Alvinced 2.1. 1 Can Dark DTNSPDC, clds. 19. A223 Bethesda, Maryland 20084

HYDRODYNAMIC NOTE A3-25 DERIVATION OF AND INTRODUCTION TO FLAP LIFT CAVITATION EQUATIONS AND CAVITATION BUCKETS

> by J. R. Green H. R. Wright 10 August 1976

TABLE OF CONTENTS

Sumary	1
Introduction	2
Conclusions	4
Discussion	
PART I: Basic Theory and Derivation of Equations	5
. PART II: Reference Life Coefficients	20
PART III: Construction of the Cavitation Buckets	24
PARF IV: Optimization Considerations	33
APPENDIX I: Sources of Error in ^C LO	35
APPENDIX IT: Alternate Method of Foil Cavitation Bucket Construction	38
APPENDIX III: Verification of Foil Cavitation Bucket Program	41
APPENDIX IV: Definition of Cl ieff	43
References	46
Symbol s	47
Table I: Cavitation Parameters, AG(EH) Forward Foil	49
Calculation Table II	50
Table III: Results of Foil Cavitation Bucket Equation	51
Calculation Table IV	52
Calculation Table V	53
Calculation Table VT	54

LIST OF FIGURES

•

Fi gure	1:	I?lustrative E xample of Section Cavitation Bucket	9
Fi gure	2:	Definition of q'	11
Figure	3:	Illustrative Example of Foil Cavitation Bucket	15
Figure	4:	Foil Cavitation Bucket, AG(EH) Forward Foil, Incidence LUCT	19
Figure	5:	Flap Basic Load Distribution	25
Figure	6:	Section Cavitation Bucket, AG(EH) Forward Foil, Flap Lift	26
Figure	7:	Foll Cavitation Bucket, AR(EH) Forward Foil, Flap Lift	28
Fi gure	8:	Relationship Between Flap Lift, Incidence Lift and W/S) _{ref} Curves	31
Fi gure	9:	Flap Cavitation Characteristics	32

The object of this note is to provide an introdu ction to a comprehensive and detailed study Of flap lift which is to follow this note.

A very powerful equation for flap lift cavitation has been derived as a result of all previous flap lift investigations. Up until this report flap control of cavitation was not a state of the art concept. Now that an easy to understand, accurate method of determining cavitation characteristics has been derived futher applications and extensive investigations of flap control are possible at a greatly reduced cost since the need for costly computer time and extensive programs is no longer required.

Through tile use of *known* equations *for* incidence lift and Allen's flap velocity distributions the foil cavitation equation was derived. A check was performed on the resulting bucket by assuming a zero pitch angle **and** trimmed flaps, and comparing it to the curve for zero flap deflection and the curve for incidence lift. Deflection angle equations for the desired lg case have been formulated through the use of "reference terms" which were in themselves derived as a necessity to this note.

INTRODUCTION:

The purpose of this note, first in a series of related notes on flap lift cavitation, is to establish the basis for a detailed and rigorous investigation of the flapped foil for use in hydrofoil designs.

This first note will include the following:

- A review of previous flap lift cavitation work (Hydrodynamic Note AG-5), and incidence lift cavitation advancements (Hydrodynamic Note AG-18). This will establish the basic equations and concepts involved in the final flap lift cavitation equation.
- The derivation of the basic section cavitation bucket for the flap lift case and a presentation of the results in graphical form with a practical example.
- 3. A derivation and illustration of the section cavitation bullet which evolves from the basic foil loading form, w/s. Explanation of all new variables and symbols will be included.
- 4. A step by step discussion of the unique W/S) ref and (W/S)' terms.
- 5. Investigation of cavitation flap deflection angles, (S_{cavitation}).
- Introduction to future flap lift hydrodynamic notes with a brief consideration of optimizing the characteristics of:

- a. Limited Flap Angles
- b. Smooth and Rough Water cavitation Characteristics
- c. Foil Drag
- d. Hinge Moments

Employing the flap lift system to hydrofoil vehicles will expand the realm of hydrofoils in the future. First, larger foils with spans in excess of twenty feet will become possible without the excessively large control system required if only incidence lift control were employed. Second, the problem of cavitation will become slightly reduced by expanding the boundries of the illustrative foil cavitation bucket.

All of the equations have been reduced, and all constants have been selected for application to the AG(EH) forward foil. Application to any other foil may of course be considered.

CONCLUSIONS:

Equations 7 and 14 of this note define the two dimensional section and the three dimensional foil cavitation buckets for the flap lift case. The construction of these buckets allows visualization of how the flaps expand the region of cavitation-free operation, thus allowing performance at reduced speeds and greater foil loadings.

A breakdown of the foil cavitation bucket equation into those terms unique to flaps allows the construction of equations which determine allowable flap deflections for 1g operation, and the first sign of cavitation. With the variation of pitch and incidence angles and the application of the flap deflection equations a complete catalogue of restricting flap angles can be compiled for stability and control purposes. The relationships formulated in this report shall provide a reference and a basis for all flap lift investigations.

DISCUSSION:

PART I: BASIC THEORY AND DERIVATION OF EQUATIONS

In beginning this discussion and evaluation of flap lift and its cavitation characteristics two major assumptions must be made in order to proceed with the derivation of the cavitation bucket.

The first problem considered arises from the fact that the peak values for pitch lift, incidence lift, and flap lift do not occur at the same spanwise locations on the foil. So the first assumption made shall be that the largest $(C_1/C_1)_{max}$ values that occur on each lift coefficient shall be the ones used in the derivation, disregarding their location on the foil. This will assure that the derived cavitation bucket will account for that critical station where the first sign of cavitation begins. Incorporating into the theory the concept of full span flaps the equality $(C_1/C_1)_i = (C_1/C_1)_{\mathcal{S}}$ can be made for simplicity. So for a given foil configuration a total C_1 can be determined, and since a normal to the quarter chord dynamic pressure is known the total section foil loadings, W/S, at the critical span station **can be** determined by the relation:

$C_1 q = w/s$

This directs the theory to a second problem and assumption. If the C_1 's vary along the span, what is the average foil loading on the foil? This is necessary to determine because in investigating a single section at an arbituary spanwise location a transformation to a foil cavitation bucket is not possible unless an average section foil loading can be

determined. No single C_1/C_L ratio will carry the derivation from the section bucket to the foil bucket because the section loading has, as was stated before, three components associated with C_1/C_L ratios. It is the decomposition of the section loading and the reassembly of the average foil loadings which constitute the bulk of the cavitation bucket. At this point a clarification in foil loading terminology should be made. W/S from this point on will denote the foil loading for the three dimensional foil whereas w/s will be the two dimensional section foil loading. The differing factor being C_L and C_1 respectively.

The definition of w/s is:

(1)
$$(w/s)_{\delta} + (w/s)_{i} + (w/s)_{o} + (w/s)_{o} = w/s$$

This relationship can be derived from the terminology just discussed, The only unknown term for flap lift control is $(w/s)_{g}$:

(2)
$$(w/s)_{s} = w/s - (w/s)^{1} - (w/s)_{\infty}$$

The derivation of the section bucket will proceed from this point starting with Equation 37 of reference 1. The most basic local velocity distribution over the section can be written,

(3)
$$\sqrt{S} = v/V + \Delta v/V + (C_1 + C_{laf} - C_{l}) \Delta va/V + C_{lb} (\Delta v/V)_{f}$$

where C_{1b} is basic flap loading and $C_{1af} = C_{1f} - C_{1b}$, and where

(4)
$$C_{1b} = \mathcal{J}(C_1 - C_1')$$

$$C_{1f} = (1 - \mathcal{J})(C_1 - C_1')$$
See Ref. 1 for futher explanation

 $C_1' = (C_1)_i + C_1$. So a general form of Equation 46 of Reference 1 can be written as,

$$\begin{aligned}
\int S &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) \frac{1}{\sqrt{2}} \frac{1$$

This is now a very basic equation in the linear form of y = b + mx. It should be noted that the term C_1' includes both pitch and incidence lift since they are indistinguishable on the section. At this point C_1' will be used for camber and incidence lifts only. Equation 5 becomes,

$$\begin{aligned}
\sqrt{5} &= \sqrt{\sqrt{2}} \stackrel{*}{=} \frac{4\sqrt{2}}{\sqrt{2}} \stackrel{*}{=} \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \stackrel{*}{=} \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \stackrel{*}{=} \frac{1}{\sqrt{2}$$

(7)
$$\sqrt{s} = \gamma^{2} \pm \omega [c_{1}' + (c_{1})_{\alpha}]^{\pm} (\Delta va/V - \omega)c_{1}$$

Note that this is still in the slope intercept form with $C_1 = x$.

Equation 7 is now the equation used to graphically represent the section cavitation bucket. Figure 1 shows a very general section cavitation bucket. It can be seen that the upper area is the allowable and most restricting operating area. A practical application of this representation is seen in the following example.

If a foil <u>section</u> were operating at point A, at a given \sqrt{S} , and at a given $C_1 = L/\frac{1}{2}N^2S$, where the S associated with the C_1 is area, the section could increase its C_1 by decreasing its speed or increasing the lift. This would advance point A towards the right of the graph. Cavitation would not occur anywhere on the section until point A' was reached. At this location cavitation would occur on the upper leading surface. In examining point B as it moves towards the right of the graph it will incur cavitation on a middle chord station before cavitating on the leading stations. What this graph is basically showing is a linear connection of the low pressure regions of the foil section through a range of C_1 's Or simply a range of speeds.

In order for the derivation to continue an explanation of "cavitation dynamic pressure" must be given.

Since the 16-(.390)08 section for the AG(EH) is defined as a section normal to the quarter chord the velocity component that passes over the

8

- LL Lower Leading Chord Station
- UM Upper Middle Chord Station
- UL Upper Leading Chord Station

FIGURE 1 - Illustrative Example of Section Cavitation Bucket

normal to the quarter chord is the velocity responsible for producing the foil cavitation. See Figure 2. So a new definition of q must be given. Basically, through simple geometry,

$$q' = q \cos^2 \Delta$$

Now reconsidering the slope intercept form of the cavitation bucket:

$$\sqrt{5} = 2^{\mu} = 2^{\mu} \left[C_{\mu}^{-1} (C_{\mu})_{\alpha} \right] = \left(\frac{4^{\nu \alpha}}{\nu} - 2^{\nu} \right) C_{\mu}$$

Rearranging,

$$\pm \left(\frac{\delta V_{a}}{V} - 2v\right)C_{e} = \sqrt{5} - 2r \mp 2v \left[C_{e} + (C_{e})_{a}\right]$$

$$(8) \left(\frac{\delta V_{a}}{V} - 2v\right)C_{e} = \pm \left(\sqrt{5} - 2r\right) - 2v \left[C_{e} + (C_{e})_{a}\right]$$

Multiplying through by q', since the interest is in the cavitation of the section and the section foil loading.

(9)
$$(\sqrt[3]{v_1}v_2 - 2v)(\frac{w}{s}) = \pm (\sqrt{s} - \frac{2}{s})g' - 2v [(\frac{w}{s}) + (\frac{w}{s})_{x}]$$

For the flap lift case $(w/s)' = (w/s)_i + (w/s)_i$.

$$\begin{split} w_{15} &= \overline{w_{15}}_{5} \left(\frac{c_{i}}{c_{i}} \right)_{5} + \left(\frac{w_{15}}{c_{i}} \right) \left(\frac{c_{i}}{c_{i}} \right)_{i} + \left(\frac{w_{15}}{c_{i}} \right)_{i} \left(\frac{c_{i}}{c_{i}} \right)_{i} \\ &= \overline{w_{15}}_{5} \left(\frac{c_{i}}{c_{i}} \right)_{5} + \left(\frac{w_{15}}{c_{i}} \right) \left(\frac{c_{i}}{c_{i}} \right)_{5} + \left(\frac{w_{15}}{c_{i}} \right)_{6} \left(\frac{c_{i}}{c_{i}} \right)_{6} \\ &= \left(\frac{w_{15}}{c_{i}} \right)_{i} \left(\frac{c_{i}}{c_{i}} \right)_{i} + \left(\frac{w_{15}}{c_{i}} \right) \left(\frac{c_{i}}{c_{i}} \right)_{5} + \left(\frac{w_{15}}{c_{i}} \right)_{6} \left(\frac{c_{i}}{c_{i}} \right)_{6} \\ &= \left(\frac{w_{15}}{c_{i}} \right)_{i} \left(\frac{c_{i}}{c_{i}} \right)_{i} + \left(\frac{w_{15}}{c_{i}} \right) \left(\frac{c_{i}}{c_{i}} \right)_{5} \\ &= \left(\frac{w_{15}}{c_{i}} \right)_{i} \left(\frac{c_{i}}{c_{i}} \right)_{i} \\ &= \left(\frac{w_{15}}{c_{i}} \right$$

The component of velocity that is responsible for creating the cavitation on the foil is the normal component to the foil. Since there is an infinite amount of normals to a swapt-tapered foil, the normal component to the quarter chord is used since the quarter chord marks the location of the aerodynamic center of the foil sections. Thus Vcos $r_{\rm s}$ is incorporated into the dynamic pressure equation to form q'.

Figure 2 Definition of at

$$= \left[\begin{pmatrix} w_{j} \\ f_{s} \end{pmatrix}_{s}^{2} - \begin{pmatrix} w_{j} \\ f_{s} \end{pmatrix}^{2} + \begin{pmatrix} w_{j} \\ f_{s} \end{pmatrix}_{s}^{2} - \begin{pmatrix} c_{j} \\ c_{j} \end{pmatrix}_{s}^{2} \right] \begin{pmatrix} c_{j} \\ c_{j} \end{pmatrix}_{s}^{2} \\ - \begin{pmatrix} c_{j} \\ c_{j} \end{pmatrix}_{s}^{2} \right] \\ = \frac{w_{j}}{s} \left(\frac{c_{j}}{c_{i}} \right)_{s}^{2} + \begin{pmatrix} w_{j} \\ f_{s} \end{pmatrix}^{2} \left(\frac{(c_{j}/c_{i})}{c_{i}} - \frac{c_{j}}{c_{i}} \right)_{s}^{2} \\ \left(\frac{c_{j}}{c_{i}} \right)_{s}^{2} - \frac{(c_{j}/c_{i})}{c_{i}} \\ \left(\frac{c_{j}}{c_{i}} \right)_{s}^{2} - \frac{(c_{j}/c_{i})}{c_{i}} \\ \left(\frac{c_{j}}{c_{i}} \right)_{s}^{2} \\ + \begin{pmatrix} w_{j} \\ f_{s} \end{pmatrix}_{s} \\ \left(\frac{(c_{j}/c_{i})}{c_{j}} - 1 \right) \begin{pmatrix} c_{j} \\ c_{j} \\ c_{j} \\ s \end{pmatrix}$$

1.41.444, No.

(10)

.

Employing the parameter 4 into the equation,

(11)
$$\begin{split} \underbrace{\mathcal{F}_{i}}_{i} &= \frac{\left(\frac{c_{i}}{c_{i}}\right)_{i}}{c_{i}\left(c_{i}\right)_{s}} - 1 \qquad \underbrace{\mathcal{F}_{a}}_{i} &= \left(\frac{c_{i}}{c_{i}}\right)_{a} - 1 \\ \underbrace{\mathcal{F}_{a}}_{i} &= \left(\frac{c_{i}}{c_{i}}\right)_{s} \\ \underbrace{\mathcal{F}_{a}}_{i} &= \left(\frac{c_$$

Recalling

$$\left(\frac{\alpha\nu\alpha}{V}-2\iota\right)\frac{\omega}{S}=\pm\left(\sqrt{S}-2\iota\right)\varrho'-2\iota\left(\left(\frac{\omega}{S}\right)'+\left(\frac{\omega}{S}\right)_{x}\right)$$

.

and substituting the relations from Equation 9 and expressing the section loadings on the right in terms of foil loadings,

(ava/v - 20) ("/5(c / c.) 5 + ("/5) ' F. (c / c.) 5 F. $(c_{1/c_{L}})_{s} =$ = (15-7) g'- w (1/5) ' (ce/ci), - w (1/5) x (ce/ci) a (ava/v - 24) (c/c) = ± (v5 - 14) 2' - (2va - 24) (W/S)' 5, (C/c) - 20 (W/S) - (C/c) i -(Avg, - n.) (W/5) 2 Sa (Cola 8 - 20 (W/5) a $(13) \quad (Ce/C_{L})_{d}$

 $= \frac{1}{2} \left(\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5}} \right) \left\{ \frac{\sqrt{5} - \sqrt{5}}{\sqrt{5}} \right\} \left\{ \frac{\sqrt{5}$

$$\begin{pmatrix} \frac{4vc}{V} - 2v \end{pmatrix} \frac{f_{V}}{S} = \frac{1}{2} \left(\frac{v_{S} - 2v}{c_{I}/c_{L}} \right)_{S}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right)_{-}^{\prime} - \left(2v + \frac{v_{S}}{V} - \frac{2vc}{V} \right) \left(\frac{f_{V}}{S} \right$$

This is Equation 24 of Reference 2. Reconsidering the fact $(C_1/C_1)_i = (C_1/C_1)_{\delta}$, the parameter \mathcal{J}_i reduces to zero. Thus,

(14)
$$\left(\frac{\Delta v_{\alpha}}{V}-2v\right)\left(\frac{\omega v}{S}\right)_{H} = \pm \left(\frac{\sqrt{S}-\gamma v}{s}\right)_{S}^{2} - 2v - \left(\frac{\omega v}{S}\right)^{2} - \frac{1}{v}\left(\frac{\omega v}{S}\right)^{2} -$$

Where (WS)' involves all lift coefficients except that coefficient which is associated with the type of lift imposed on the foil in deriving the cavitation bucket. So,

$$(W/S)' = (C_L)_i + (C_L)_{\delta} + (C_L) + \frac{C_{lieff}}{C_{l}/C_L}$$

Ther term for residual lift, $\frac{C_1^{1} \text{ ieff}}{C_1/C_1}$, is the lift associated with the sections in the normal plane.

This is now the general equation for the three dimensional foil cavitation bucket. It should be noted that bouyancy is not considered in the derivation, An illustration of this bucket is shown in Figure 3.

Basically the explanation is the same as that regarding Figure 1 but in this case cavitation will appear somewhere on the span as compared to somewhere on the section. In using this foil bucket to determine the non-

- LL LOWER LEADING CHORD STATION
- UM UPPER MIDDLE CHORD STATICN
- UL UPPER LEADING CHORD STATION

FIGURE 3 ILLUSTRATIVE EXAMPLE OF FOIL CAVITATION BUCKET

1.1.1.1

cavitating regime of operation it must be noted that the bucket was derived using q' and not q. So in order to determine the correct C_{l} and thus the correct operating speed, C_{l} must be multiplied by the factor q/q'.

$$C_{L}$$
 is not $\frac{W/S}{q}$
 C_{L} is $q/q' = \frac{W/S}{q}$

but

So in summarizing Part I of this discussion it can be seen that the expression for the flap lift foil cavitation bucket is:

(15)
$$\left(\frac{\Delta \psi}{\psi}, u\right) \left(\frac{\pi \psi}{s}\right)_{\mu} = = \left(\frac{\sqrt{s-\psi}}{s}\right)_{\mu}^{\sigma} u \left(\frac{\pi}{s}\right) - \left(u - \frac{\pi}{s}\right) \left(\frac{\omega}{s}\right) \left(\frac{\pi}{s}\right)$$

which can be derived from the equation for section cavitation bucket,

(16)
$$\sqrt{5} = \gamma \pm \gamma \cdot \left(C \cdot \frac{1}{2} + (C \cdot \frac{1}{2}) \right) \pm \left(C \cdot \frac{1}{2} + C \cdot \frac{1}{2} \right) + C \cdot \frac{1}{2} + C \cdot \frac{1}$$

It is to the readers advantage to investigate the derivation of the Incidence Lift Cavitation Bucket discussed in Reference 2. The two equations, incidence lift and flap lift, are derived in quite similar manners. Being exactly the same except for the inclusion of the velocity distribution over the flap, which is in the term, and except for the definition of the (W/S)⁺ term. The incidence lift starts with the basic definition of the cavitation number:

16

*

$$(17) \qquad \begin{array}{c} AV\\ V\end{array}\right)_{F} \stackrel{AV}{\leftarrow} \stackrel{AV}{\leftarrow} \left[\left(\mathcal{L}_{H}^{\prime} - \mathcal{L}_{H}^{\prime} \right) - \mathcal{L}_{H}^{\prime} F_{F} \right] t \\ \stackrel{(17)}{\leftarrow} \stackrel{AV}{\vee}\right)_{F} \stackrel{\mathcal{L}_{H}^{\prime}}{\leftarrow} \begin{array}{c} \\ \end{array}$$

and through algebraic manipulation the equation for incidence lift, with zero pitch, reduces to

$$(18) \left(\frac{2}{V} - 2v\right) \left(\frac{2v}{S}\right)_{H} = \pm \left(\frac{\sqrt{S} - 4v}{\sqrt{S} - 4v}\right)_{I} p'$$

It can be seen that the equations for incidence lift and flap lift reduce to the same quanities when the specific case of $\delta = 0$, and $\prec = 0$ is used. (Incidence Lift)

(Flap Lift)

$$\begin{pmatrix} \frac{\delta v \sigma}{V} & -m \end{pmatrix} \begin{pmatrix} \frac{\delta v}{S} \end{pmatrix}_{R}^{*} = \frac{v_{\overline{S}-v}}{c_{\overline{\sigma}/c_{L}}} - n - \left[\begin{pmatrix} c_{1} \end{pmatrix}_{i,\overline{\tau}} \begin{pmatrix} c_{1} \end{pmatrix}_{i,\overline{\sigma}/\overline{T}} \\ \frac{\delta v \sigma}{v} \end{pmatrix}_{\overline{v}}^{*} \end{pmatrix} \left[\begin{pmatrix} c_{1} \end{pmatrix}_{i,\overline{\tau}} & \dot{c}_{i\overline{S}+} & \dot{c}_{i\overline{S}+} & \frac{d_{1} }{c_{\overline{\sigma}/\overline{T}}} \\ \frac{\delta v \sigma}{v} \end{pmatrix}_{\overline{v}}^{*} \begin{pmatrix} c_{1} \end{pmatrix}_{i,\overline{\tau}}^{*} & \dot{c}_{i\overline{S}+} & \dot{c}_{i\overline{S}+} \\ \frac{d_{1} }{c_{\overline{\sigma}/\overline{T}}} \end{pmatrix}_{\overline{v}}^{*} \\ \frac{\delta v \sigma}{V} \left[\begin{pmatrix} c_{1} \end{pmatrix}_{i,\overline{\tau}} & \frac{d_{1} }{c_{\overline{\sigma}/\overline{T}}} \\ \frac{\delta v \sigma}{V} & \frac{d_{1} }{c_{\overline{\sigma}/\overline{T}}} \end{pmatrix}_{\overline{v}}^{*} \end{bmatrix} = \frac{v_{\overline{S}-v}}{c_{\overline{\sigma}/\overline{T}}}$$

" AT PROF SURGER.

At the point on the 1.23 chord station with $\delta = 0$ and $\measuredangle = 0$, the flapped foil becames an incidence foil. This point can be mathematically computed to be;

$$\frac{\partial \psi_{0}}{\nabla} \left(\frac{\psi_{1}}{S}\right)_{H} - \left(\frac{\psi_{2}}{S}\right)_{H} = \left(\frac{\partial \psi_{2}}{\nabla} - \psi_{1}\right) \left(\frac{\psi_{1}}{S}\right)_{H} - \left(\frac{\psi_{2}}{S}\right)_{H} + \frac{\psi_{1}}{S}\right)_{H} = \left[\left(\frac{\psi_{1}}{S}\right)_{H} + \frac{\psi_{1}}{S}\right]_{H} = \left[\left(\frac{\psi_{1}}{S}\right)_{H} + \frac{\psi_{1}}{S}\right]_{H} = \left[\left(\frac{\psi_{1}}{S}\right)_{H} + \frac{\psi_{1}}{S}\right]_{H} + \frac{\psi_{1}}{S}\right]_{H} = \left[\left(\frac{\psi_{1}}{S}\right)_{H} + \frac{\psi_{1}}{S}\right]_{H} = \left[\frac{\psi_{1}}{S}\right]_{H} + \frac{\psi_{2}}{S}\right]_{H} + \frac{\psi_{1}}{S}\right]_{H} = \left[\frac{\psi_{1}}{S}\right]_{H} + \frac{\psi_{2}}{S}\right]_{H} + \frac{\psi_{1}}{S}\right]_{H} + \frac{\psi_{2}}{S}\right]_{H} + \frac{\psi_{1}}{S}\right]_{H} + \frac{\psi_{2}}{S}\right]_{H} + \frac{\psi_{2}}{S}\right]_{H} + \frac{\psi_{1}}{S}\right]_{H} + \frac{\psi_{2}}{S}\right]_{H} + \frac{\psi_{2}}$$

substituting and solving for \sqrt{S} and then $V_{k'}$

$$\frac{Avc}{C} \left(\frac{.3151}{.3151} \right) = \left(\frac{\sqrt{5-\psi}}{C} \right) \frac{2}{C} = 0$$

$$\frac{(1-346)(.3151)}{1-31} = \frac{\sqrt{5-.67}}{1-31}$$

$$\frac{1.2256}{\sqrt{\frac{2541.12}{1.696}}} = \sqrt{5}$$

$$\frac{|.500|}{\sqrt{k^2}} = \frac{|390.995}{\sqrt{k^2}} + |$$

$$\frac{\sqrt{h^{2}}}{5} = \frac{2774.339}{5.07.4...5}$$

$$= \frac{52.67.4...5}{(1.896)(.315!)}$$

$$= \frac{1657.30}{5.07} p_{5}r^{2}$$

The procedure for going from Equation 17 to Equation 18 is the basis for Reference 2 and is too lengthy to be covered in this note. Figure 4 shows the foil incidence bucket using the given section velocity distributions.

PART II: <u>REFERENCE</u> LIFT COEFFICIENTS

×. ,~

It should be roted that the foil lift coefficient, CL does not appear anywhere in the foil cavitation bucket derivation for flap lift. But the foil lift coefficients are found in the terms $W/S)_i$, $W/S)_o$, and W/S), and these foil loadings are related to those loadings of the se section bucket through the terms $(C_1)_i$, Cl , and $(C_1) \prec$. These six above mentioned terms shall be referred to as reference lift coefficients.

The incidence and pitch reference foil loadings are easily defined as:

20

Note that q' is employed and not q. In order to determine a definition far $(W/S)_{0}$ its definition must be retraced,

The WS), is loading due to the camber of the foil. (W/S $_0$ is a component of (W/S)¹.

$$(W/S)_{o} = \frac{(W/S)_{o}}{C_{1}/C_{L}} = \frac{C_{1}ieff}{(C_{1}/C_{L})_{i}} q'$$

The reference section lift coefficients at the critical span stations are:

$$(c_{1})_{i} = (c_{L})_{i} (c_{1}/c_{L})_{i}$$

$$c_{1}_{ieff} = \frac{c_{1}_{ieff}}{(c_{1}/c_{L})_{i}} (c_{1}/c_{L})_{i}$$

In order to interpret the cavitation bucket as it is related to flap deflection another reference foil loading is required. This term shall be denoted W/S_{ref} which has previously been present in the incidence lift case derivation, (AG-18). The subscript "ref" is reserved for the product of a lift coefficient and the streamwise dynamic pressure,

(19)
$$W/S)_{ref} = [(C_L)_i + C_{Lo} + (C_L)_n] q + (\frac{W}{S})_B$$

This term is multipurpose in use in regards to the flap lift case. It takes into consideration all the factors of flap lift, namely the pitch, the incidence, and the flap deflection and determines the operational zero flap deflection range in the bucket. This reference term can also be used to determine the validity of the C_{\downarrow} term used in the previous foi i bucket equation derivation.

21

and the second second

$$C_{L} = C_{L\alpha} \propto + C_{Li} \neq C_{LS} + C_{Lo}$$

This term provides a check on the entire theory of deriving the section and foil cavitation buckets. The lift coefficients due to pitch and incidence are obvious in their origin, whereas the residual lift coefficient, or that lift due to camber requires comment at this time,

If the effects of the pod are neglected the zero lift angles for incidence and section zero lift are equal.

Then C_{LO} **must** equal:

(20)
$$C_{Lo} = C_{Li} \propto_{o}$$
$$= C_{Li} \frac{C_{ieff}}{C_{i}}$$

For the best interpretation of the Lindsey, Stevenson, and Daley data available this relation results in

$$C_{Lo} = (2.49) (.336/5.72)$$

= 0 144

as compared to the value of .111 which was measured on the prototype. An explanation of the results can be seen in Appendix I. For a foil of fixed pitch and incidence the W/S)_{ref} term is a quadratic in V_K extending up to the cavitation bucket boundary,

.. a

In order to go directly from the given velocity distribution data to a foil cavitation bucket, equation 15 must be used. Recalling equation

$$\begin{pmatrix} 4\nu a \\ V \end{pmatrix} = \pm \begin{pmatrix} \sqrt{s} - \gamma \\ S \end{pmatrix} = - \begin{pmatrix} 2\nu - \frac{s}{2} \\ V \end{pmatrix} \begin{pmatrix} \frac{4\nu a}{S} \end{pmatrix} \begin{pmatrix} \frac{$$

and noting that the W/S present in the equation does not include any **buoyancy term**

Ъ

$$W/S = (W/S)_{H} + (W/S)_{B}$$

(W/S)_B = 0 in equation
(W/S)_H = WS in equation for 3-D flap lift

Equation 15 can be further reduced by remembering the assumption of zero angle of attack. With $\propto = 0$, $(C_{1/2}) = 0$, and $(C_{1/2}) = 0$ the parameter \mathcal{L} reduces to zero. Equation 15 can be simplified to equal:

$$(22) \left(\frac{\Delta v_{\alpha}}{V} - w\right) \left(\frac{w}{S}\right)_{H} = \pm \left(\frac{\sqrt{s} - \psi}{r}\right) r' - \left(\frac{w}{S}\right) \left(\frac{w}{S}\right)'$$
with
$$\sqrt{s} = \sqrt{1 + \omega}$$

$$\sigma = \frac{2044 + \beta gh}{q'}$$

$$q' = q \cos^{2}A$$

$$\left(\frac{W}{S}\right)' = (W/S)_{i} + (W/S)_{o}$$

$$(W/S)_{i} = (C_{L})iq' \approx C_{L_{i}}iq'$$

$$(W/S)_{o} = C_{1} \frac{q'}{(C_{1}/C_{L})S}$$

$$(W/S)_{\alpha} = (C_{L})_{\alpha} q' \approx C_{L\alpha} \propto q'$$

to the cavitation bucket boundary,

PARE III: CONSTRUCTION OF THE CAVITATION BUCKETS

In order to graphically show the buckets and to in turn check the validity of the theory and graphs (See Part XI) the flap lift case will be compared to the incidence lift case, one assumption will be made. The assumption being that the foil is operating at a zero degree angle of attack.

Equation 7 is the primary equation used in the construction of the section cavitation bucket. An expansion of the term C_{j} is necessary in order to see all working terms.

(21)
$$\sqrt{s} = \gamma \pm w \left[(c_1)_i + c_1 + (c_1)_{\alpha} \right]$$

It is appropriate at this point to introduce the depth effect factor. Because of free surface effects, which have a minor but not negligible effect, Panchenkov's depth effect factor from Figure 13 of Ref. 3 in a value of .923 to be used as an applied factor to all reference loadings. Using the velocity distribution data from Abbot and Von Doenhoff's <u>Theory of Wing Sections</u>, (ϖ ndensed in Table 1) and Allen's velocity distributions over a flapped section, Figure 5, expressions in the linear form (y=b+mx) can be determined. These specific equations can be seen in Table 2 where Cl has been equated to zero and unity. This then provides the data necessary to construct the section cavitation bucket, Fig. 6, for the AG(EH) forward foil. Access to this graph allows one to follow an alternate method of foil cavitation bucket construction. See Appendix XI for this explanation.

24

FIGURE 5 25

where C_{Li} is derived from

4.4.4.4.4

(23)
$$\frac{(W/S)_{o} - (W/S)_{ref}}{q C_{LS}} = 0$$

at a design speed of fifty knots, and trimmed flaps

$$(W/S)_{ref} = (W/S)_{D} = 1435$$

This foil loading, being the design foil loading is then used in determining the value of $(C_{L})_{i}$ for the flap lift case.

$$[(C_L)_i + C_{L0} + (C_L)_{\uparrow} q_D + (\frac{W}{S})_B = 1435$$

$$[(C_L)_i + .923 (.111)] (7100) = 7435 - 90$$

$$(C_L)_i + .1025 = 1347/7100 = .1894$$

$$(C_L)_i = .0869$$

The corresponding incidence angle is approximately:

$$i = (C_{L})_{i} / C_{L_{i}} = \frac{.0869}{(.923)(.0438)} = 2.16^{\circ}$$

Since all variables and parameters are known for Equation 22 a foil cavitation bucket can be constructed. The equation was programmed and executed on a Hewlett-Packard 9810A calculator and the values are tabulated on Table III. A long hand check can be seen in Appendix III. Figure 7 shows the completed foil cavitation bucket. Also on the graph are the W/S_{ref} and W/S_D curves.

The cavitation bucket equation is a very powerful analytical tool. It allows the term $(C_L)_i$ to be used to compute a $(C_L)_S$ independent of the cavitation bucket equation, This then allows the schedule for flap del deflection to be determined. The following equation can be employed when it is desired to compute a $(C_L)_S$.

$$\left[(C_{L})_{i} + C_{Lo} + C_{L\star} + C_{L\underline{s}} \right] q_{D} + (W/S)_{B} = 1435$$

At this point in the discussi.on both the derivation and graphical representation of the foil cavitation bucket have been completed. How do these results compare to the existing incidence lift system? Figure 8 compares the limiting boundries of the two different cavitation buckets. It can be observed that the flap lift case expands the all ready known incidence lift case boundries. In order for the flaps to produce enough lift, g = 1, a flap deflection angle is required. In order to determine this anyle Equation 24 is used.

(24)
$$\delta_{1g} = W/S_{D} - W/S_{ref} + W/S_{B}$$

 $q C_{LS}$

ett.

ŝ,

÷.,

This provides a concept that will be investigated in future notes; the idea of combining incidence and pitch angles along with flap deflection to provide the required 1 g lift with a minimum absolute value flap deflection. There also lies in the regime of the cavitation bucket a deflection angle of cavitation:

(25)
$$\mathbf{6} \operatorname{cav}^{\circ} = (\underline{w/s}) - (\underline{w/s})' |$$

= $(\underline{W/S})_{\mathrm{H}} + \underline{W/S}_{\mathrm{B}} - \underline{W/S}' - \underline{W/S}_{\mathrm{B}}$
= $(\underline{W/S})_{\mathrm{H}} + \underline{W/S}_{\mathrm{B}} - \underline{W/S}' - \underline{W/S}_{\mathrm{B}}$

1

Note: Positive deflection is a flap trailing edge downward.

From these last two relations plots can be made, (See Figure 9, and Tables IV, V) and the two deflections can be compared. There are two points on the graph where $\delta_{1g}^{\circ} = \delta_{cav}^{\circ}$. This could pose a grave problem since the deflection angles are within operational range. From Equations 24

and 2 5 it can be seen that a positive deflection will move any point on the W/S)_{ref} curve toward the right, and any negative deflection will transfer the point to the left.

In summarizing what has been emphasized in this discussion, it can be seen that a set of very powerful equations have been derived. But the equations are not so complex that a person with minimal knowledge of cavitation cannot comprehend them

FARE IV: OPTIMIZATION CONSIDERATIONS

Configurations which will optimize the flap lift system will be covered in future notes when sufficient data on the system can be gathered. Major discussions of importance are:

A. Limited Flap Angles:

R

Determination and evaluation of the optimum flap angles when combined with angles of incidence and pitch, and which combination will result in least drag and incipient cavitation number.

- Smooth Water Cavitation Bucket: Investigations in the distortions, expansions, reductions and extentions of the cavitation bucket which is produced in smooth water, with emphasis on various foil loadings, flap, incidence and pitch angles, and speeds.
- C. Rough Water Cavitation Bucket: Investigation in the distortions, expansions, reductions, and extentions of the foil cavitation bucket which is produced in rough water with special emphasis on the effects caused by

33

orbital velocity, and how to compensate for the varying wave heights.

D. Foil Drag

Resistance on the forward foil will be evaluated for the various combinations of flap, incidence, and pitch angles. These values, combined with thedeterminal drag on the pod, will give the total drag on the foil-pod configuration,

4

E. Hinge Moments

This will not be a consideration for flap lift.

<u>APPENDIX I</u>

35

u,

یک کامو خونو در این این ا مدار این کار میں این If the derivation for C_{Li} is incorporated into Equation 20 Recalling 20:

$$C_{Lo} = -C_{Li} \propto 0$$
$$= -C_{Li} \frac{C_{lieff}}{C_{la}}$$

all of the sources of error can be displayed.

$$C_{Lo} = C_{1_{\infty}} \frac{C_{Li}}{Proto} \qquad C_{1_{\infty}} Proto \qquad C_{1_{\infty}} \frac{C_{1_{ieff}}}{C_{1_{\infty}}}$$

 $C_{1_i}/C_{1_{\infty}}$ proto is the area under the incidence lift circulation distribution on the span. C_1 and C_1 Section distinct interpretations of the Lindsey, Stevenson, and Daley data. Thus there are three sources of error.

- i) Neither the prototype nor the section experimental data is very reliable.
- ii) There is an unestablished precision associated with the circulation distribution, particularly for partial span distributions and most particularly

for sections not defined in the streamwise plane. Note that a section defined in a normal plane has its angle of attack reduced by the cosine of the sweep angle. If Equation 20 has this incorporated in it the value of CL, comes to within 5% of the measured prototype value.

iii) There is undoubtedly some pod influence, particularly at the foil root, which is not accounted for by treating incidence lift as a full chord, partial span flap case.

36

SOURCES OF ERROR IN CLO

The most familiar manifestation of the prototype/theory C_{Lo} discrepancy is the model/theory zero lift angle discrepancy which has been **noted for years.** Note that for the AGEH:

It should be noted that $\stackrel{\checkmark}{}_{0}$ is invariant with depth, and Cl is is subject to depth effect.

Applying the $\cos \triangle$ factor to the prototype, where Cl is about that much higher than theory, would resolve this discrepancy. A similar discrepancy exists for DOLPHIN and FLAGSTAFF where the section is defined streamwise with a much smaller sweep. APPENDIX I I

-

ALTERNATE METHOD OF FOIL CAVITATION BUCKET CONSTRUCTION

A three dimensional foil cavitation bucket can be constructed by the to be mentioned procedure only after the construction of a precise section cavitation bucket has been completed.

The procedure is as follows,

<u>Step 1</u>: Choose a minimum of three values of \sqrt{S} and its corresponding C_{1} . Care must be taken when moving from upper to lower surface or vice versa since the ratio C_{1}/C_{1} , changes. Three values are necessary since the foil bucket is not linear. <u>Step 2</u>: Calculate corresponding values of V_{K} and WS.

$$S = 1 + \frac{PO - Pv}{q}$$

$$q = \frac{Po - Pv}{q} = \frac{1}{2} \not\sim V$$

$$q$$
(.9952) (1.6889)² $V_{K}^{2} = \frac{Po - Pv}{s - 1}$

$$= \frac{Pa + \not\sim gh - Pv}{s - 1}$$

$$= \frac{2116 + 64(9.33) - 72}{s - 1}$$

$$V_k = \sqrt{\frac{2641.12}{2.5387}} \cdot \frac{1}{\sqrt{S-1}}$$

= $\frac{30.5}{\sqrt{S-1}}$

and where WS is simply:

$$W/S = C_1 q' / C_1 / C_L)_{S}$$

wheels as said to say that the deal attack of the

<u>Step 3:</u> Now corresponding values of V_k and W/S can be determined. These can then be plotted with WS being the dependent variable and V_k being the independent variable.

٠

•

1.1.1

APPENDIX III

VERIFICATION OF FOIL CAVITATION BUCKET PROGRAM

 $\begin{pmatrix} \Delta V_{A} - w \\ \overline{V} - w \end{pmatrix}_{S}^{w} = \pm (VS - \overline{V})P' - (2w + \widehat{P}_{A} - 2w)(\frac{w}{S})' \\ \begin{pmatrix} \Delta V_{A} - w \\ \overline{V} - w \end{pmatrix} \begin{pmatrix} \overline{w} \\ \overline{S} \end{pmatrix}_{H}^{u} = (JS - \overline{V})P' - (2w) \left\{ \begin{pmatrix} -z \\ -z \end{pmatrix}_{L}^{u} + \frac{C_{L}}{C_{L}} \right\}_{S}^{u} = \left\{ \frac{2044 + (9.33)(C4)}{1.869(55)^{2}} + 1 - 1.123 \right\} 1.376(55)^{2} \\ \begin{pmatrix} -.477 \\ \overline{S} \end{pmatrix}_{H}^{u} = \left\{ \frac{2044 + (9.33)(C4)}{1.869(55)^{2}} + 1 - 1.123 \right\} 1.376(55)^{2} \\ \frac{1.31}{1.31} \\ \begin{pmatrix} -.477 \\ \overline{S} \end{pmatrix}_{H}^{u} = \left\{ \sqrt{\frac{2C_{H}}{2745}} + 1 - 1.123 \right\} 4765(55)^{2} \\ \frac{1.31}{1.31} \\ \frac{1.31}{1.31} \\ \frac{1.31}{1.31} \\ \frac{1.32}{1.31} \\ \frac{1.31}{1.31} \\ \frac{1.31}{1.31} \\ \frac{1.32}{1.31} \\ \frac{1.32}{1.31}$

= 2105.71 as compared to the HP value of 2105.82

APPENDIX I'.'

(

K

43

$\underline{\text{DEFINITION}} \text{ OF } \underline{C}_{\text{ieff}}:$

There is a basic lift curve slope associated with the section camber for every section on the span given any angle of attack. At any angle of attack the camber is producing a lift, which shall be called from this point on in this series of notes, C_{lieff} , at every stat-ion an the span. el, " y o e la gita composi - la stationalitation - la stationalitation - la stationalitation - stationalitationalitation - stationalitation - stationalitationalitation - stationalitationalitation - stationalitationalitation - stationalitationalitation - stationalitationalitation - stationalitationalitationalitation - stationalitation - stationalitation - stationalitation - stationalitati

$$C_{ieff} = -C_{i} \approx 0$$

The coefficient of C_{1_i} comes from Lindsey, Stevenson, and Daley, Reference 7. This value, multiplied by the section C_{1_i} , results in the value used for C_{1_i} of ,324.

In comparing the relationship between C_{LO} and C_{lot} it shall be assumed that a zero lift angle is being used so there is no variation in lift and every station on the span will be acting along the zero lift angle.

,

$$-\alpha_{0} = \frac{C_{i,o}c_{f}c}{C_{f}a} = \frac{C_{i,o}c}{C_{i,o}}$$

$$C_{i,c} = \frac{C_{i,o}c_{f}c}{C_{f}a} (C_{i})_{i}$$

$$= \frac{C_{i,o}c_{f}c}{C_{f}a} C_{i,o} = \frac{C_{i,o}c}{C_{f}a} C_{i,o} \Delta$$

where C_{L_1} / C_L is the ratio of the areas under the lift curve slopes. These curves can be found in Reference 3,

$$\begin{aligned} c_{Lo} &= (.838)(2.97)(.324) \\ (.91)(27) \\ &= (.141)(.817) \\ &= .115 \end{aligned}$$

The number resulting, .141, is larger than the prototype value of .111, which is in itself large since sweep was not taken into consideration, but by applying a factor equal to the cosine of the sweep angle (.817), the value of C_{LO} can be reduced to near that of the prototype.

RE FE RENCES

- 1. Hydrodynamic Note AG-5, "Flap Cavitation Bucket," 8/21/71.
- 2. Hydrodynamic Note AF-18, "Flap Control of Incidence Hinge Moment and Foil Cavitation," 4/30/73.
- 3. Hydrodynamic Note AG-21, "Review of Steady State Lift and Moment Characteristics," 5/13/74.
- 4. "Interim Report on Optimization of Forward Lift Control for AG(EH) Hydrofoil Craft Vol. I: Hydrodynamics ,"GAC Report No. HCG-72-19(I), 12/72.
- 5. Abbott and Von Doenhoff, Theory of Wing Sections, 1959.
- 6. Allen, H. J., "Calculation of the Chordwise Load Distribution Over Airfoil Sections with Plain, Split, on Serially Hinged Trailing-Edge Flaps," NACA Report No. 634, 1938,
- 7. Lindsey, Stevenson, and Daley, "Aerodynamic Characteristics of 24 Mach Numbers Between .3 and .8," NACAIN 1546, 9/48.

SYMBOLS

- a. All dimensions in ft./#/sec./rad. unless otherwise noted.
- b. Parenthesis read "due to"; e.g. (CL), = CL due to flap deflection, ${}^{C}_{L\,6}$.
- c. Primes indicate normal to the quarter chord.

с _L	Foil Lift Coefficient, L/qS
^c Lo	Residual Lift Coefficient
° _{Li}	Incidence Lift Curve Slope, dC _i /di
C ^{L ~}	Pitch Lift Curve Slope, dC _L /d≪
C _{L Ø}	Flap Lift Curve Slope, dC _L /d <i>S</i>
c ₁	Section Lift Coefficient
c	۲ _ן at Zero Flap, (۲ _ן); + ۲ _۱ ieff
°1 _f	C_1 for flap deflection, $C_{1 \sim} d \ll / d g$
c ₁ /c _L	Measure of Spanwise Lift Distribution
°, i	Design Lift coefficient

9 Acceleration of Gravity i Incidence Angle L Lift P_A Atoms pheric Pressure (2116 ps P_V Vapor Pressure (72 psf) 9 Dynamic Pressure, $\frac{1}{2} \nearrow V^2$ \sqrt{s} $1 + \sigma'$	C _] ieff h	See Appendix IV Depth
i Incidence Angle L Lift P_A Atoms pheric Pressure (2116 ps P_V Vapor Pressure (72 psf) q Dynamic Pressure, $\frac{1}{2} \nearrow V^2$ \sqrt{s} $1 + \sigma'$	9	Acceleration of Gravity
L Lift P_A Atoms pherijc Pressure (2116 ps P_V Vapor Pressure (72 psf) q Dynanic Pressure, $\frac{1}{2} \nearrow V^2$ \sqrt{s} $1 + \sigma'$	i	Incidence Angle
P_A Atoms pheric Pressure (2116 ps) P_V Vapor Pressure (72 psf) q Dynamic Pressure, $\frac{1}{2} \nearrow V^2$ \sqrt{s} $1 + \sigma'$	L	Lift
P_V Vapor Pressure (72 psf) Q Dynamic Pressure, $\frac{1}{2}$ $≫$ V^2 \sqrt{S} 1 + σ'	PA	Atoms pheriic Pressure (2116 psf)
9 Dynamic Pressure , $\frac{1}{2} \not\sim V^2$ \sqrt{s} 1 + σ'	PV	Vapor Pressure (72 psf)
\sqrt{s} 1 + σ	q	Dynani c Pressure, ½ 🎢 V ²
	\sqrt{s}	ן + מ

1.000

•

V _k	Speed in Knots
v/V	Local Velocity Distribution Due to Thickness
٧/٧	Local Velocity Ratio Increment Due to Camber
∆v/V) _f	Local Velocity Ratio Increment Due to Flap Basic Load
ova/V	Local Velocity Ratio Increment Due to addi- tional Load, Angle of Attack and/or Flap Deflection
W/S) H	Hydrodynani c Foil Loading
w/s	Section Foil Loading
w/s) _B	Buoyant Foil Loading, B/S
w/s) _D	Design Foil Loading
W/S)∝ .	Pitch Foil Loading, C _{L∝} ⊖q′
W/S) _i	Incidence Foil Loading, C _{Li} iq′
W/S) _S	Flap Foil Loading, C _{LS} Sq [′]
W/S) _{ref}	Reference Foil Loading
2 A	Angle of Attack
S	Flap Deflection, Positive Nose Up
Ŀż	Spanwise Load Distribution Parameter , <u>C₁/C_L)</u> i -1 C ₁ /C _L
Ja	Spanwise Load Distribution Parameter , $\frac{C_1/C_1}{C_1/C_1} < -1$
Þ	Density, 1.9905 lbf sec ² /ft ⁴
0	Cavitation Parameter, (PA - P_V + γ gh)/g
re	Flap Load Distribution Parameter, $\mathcal{J}[\Delta va/V - \Delta v/V]_3$
$\mathbf{\nabla}$	Sweep Angle
Ý	Chordwise Velocity Distribution ∨/V ± △v/V ∓ va/V C
ſ	1011 A Flap Chordwise Lift Distribution Parameter

.

The Reduce of Land

TABLE I

CAVITATION PARAMETERS

AG	(EH)	FORMARD	FOIL	PROTO)TYPE

Station % chord _	1.25	2.5	5.0	40	50	60	70	80
4	.670 1,380	.818 1.284	.919 1.201	1.098	1.117	1.131	1.136	1.123
∆va/V	1.346	.970	.686	.196	. 160	.131	.103	.076
ro	,620	1 39	.301	.010	027	071	138	477

Note: Upper numbers and signs denote upper surface, lowers denote lower surface 16-(.390)08 Section 1 MAC (9.33) Depth 20% Chord Flap $q = 2.8387 V_k^2$ $q' = .668 V_k^2$ $q' = .668 V_k^2$ Q' = .109 $C_1 = .324$

÷.

CALCULATION TABLE II

$$\gamma = m[C_1] = (\Delta v_a / V - w)C_1 = \sqrt{S}$$

1.25	$.670 + (.620)(.4129) + (1.346620)C_1 = , 9 2 5 + .726C_1$
2.5	$.818 + (.439)(.4129) + (.970439)C_1 = .999 t$.5310
5.0	.919 t (.301)(.4129) + (.686301)G = 1 . 0 4 + .385G
40	$1.098 + (.010)(.4129) + (.196 t .010)C_{1-} =1 . 1 0 2 t .186C_{1-}$
50 i -	$1.117 + (027)(.4129) + (.160 \text{ t} .027)C_1 = 1.105 \text{ t} .187C_1$
60	$1.131 + (-071)(.4129) + (.131 t .071)C_1 = 1,101 t .202C_1$
70	$1.136 + (138)(.4129) + (.103 + .138)C_1 = 1.079 t .241C_1$
80	$1.123 + (477)(.4129) t (.076 t .477)C_1 = .926 t .553C_1$
L-1.25	1.380 - (620)(.4129) + (-1.346 + .620)G = 1.156726G
L2.5	$1.284 - (439)(.4129) t (970 + .439)C_1 = 1.125531C_1$
<u>15.0</u>	$1,201 = I(301)(.4129) + (686 + .301)C_1 = 1.092385C_1$

,

- 50

ومرد خلافها

RESULTS OF FOIL CAVITATION BUCKET EQUATION

Station, % Chord												
٧ _K	1. 25	2:5	5.0	40	50	. 60	70	80	LI.25	L2.5	L5.0	180%
5	329	445	609	' 1247	1243	1151	968	432	-			and the second
10	585	780	1 060	2144	2143	1979	1672	768				
15	787	1031	1385				2165	1033		•••		
20	949	1218	1614					1247	44	-		
25	7085	135 8	1770	-				1424	-		-	
30	1202	1464	1870	~				1578	-		-	
35	1308	1544	1927	-				1718			-	
40	1408	1606	1951	-				1849			-	
45	1506	1655	1948					1977	-		-	
50	1604	1694	1922					2105			-	• #
55	1703	1725	7878	-	2403	2315	.2352	2236		. .	-	
60	1806	• 1750	1818	2138	2001	1960	2132	2371,	Mai		_ ,	93
65	1913	1771		1704	1545	1556	1880		50.13	I.	_	620
70	2024	1789			1039	1108			416		- 1	178
75	2141	1804			483	615			814	243	• •	٠.
80										7 1 3	-	
85											13	r i
90											553	;

ADD 90 PSF TO ALL VALVES

$$\delta_{1g}^{\circ} = \frac{W/S_{D} - W/S_{ref}}{qC_{L\delta}}$$

V k	δ ⁰ 19	۷ _k	δ _{1g}
5	1001.39	45	2.38
10	242.76	50	0.009
15	102.28	55	-1.74
20	53.11	6 0	-3.08
25	30.35	65	-4.12
30	17.99	70	-4.94
35	10.53	7 5	-5.61
40	5.69	8 0	-6.15

•

, ...

.

•

. •

6

.

WERE WAL

$$\delta_{cav}^{O} = \frac{W/S}{q'C_{LS}}$$

	۷ _k	δ ⁰ cav		۷ k	δ _{cav} ο
1.25%	5'	355.31	2.5%	60	- 1. 44
	10	149. 54		62.5	- 2. 33
	15	83. 32	50%	65	- 4. 83
	20	51.65		67	- 6. 91
	25	33. 73		69. 3	- 8. 80
	30	22.46	L80%	65	- 10. 99
	35	14.92		61	- 13. 54
	40	9.64		60	- 14. 40.
	45	5.80			
	50	2.94			
	55	0.71			

• .

.

CALCULATION TABLE VI

$$W/S)_{ref} = \left[(C_{L})_{i} + C_{L_{0}} + C_{L_{\delta}} + C_{L_{\lambda}} \right] q$$

$$W/S)' = \left[(C_{L})_{i} + C_{L_{0}} + C_{lieff} / (C_{1} / C_{L}) \right]$$

,

W/S) _{ref}	v _k	W/S)!
103,438	5	104.940
143.752	10	149.759
210.941	15	224,45/
305.007	20	329.036
425.948	25	463,493
573.765	30	627.830
748,458	35	822.046
950.026	40	1046.142
1178.471	45	1300.117
1433.791	50	1583.972
1715.987	55	1897.706
2025.059	60	2241.320
2361.007	65	2614.813
2723.830	70	3018.185
3113.530	7 5	3451.437

GRUMMAN AEROSPACE CORPORATION

the second second