mf)]}

b
(W8]
s

dmdé

"

+ 8 fﬂ
J sinb (k®sec*s + n?)

O O

..']rr/?‘, - C"l :

where
¢ = Arctan (s/(x-£ )]

1

-

-8“[—
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However, since

o0
. 7 exp(-2fk sec®0)
cos (2mf ) dm = o)
k* sec®s + m 2 k_sec?6
o o o
o0
,[‘ 2 Sinfemf) ~ dn = g- exp(-2fk sec®9) (See Bateman, 1954)
o ko sec’ 0 + m
m/2

I = -16fjrgosecaé cosec 6 exp(~2fkose029)sin[(x~ﬁ )kosece} sin[skosinéiseczel
1

Q L)

/2

T
+ Sw'['koseCEB cosecé?exp(nszcsecgé) cos{ko(x~€ )sec 6 -8k sin® sec®8}do
1

e

" expl-{x-£ )m cos @+sm sin 8]
1

k sec®6(k_sec®fcos(2mf )+msin(2mf)}dmde
(kozsec*é + m°) sin 6 © ©

[14]

Hence, for the distribution of singularities given by Equation [10], the
downwash at (x,0-f) 1is -



w1k

T z

2 Mo { o X8 (x-¢)s
3z = "o - Arctan ' + Arctan-—— —
” ‘ 200 (x® 482 +4£7) 2 (x=-c)®+5%+41%)
M fs
o

4

(-8, )% HEENT(x- )%+ 8% 4 §r?)

/2

, . e 2 . 2 : 2ns ey
-16 MOJ[;xp(«Ekcfsec G)sin(kgs 8in @ sec 9)(&86& Bbln(ko(x %)se

secf
¢

£

[ooa{(x»c)kosea 8} - ocs(xkasecf9jt>cosec8d6

/2

+ 8M?jrkéseceecosece exp(«zkofsecze)cos{kosecee{(x~§9cos€-ssin

W/9~Cl

/2
8M

+ =2 exp(nzkofseca)sececosecé?{sin{kcsecze[(x~c)cose~s 8in 6}

c

ﬂyk-ﬁo
R 8in[k_sec®6(x cos @-s sin B)]> de

T/2-¢

o
8M

o+ “33 exp(—zkofsecae)sec@cosecﬂﬂinﬂkbsecaeﬂx—c)cos@—s sind} ldt

T/ 2~
2 [15]
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where

= Arctanls/(x-c)]

]

o = Arctan{s/x),t = Arctan{s/(x~-¢£ )] and ¢
i 1 1

(159

ard the local effect given by the last term of Equation [14],
which dies down raplidly when x is large is neglected,

In Egquation [15] the ilntegrands of all the integrals are
cecillating functions whose frequencies become faster and ampll-
tudes smaller for increasing 6. Furthermore, because of the
factor cosec 6 exp(~3kof sec®0), the major contribution to the

integral occurs near 6 = O, when %, or x-£ 1s larger than s
1

- Arctar {s/(xngl)}> %-,

nal+

Hence, the last three Integrals In Equaticn [15] may well be
K — M -
neglected . :

For computation, the variable of integration is changed by

tan 6 =t

sec®s = t% + 1 48 = dv [16]

t2+1

Then the first integral of Equation [15] becomes,



i%ﬁ{}Nﬁ UTIG 8 3 . Inﬁﬁ}},’“ pavah ed st s s

=16
| - R sin{kasuf(tau)} . - .
16M0fexp{~2kof‘(t +1M T <k0(t +1)sin{ka(xmgl N{t¥+1)])
O

- fi”tzg“l"l{cd85CX“G)kGI(t2+ 1)) - cos (xkgl(t%+1) 1Dt [17)

If 'y # 0, considering y-n instead of -n in Equations [12] and [12.1]
(also see Appendix I), we can write the terms corresponding to the
first four terms in Equation [15]

3% M ;
ggﬁsa - [?gﬁ{Arctan xt - Arctan (x-c)t
T T2l (xPetPale®) 2o [ (x-c )5 +tF+4%)
t=y+8

EMoft |
et AN (x-€ )P +tR44e?) }
- _ 1 * t=y-s

m/a

sin(k s sirfsec®o)
-16M exp{~2k¢fsec26} -

3in @

{ik sec®0sinlk (x-¢)seco)
Q o 3

sect ’
S [eos{{ c)koa c6}~cas(xkosec6)]<;cos(k0ysiﬂesecaé)ds

-—

[18]
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The average of the downwash over a near tandem [{oll of the zame

gpan as the Porward foll is glven spproximately by

s
] At M, .
ol e (-4t (x®+ 4%+ 4r% ) 400 (x%+ 412))
s a < e f 02 -
- ,.JS\J‘; + lffz )
oM - i |
4 , - (260 (x~t Y24+ugZ4+40% ) ot [ (x-8 )2+417)
2a( (x-& )+ 4£%) : | :
o1
‘!T/z
16M {cos{zk s sinfsec®6)-1
O o = O
+ 5o exp(~2%gisec )
- L k_sin®@sec?0
5 o

T . L
x lk_sec 6sin(k (x-¢ )secs)

sech
c

.

~[cas[(x~c)koseeé};cos(xkcsece)]>>d@ - [19]

where the first two terms in Equation [18] are approximated by the
first order terms of their Taylor's expansion. By the change of

varlable given by Equation [16], the last integral of Equation [19]
becomes
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w18
) ﬁ
16M, 9
T &xp{wgkgf{1+tg)} {cas{gkgsﬁf11+ta)}~l}
’ koz2(1@32}
8]

x Lk, (1+t2 )sin(;cg(xugl N (1+t2))

- {légﬁmls{ces{(xua)kdffl+t2)3»e0ﬁ£Xk§ffi+t2}}3:> dt

The numerical computation 1is performed for each full cycle of

the integrand untll the magnitude of the integral for the cycle be-
comes very smiall. All the integrals are added. These computations

were carried out on the IBM 1620 digital computer at HYDRONAUTICS,
incorporated.

By ncndimensionalizing ¢ =,%§- s and M
- 1
~plotted in Figures b1k,

_f | LIFTING CASE
" DOWNWASH DUE TO VORTEX LINE

In two dimensions the downwash at point (x,z) due to a 1lifting
,11ne located at (0,f) is [Kaplan, Breslin and Jacobs, 1960]

- k (z-r)
(f = zz [ . 1 PR — ] + k ce © cosk X
L x%+(z+r)* x2+(z-1)°

when we neglect the local effect.

= 2M_/(Ve) the quantity %
Q/MX at the points (X,y,-f) and that averaged over the rear foll are |

RO e e



HYDRONAUTICS, Incorporated

In three dimenslons, we adopt Kaplan's recommended expression for the down-
wash at (x,z) due to 1lifting line from (0,-b,-f) to (0,b-f) with an elliptical

distribvution of circulation, averaged over the span of the rear foil 2b,

. b-{{(f+2)% + s%-p® 1%+ 4(f+z)3b sin B;>“ — {1 - (f-z)/s .
C Tha 1%
L [ iﬁwﬂl-J

T

he o kﬁ(z”')cP“F sech

- — 5 8 6 : seo .
o 1n26J (io ec®Osin )sin(ﬁ bsec GsinQ)coa(k x secd)do =

where J 1s the Bessel functlon of order 1 and,
1

& 2 2
-7 8% -b

[((f+z)2+32»b2}+ G £z )2p2

The downwash due to 1ifting folls 1z plotted in Figures 1%-17 for various
depths and aspect ratios, The span of the rear foll 15 the same as that of the

front foil for all cases chown.
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DISCUSSICN

The downwash due t§ the source distribution or the cavity
depends on many paraﬁete g; Froude number, the points of interest,
the size of the cavity, the depth of submergence of the foll, and
the length of the span. Figures 4 - 10 show the downwash on the
centerline y = 0. In Figure 9 the oscillatory nature of the
downwash along the centerline with distance downstream far Froude
numbers 2-5 is shown for the case f/c = 1, El = 2, and aspect
ratio = 6. As 1s well known, the wave length 1s approximately

proportional to the square of the Froude number . . PFor large
Vgt
Froude numbers (> 10 ) the magnltude of the downwash 1s small for

the parameter ranges x/c 2 15 and 2 € £ < 8 which are considered
. 1

in this report (Flgure 4-6),

In the medium Froude number range (1 < F, S 43 the variation
of the downwash 1s very large for the same range of parameters
considered., The effect of depth is not only in decreasing the
Proude number far the same speed, but also in the decrease of the
magrnitude of downwash for the same Froude number, Although the
cagse of small Froude number {less than 2) is not calculated here,
it is easy 10 see that the downwash will be small for Fr < 1 be-
cause of the factor exp(~2fkosecae) in the integrand of Fguation
[18}. This implies also that at large depths of submergence the
downwash becomes small. OF course as we approach infinite depth,

the 1imiting value of the downwash approaches zero for our model
of source distributions located at the same depth as the foil.
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‘bewever, increasing the depth while holding the speed constant

 ﬁmay cause the Froude number to pass through a range such as to
produce 1lncreasing downwash before 1%t beglins to approach to zero
due to large depth. Since the Toil is operating with a cavity
the Froude number M may be expected to be gquice large., Alsc, 1t
is true that large Froude numbers produce large cavitles., There-

" fore, although the nondimensional downwash ¢/M for a large
. - i

Froude number 1s small, the magnitude of e may be large since

‘M Increases with the size of cavity. ™M c¢an be estimated ap-
1 1

proximately from the size of the point drag cavity model (Vim 1952)
and for the case of small cavitation number (Auslaender, April 19062).
| The effect of span is shown in Figures 8 and i1u., In Figure 8,
the smooth variation of the downwash from aspect ratio 4 to = can
greadiiy be seen. Since in each case in Figures«4*7 ( AR = 6) the
’cgrfespanéing two dimensional case (AR = «) is shown, Figure &
ﬂméy be of help in the estimatlon of the downwash for different
~agpect ratio for the parametérs of Figures 4-7. In Figure 10,

ﬁihe variation of the downwash along the épanwise direction fob
‘many PFroude numbers is shown. As the Froude number is increased
the spénwise variation becomes smallier.

| Figures 11-14 show the downwash averaged along a rear foil
which has the same span as the front foll. The downwash variations
are not very different from those along the centerline.

Figures 15-17 show the downwash due to the vortex line, The
parameters OF interest are taken exactly the same as for the case
of the source distribution. The significant difference from %he
case of the source distribution is that the downwash becomes large
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when the Froude number becomes large for the three dimensional
case, The variation of downwash for AR = 4 to AR = « folls is
shown for each Froude number in Figure. 17.

The following relations lead to an order of magnitude

relation between C, and M for practical hydrofoils. It can be
1

- wWriltten approximately that

where a = ~§% , the slope of cavity,also

T
C /823

* ' where & is the angle of attack, iIn two dimensions under & free
_»y surface and zero cavitation number. Therefore, 1f a i s about
;wi7five times as large as 6, the graphs of downwash due to both the
;géuree and the vortex in this report; could be read with the same
scale.
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APPENDIX T
(o kK sec®6 exp(ikw - 2kf)
= I £ L dkdoan
J k-k sec®s - iusecd
<5 -m 0
w = (x-¢ )cos 8 -1 sin 6
1 1

i

A cos(9+§0)

1In order for the integration with respect to k to be performed, at
?éﬁoujd be paid to figures of cos(6+{) and cos 8, since the contours of
;gration are different depending on the sign of w as shown 1in Plgure 2,
ithe signs of cos(@+§ ) and cos & are opposite the contributiov from the

ygsidue at the singularity

k = ka sec®o + in sec O

1s null because the singularlity 1s outside of the contour.
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APPENDIX I

ST |
r ¢ Kk sec®8 exp(ikw - 2kf)
. ; 1) 1i wt,
I = ; ‘ dkdfdn
| j , k-k  sec®s - ipsecd
5 -

a2

w = (x-£ ) cos 8 -7 gin 9
1 1

= A cos(é+§0)

In order for the integration with respect to k to be performed, attention

should be paid to figures of cos(6+f) and cos 6, since the contours of inte-

gration are different depending on the sign of wl as shown 1IN Figure 2. When

the signs of cos(0+f ) and cos 6 are opposite the contribution from the
ha
residue at the singularity

K = ko sec®o + iu sec 6

i1s null because the singularity ig outside of the contour.

...ga..
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5 | _
- J[ﬂ - j[’}kisec*eexp{ikosecQG{(x~gl)cos@—nsine}~2ﬂkosec26]dmd9dn

=
fi
N .
RO
=
ke
(rrsm—

B o -T/2 -7 T/2
I s m/a-t
B mk sec B(R sec?6+1im)
Kf + /— exp[ -m{ (x~¢ )cosf-nsind}-2imf]dmdodny
; Jf‘ sec*& + m? 1 |
~7r/2
5 ?f‘/a
J[' J/' mkoseeaé(kusec26~im)
+ ' exp! -m{ (x-¢ )cosf-nsind)+2imf]dmdody
'j kﬁsec*& + mF : '

o ~1r/2 Qo °©

where

Hence,
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8 7*/2"&

2fk sec?
I = J( J Pm sec*d e Pk see Gsin{{(x*g )cos@-nsin@}kosecze]de
1

O -—?!”/zf

B 77'/2*—( o

kaS&CEG
+ Lj[hjr exp!-m{ (x-£ )cosf-nsimné} [ROSECEQCOS(me)
X

E

J m +K23ee*9
o -m/2- f

+ m sin (2mf))}dmd6dn

-gg_



APPENDIX II

The change of the order of integrations of the integral (13) with respect

to n and the other variables may be written as follows.

T O w B .
{ kk sec®s exp(-k{1i{(x~¢ )cosf-nsind)-2r]
= | _ 0 2 Gndkdd
| k~kgsec26~ipsece

-T O -8
Rk sec 26 exp(-k[1{(x- g Jeos6-5 sinf}-2f] ro
- ©xdo, T
‘ sin@(kmkosec f-iusect )
By the result of Appendix I,
/‘f/é“
I = w8w/r nec?d exp(-2 secaﬁ)ﬁin{{(x~g Jeos8-s sin@}kosec263d9
. 1
--?r/z,
T/2-t ©

root kwﬁeceéexpE«m{(X»g Jeosf-s siné]]
w4 | & ' {kosecaecos(emr)+msin(2mf)}dmd6

(kisec*@ + m° )siné
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DT -

where

¢ = Arctan [s/(x-¢ )]
1 1

From this, exactly the same result as Equation [14] ean be
easily obtained. The other cases of changing the order of
integratians can also be easlly shown to be valid,.
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