

Advanced Ship Data Bank R-1699 DINSRDC, Bldg. 19, A223 Bethesda, Maryland 2005

COPY NO.

DAVIDSON LABORATORY

FINAL REPORT ON DESIGN GNP CONSTRUCTION O F 1/3-SCALE MANNED MODEL OF SKI -CAT HI GH-SPEED CATAMARAN (1)

> by Daniel Savitsky John K. Roper John A. Mercier

Classified by NAVSHIPSINST 5510.46D Exempt from GDS of EO 11652 Exemption Category 3 Declassify on 31 December 1984

		* *
UNCLASSIFIED	Intered)	
REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
SIT-DL-74-1699		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
FINAL REPORT ON DESIGN AND CONSTR	RUCTION OF	Final
ONE-THIRD SCALE MANNED MODEL OF S	KICAT	6. PERFORMING ORG. REPORT NUMBER
HIGH-SPEED CATAMARAN		
7. AUTHOR(a)		B. CONTRACT QR GRANT NUMBER(a)
Daniel Savitsky		Office of Naval Research
John K. Roper - John K. Roper As	sociates	N00014-07-R-0202-0031
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Stevens Institute of Technology		
Hoboken New Jersey 07030		
I. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Sea Systems Command Headq	uarters	March 1974
Washington, D. C. 20362		118
14. MONITORING 'AGENCY NAME & ADDRESS(II different	frem Controlling Office)	15, SECURITY CLASS. (of this report)
Naval Ship Research& Development	Center (114)	
Annapolis, Maryland		15a, DECLASSIFICATION/DOWNGRADING
		XGDS: 3 84
17. DISTRIBUTION STATEMENT (of the ● brtrect entered	In Block 20, if disterent fro.	<i>m</i> Report)
18, SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue or reverse side !! necessary and	identily by block number)	
Marine Craft Catamaran		
Hydrofoi 1		
Planing Surface		
20. ABSTRACT (Continue on reverse side if necessary and	d identify by block number)	
None		
none.		
1		
	بالمتحاذاة ويرفيا البابكاني مرميدة بالكافية والأعاديبة	ويجوج ومستهين ومنيا ومنيا المعملان فالتكاريس ومعالياتهم متعاد الأراقي والإفادة مسترسي ومعمد وتباغ ويتناه

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enternd)

STEVENS INSTITUTE OF TECHNOLOGY

DAVIDSON LABORATORY CASTLE PCINT STATION HODOKEN. NEW JERSEY

Report SIT-DL-74-1699

March 1974

FINAL REPORT ON DESIGN AND CONSTRUCTION OF 1/3-SCALE MANNED MODEL OF SKI-CAT HIGH-SPEED CATAMARAN (U)

> by Daniel Savitsky John K. Roper John A. Mercier

Prepared for

Naval Ship Systems Command Washington, D.C. 20360 Under Contract N00014-67-A-0202-0031, Mbd. 3 (DL Projects 4050/146 & 4051/147)

TABLE OF CONTENTS

INTRODUCTION	1
Background	1
Design Features	2
PERFORMANCE	7
Extended Builder's Trials	7
Speed Trials	7
Effect of Displacement	
Effect of LCG	9
Effect of Ski-Height <i>asasasasasasasasasasasasasasasasasasas</i>	مەھ 10
EQUIPMENT DEFICIENCIES, ANALYSES AND CORRECTIVE ACTION	1 2
Propeller Pitch	12
Main Foil Ventilation	12
REFERENCE-;	14
TABLES 3 - 7	15 - 2 2
FIGURES 1 = 7	
APPENDIX, DESIGN NOTEBOOK	
A. Vehicle Characteristics	AI - A3
B. Hull Characteristics	61 - B2
C. Foil System Characteristics	CI - C9
D. Equipment List	D1 - D12
E. Structural Analyses	El - E26
F. Measured Weights	FI ~ F3
G. Hydrostat ics	G1 - G9
H. Estimated Drag	HI - H12
I. Estimated Thrust and Torque	11 - 111

INTRODUCT I ON

Background

(U) In past years there have been few significant hydrodynamic improvements made in the design of planing or high-speed displacement hulls.

(U) Planing hulls have a basic conflict between efficiency and seakeeping ability. The low loadings, high aspect ratio, low deadrise and high trim desirable for maximum lift-drag ratio are in direct opposition to the high loadings, low trim, low aspect ratio, and high deadrise required for minimum accelerations and motion in rough water. From an arrangement standpoint, usable hull volume is limited by severe rotational accelerations to those spaces near the longitudinal center of gravity and, thus, result in crowded areas. Further, the lift-drag ratio of planing hulls with straight buttock lines in the planing area is not much greater than 6.0 for speeds in excess of 50 knots.

(U) High-speed displacement hull forms, governed by the trade-off between wavemaking and frictional resistance, tend to have high length-beam ratios and low beam-draft ratios and, for high-speed operation, become impractically large when compared with normal small boat design practice. While these characteristics result in smooth- and rough-water performance which are better than that of planing hulls, they produce arrangement problems which are compounded by precarious transverse stability and large overall lengths.

(U) Under Contract N00014-67-A-0202-0031, the Davidson Laboratory, Stevens Insti tute of Technology, carried out a systematic series of model tests of a unique hydrodynamic system composed of high length-beam ratio catamaran hulls with a canard system of submerged main hydrofoil combined with either small forward planing skis or surface-piercing ventilated hydrofoils. The smooth- and rough-water characteristics of these configurations were found to be superior to both the planing and high-speed displacement hulls at speeds up to 60 knots.

(U) On the basis of measurements and observations of these tests, a I/3-

This page unclassified

scale manned model was designed and built by John K. Roper Associates, working under a subcontract from and in close coordination with Davidson Labora tory.

Design Features

(U) The novel features of this hydrodynamic support system will be described briefly here: a more complete exposition of principles and evolution of design details is given by Savitsky' in the report on model tests carried out.

The manned model represents a l/j-scale model of the prototype. Principal characteristics of both are tabulated below:

TABLE 1

PRINCIPAL CHARACTERISTICS OF SKI-CAT HIGH-SPEED CATAMARAN

	Prototype	Manned Model
Scale	3	1
Displacement, Ib	135,000	5,040
Length Overall	801	26 -81
Beam (Max imum), ft	36	12
Burst Speed, kt	60	34.6
Cruise Speed, kt	40	23
Take-off Speed, kt	20	11.5

(U) Figure 1 shows the general arrangement, outboard profile, and deck plan of the manned model. It is seen that the craft is composed of high length-beam ratio twin hulls with a submerged high aspect ratio main hydrofoil just aft of the LCG, hydroskis which stand-off below the bow of each hull, and submerged damping plates attached to the transom of each hull which also serve as ventilation plates over the propeller. At high speed, with the hull unported, the load distribution is 90% on the main foil, 6%

2

1

R-1699

Superior numbers in text matter refer to similarly numbered references listed at the end of this report.

on the damping plates and 4% on the hydroskis (for the design LCG condition). The foil submergence subsequent to hull unporting is one chord. An important feature is that there is no active control system in the design, Flaps on the main foil and hydroskis are manually positioned for loadvariations and for selected operating speeds.

(U) The design philosophy embodied in the hydrodynamic configuration is as follows: The high length-beam ratio hulls have a high beam loading $(C_{\Delta} = 1.5)$ and, at maximum speed, are designed to run at zero trim. As shown in Reference 2, this combination of large C_{Δ} and low trim angle results in extremely low "g" loadings when running in waves. Thus, hull clearance can be reduced (relative to conventional hydrofoil hulls) and the resulting hull impact with waves are tolerably small. This leads to reduced strut length with a considerable saving in structural weight, hydrodynamic drag, and simplicity in propulsive system.

(U) The catamaran hulls and connecting bridge structure are fabricated of $3/\frac{15}{100}$ inch marine plywood on spruce framing. The connection between the hulls and the center bridge is effected by sixteen 1/4-inch diam tie-rods, which affords convenient disassembly and transportability. A general arrangement and inboard profile, indicating some framing details of the hulls and bridge is given in Figure 2.

(U) The forward 1 ifting surface, a low aspect ratio planing surface, was selected because of reliability of flow separation at low speed and because of its low lift rate $(dC_1/d\alpha)$ compared to surface-piercing fully-ventilated hydrofoi is. Early flow separation assures a stabilized flow over most of the speed range while a low lift rate results in small impact loads in waves, The submerged aft plate has a lift rate approximately twice that of the hydroski and thus provides the required pitch damping without being exposed to wave impact loads. Pitch stability and control are provided by the combined pitch restoring moment and damping action of the hydroskis and damping Heave stability is provided primarily by the natural reduction in plates. lift on the main hydrofoil as it approaches the free surface and by the natural increase in lift as its submergence increases. Because of the small clearance between hull and foils, the hull itself will provide for pitch and heave stability if the craft motions exceed the hull clearance, Thus.

R-1699

the proposed hydrofoil system s inherently self-stabilizing and does not require any active control system. This was verified in the smooth- and rough-water model tests conducted at the Davidson Laboratory.

R-1699

The main foi 1 is a constant chord 6% thick ogive section with a design lift coefficient $C_{L}=0.115$ at burst speed. An ogive section is selected because of simplicity in construction and, consequently, low cost. In the 1/3-scale manned model, the scaled burst speed wikl be **34.6** knots so that the foil system will certainly be non-cavitating. Hence, tests of this manned model will provide data only on such important hydrodynamic characteristics as stability, control, seakeeping, and power requirements of a non-cavitating system, but will not deal with inception of cavitation, or its effect on performance.

(U) The hydrofoils, struts, and damping plates are $\phi\ddot{r}$ machined and welded aluminum.

(U) The craft will be propelled by two left-handed, fixed pitch, propellers mounted on an inclined shaft and driven by two Volvo-type BB170A **182** cu in, 6-cylinder gasoline engines, each rated at **170** HP at 5000 engine rpm. Reverse-reduction gears having a ratio of 1,52; are installed.

(U) Steering of the vessel is currently performed by a pair of rudders hung by pintles and gudgeons on the hull transoms, controlled by flexible push-pull roads actuated by a steering wheel in the cockpit. In spite of modifications to improve mechanical effectiveness of the actuating gear, the steering performance of the craft with rudders alone is not good: a combination of rudder and throttle control produces a great improvement in performance. Differential main foil flap adjustment is useful during turns while flying so that the craft leans into the turns. Further modifications of the craft and steering system to effect improvements in turning performance are now being considered.

(U) A summary of the measured weights and longitudinal centers of gravity of the components of the craft is listed in the table on the follow; ng page of this report.

TABLE 2

WE | GHT SUMMARY

Component	Weight	Forward Transom	Longitudinal Moment
Port Hul 1 Assembly	1710#	10. 63'	18177 ft-1bs.
Starboard Hul Assembly	1710	10.57	18075
Center Section Assembly	660	I 0. 57	6976
Hydrofoi 1	200	9. 70	1940
Propel lers	22	0	0
Light Ship	43 02 [#]	10.51	45168
Comp1ement	330	10.0	3300
Fael	168	0.67	• 111
Water	40	_10.0 _	400
Base	4840 [#]	10. 07	48757
Ballast (Nom.)	200	8.67	1734
Full Load Displacement	5040 [#]	10. 02'	50491 fr-lbs.

(U) The entire craft can be readily disassembled, mounted aboard a specially-designed Transport and Launching Trailer which has been supplied along with a small van suitable for towing the trailer and carrying support equipment for the manned model.

(U) More complete information on arrangements, and structural and installation details, are contained in the drawings for the 1/3-scale Manned Model of Ski-Cat High-Speed Catamaran. A list of these drawings is given in Table 3 on the following page of this report.

(U) Further details, including vehicle characteristics, foi 1 system characteristics, subsystem characteristics, equipment list, structural analyses, measured weights, hydrostatics, estimated drag, estimated thrust, and performance summary are included in the Design Notebook appended to the is report.

R-1699

JABLE 3

DRAWING LIST

Title of Drawing	Drawing No.			
General Arrangement Outboard Profile and Deck Plan	202-00.1	(Design	Evaluation)	
General Arrangement, I nboard Prof i le	202-00.2	(Design	Evaluation)	
Hull Lines	202-01.1	(Design	Evaluation)	
Structural Arrangement	202-01.2	(Design (2 shee	Evaluation) ts)	
Frames and Bulkheads	202-01.3	(Design	Evaluation)	
Machinery Installarion and Details	202-02.1	(install	ation)	
Piping Systems-Diagrammatic	202-05.1	(Maintena	ance)	
Main Foi 1 and Controls	202-08.1	(Design	Evaluation)	
Aft Foil and Controls	202-08.2	(Design	Evaluation)	
Ski Detai 1 s	202-08.3	(Design	Evaluation)	
Transport & Launching Trai ler	202-09.1			

Prog ress

Some key steps in the conduct of work on this project may be cited:

- Initiation of design work on 1/3-scale manned model (also Contract date for Modification 1 of Contract N00014-67-A-0202-0031 1 December 1973
- 2) Initiation of manned model construction

16 March 1973

- 3) Launching of manned model, and first flight trials 24 July 1973
- 4) Extended Builder's Trials (carried out under Modification 2 of contract)

31 July to 3 August 1973

5) Del ivery of manned model to NSRDC, Annapolis, reassemb 1 y and flight trials

September 1973

(U) Further evaluations of this manned model, including performance trials, wi 11 be carried out by NSRDC. Davidson Laboratory will act in an advisory capacity for these tests.

R-1699

This page unclassified.

PERFORMANCE

Extended Bui ider's Trials

(U) Extended bui ider's trials, prior to final delivery of the manned model to NSRDC at Annapolis, were carried out to evaluate proper ski and foil-flap settings for operation at various speeds, displacements and LCG's and proper rudder and foil flap settings for turning maneuvers. The principal dimensions of the test craft **are shown in Figure 3.** Motion picture records were also made of some aspects of the tests. These tests were authorized as an extension in scope of contract under Mod 3 of Contract N00014-67-A-0202-0031.

Speed Trials

(U) Effect of Displacement: Tests were carried out to determine the effect on speed capability as a function of increased displacements. for various main foil flap settings the speed and engine RPM's were measured for several throttle settings. The Bliss (catalog Fig. 850) pitot-iog which is mounted beneath the trailing edge of the starboard ski, and the readout dial gauge were calibrated by comparing diai readings with timed speeds for traversing a distance between two buoys whose spacing was measured with surveying equipment. The timed speed was found to be about 0.98 times the pitot-iog indicated speed.

(U) Results for the design displacement, 5040 ibs (139,600-1b full scale) and, two greater loads, 5540 lbs (153,470-1b full scale) and **6040** ibs 167,320-1b full scale) are presented in Table 3 and Figures 4 and 5. Propel **ier** RPM's and hull trims are shown as a function of measured speed in Figure 4, while the estimated drag curve (calculations are presented in the "Estimated Drag" Section of the design notebook) is compared with the estimated propeller thrust (from the section, "Estimated Thrust and Torque," of the design notebook) in Figure 5. The thrust estimates are based on measured speed and RPM and take into account in an approximate manner the effects of cavitation and shaft inclination.

(U) The scatter of the derived thrust estimates shown in Figure 5 is excessive and clearly indicates that one or another of the measurements are in **error**. By inspect ion of the propel ler thrust map, Figure 1-2 of

the design notebook, an estimate of the effect of erroneous RPM or speed measurements can be optained. For instance, consider data points from Test 1, Run 3, with 5-deg main foil incidence:

		(Fro	m Table	3, Test	1)
Run	Speed	RP	М	Est	Thrust
NO.	kts	Port	Stbd	Port	\$t bd
3-a	22.6	2240	1970	750	270
3 - b	23.4	2240	1970	650	250

The effect of speed on estimated thrust may be derived from these sets of observations where with similar RPM readings slightly different speeds were indicated. The ratio $(\Delta T/T_{ave})_{est}/(\Delta V/V_{ave})_{est}$, which is a measure of sensitivity of the thrust estimate to the speed measurement is 4.1 for the port propeller and 2.2 for the starboard propeller. Similarly, the sensitivity of the thrust estimate to the RPM measurement can be given in terms of a ratio $(\Delta T/T_{ave})_{est}/\Delta N/N_{ave})_{est}$, which gives values 7.3 for the first set of observations and 6.9 for the second set of observations. Thus, a 1% error in observed speed can produce a 2 to 4% error in estimated thrust while a 1% error in observed RPM can produce a 7% error in estimated thrust. The particular numerical values obtained for the sensitivity factors depend, of course, on both RPM and speed and, in general, would be derived from the propeller thrust maps (cf., Figure 1-2) in each particular case.

(U) The importance of accurate measurements of speed and RPM is clear and highly accurate measurements, including at least propeller torque, must be made during the comprehensive trials. It is also clear that the data obtained during these extended builder's trials are not sufficiently accurate to permit reliable and accurate estimates of thrust and other performance parameters to be derived. (The RPM measurements are especially suspect, since they imply an unreasonably large thrust differential.) Nonetheless, the data on speed and RPM achieved are roughly correct and indicate the satisfactory capability of the manned model to achieve high speeds with engine capabi 1 ity to spare. Another significant observation which can be made from these tests is that a rather long approach run (500 to 1000 yds is suggested) should be made to assure that the craft has achieved steady speed prior to recording data.

8

This page unclassified

R-1699

(U) The effect of increasing displacement on performance is mainly a consequence of increased lift coefficient on the foil while flying: 1) The take-off speed is slightly increased, with some added wetness, 2) for these preliminary tests, a somewhat greater tendency to intermittent loss of lift, evidently due to ventilation of the main foil (this tendency has been greatly reduced by blocking the air path down the strut fairing which encases the flap push-rod, as described later under "corrective actions"), 3) for a full-scale craft, cavitation inception might occur at a slightly lower speed due to the high lift coefficient and, 4) in the absence of cavitation or ventilation, the speed-power relation in the flying mode of operation which, for ski-cat, is primarily a consequence of skin-friction, is quite insensitive to changes in displacement. if the design displacement were changed, the main foil design characteristics would, of course, be adjusted and the relatively minor changes in performance mentioned above would be appreciably ameliorated. A more definitive evaluation of increased displacement will be made following the Annapolis tests.

(U) Effect of LCG: Additional tests were carried out at the medium displacement of 5540 lb. to assess the effects of variations of LCG position on speed performance. The ballast weights (five one-hundred-pound bags of cement) were shifted, first aft by the greatest amount possible, producing a 0.75-ft. change in LCG position, then forward by a similar amount. Again, runs were made at various main foil flap settings and speed and engine RPM indications recorded for several throttle settings. For the forward LCG condition, it proved to be quite difficult to keep the ski-tips out of the water with the standard ski incidence of 3.6-deg. relative to the hull and the operation was, consequently, quite wet. In an attempt to remedy this, it was decided to adjust the aft ski-control-rod, increasing the ski-incidence to 7.6 degrees. There was little difficulty then in keeping the ski-tips planing, but the spray generated was nonetheless much greater than for the normal of aft LCG location.

(U) Results of these trials are presented in Table 4 and in Figure 6, which is similar to Figure 4. Estimated thrust values are not tabulated because of their relatively low accuracy.

(U) <u>Effect of Ski-Height</u>: One group of tests were made at a displacement of 5240 lb (145,160-1b full scale) to evaluate the effect of increased clearance between ski and hull. The skis were adjusted an additional 3.75" downward with the standard 3.6-deg incidence. in operation, the hullwater clearance was favorably modified, bringing the main foils slightly closer to the water surface. Flying performance was generally satisfactory except that occasional intermittent loss of main foil lift occurred, perhaps due to air-drawing down the strut fairing encasing the flap push-rod, and the craft would come down from flying to planing mode for a brief time with attendant spray-generation from the ski-control-rods.

(U) Trials results for this case are given in Table 5 and in Figure 7.

Turning Trials

(U) Turning trials were carried out at a displacement of 5240 lb (145,160-lb full scale) with the design LCG location, 10-ft forward of the center of gravity.

(U) The measurements technique was admittedly crude: 1) the craft was driven up to speed along a straight path and the steady speed recorded,
2) a turn was initiated by rudders and differential main foil flaps, 3) the time for successive 30-deg heading changes (obtained from the compass) to occur was measured with a stop-watch and recorded. The radius of the turning circle was obtained from the relation:

 $2\pi \times \text{Radius } \times \frac{30 \text{ deg}}{360 \text{ deg}} = \text{Speed } \times \text{Time for } 30\text{--}\text{deg Heading Change}$

Results for turns executed with rudder and flaps only are recorded in Table 6. Some additional trials were run in which differential engine RPM was used: a) at low speed (estimated to he 6 MPH) with one engine off, b) flying, with 5-deg main foil flap angle, at about 28 MPH with the maximum differential engine thrust for which the pilot could maintain flying equilibrium together with maximum rudder action, and c) using ahead thrust on one propeller and astern thrust on the other, the craft can be turned quite expeditiously in its own length. Results for the additional tests with differential thrust are tabulated in Table 7. At high speed

10

This page unclassified

• 1

the turning circle radius appears to be reduced by about 25% by using differential propel ler thrust as well 1 as rudder.

R-1699

The large turning circles for this 30-ft LOA craft are associated (U) with two factors: a) the craft has exceptional directional stability, afforded by the large profile area of the aft strut, which acts as propeller shaft bearing support and cooling water intake, and b) the unbalanced rudder could not be turned through large angles at high speeds because of inadequate mechanical advantage in the linkage system. When this difficulty was first observed, the foot pedal linkage system was modified and the increased mechanical advantage afforded resulted in a useful improvement in turning performance: this revised system was used for the tests reported in Tables 6 and 7. The maximum rudder angle was still limited by the pilot's strength to about 5 to 10 degrees. The rudder angle for the tests reported was not accurately measured, but based on observed foot-pedal deflections, was in this range, i.e., 5 to 10 degrees.

Published data on turning performance of high-speed craft is sparse. Sugai² has reported results of research on maneuverability of a slender, twin-screw, twin-rudder, hard-chine boat model which show that turning diameters are greater for high speeds (Froude Numbers based on length up to 1.0). For rudder angles of 15-deg turning diameters in excess of 10 times the length are found, even with quite large rudders. The present craft, however, with Froude Number of 1.6 at **30** knots, requires a turning diameter of 30 to 40 lengths with the (small) maximum rudder angle. It is expected that a further rudder modification, preferably replacing the present unbalanced rudders with balanced ones, will substantially improve the turning capability. Further, the prototype design need not have the same profile characteristics as the manned model, viz., the cooling water intakes, which make the aft strut large, could be eliminated with air-cooled gas turbine engines.

Motion Pictures

(U) During the course of the extended builder's trials, motion pictures were taken of selected runs. Table **8** lists titles for the various scenes in the edited version of motion picture which was submitted to NSRDC on 15 January $1974.^3$

EQUIPMENT DEFICIENCIES, ANALYSES AND CORRECTIVE ACTION

R= 1699

Propel ler Pitch

(U) During the builder's trials, a loud noise and service vibration was observed to occur in the starboard engine compartment on at least three O.Cas ions, which caused the pilot to immediately shut down operation. These occurrences were invariably associated with very high speeds, i .e., engine rpm's above about 4200.

(U) The most likely explanation of this behavior is considered to be the existence of some form of critical (resonant) vibration of the engine and shafting, most 1 ikely a lateral (whirling) mode. The noi se was so intense that it was deemed to be excessively dangerous to risk extensive exploratory operation in the vicinity of this speed which might lead to a more conclusive diagnosis. instead, the propel ler's were re-pi tched (pitch increased) and a "full cup" blade modification incorporated, to increase the propeller torque and thrust for a given rpm. In this way the engine and propeller shaft rpm's can be kept below the dangerous initial speed while still absorbing and delivering adequate power, everthough the engine's full power rating applies at the appreciably higher value of 5000 rpm.

(U) The details of the original and modified pitch propellers are described in the U2stimated Thrust and Torque" Section of the Design Notebook.

Main Foi) Ventilation

(U) Ouring the builder's trials occasional instances of precipitous, intermittent, loss of lift on either one side of the main foil or both sides occurred, which resulted in the bow skis plowing in and substantial spray and wetness on deck and in the cockpit. This behavior was generally (but not always) quickly corrected by a slight change in speed, foil flap setting, or engine rpm's. it was diagnosed as pro&ably due to ventilation over part of the main foil by air flowing down through the flap pushrod enclosure of the inboard struts (see Figure 2).

(U) This air-drawing was corrected by blocking rhe path of air with a sponge-rubber pad inserted in the push-rod enclosure near the bottom of the strut. The flap adjustment push-rod slides easily in this pad and the water-soaked sponge effectively prevents air-drawing.

R-1699

REFERENCES

- Savitsky, D. and Roper, J.K., "Hydrodynamic Development of a High-Speed Hydrofoil Catamaran (U), "Davidson Laboratory, Stevens institute of Technology, Report SIT-K-73-1671, December 1973.
- Sugai, K., "On the Maneuverability of the High-Speed Boat," Japanese Transportation Technical Research Institute, Tokyo, Vol.12, No.11, 20 March 1963 (Bureau of Ships Translation No.868).
- 3. Letter, dated 15 January 1974, J. Mercier (DL) to G. Springston (NSRDC) conveying one copy 16mm motion pictures of "A One-Th ird Scale Manned Model of Ski-Cat, High-Speed Hydrofoi 1 Catamaran."

TABLE 3

RESULTS OF EXTENOED BUILDER'S TRIALS SPEED TRIALS AT THREE DISPLACEMENTS

RUN	MA I N FOIL	SPEED	TRIM	PROPE		l'S	ESTIM	ATED TH	RUST
	FLAP	kto	doa	Port	Stba	Ave.	Ib	Stba lh	lotai
	ueg	KIS	ueg			_	15	U	u
TEST	<u>l</u> : Di	spl = 504	10 !bs, I	_CG =	10-tt fo	rward tr	ansom		
1	15	13. 9	1.5	1580	1710	1645	•	-	-
	15	15.6	1.5	, 710	1840	, 775	*		1400
	15	16.5	1.5	1840	1840	, 840	700	700	1400
2	10	19.1	1.0	1840	1840	, 840	470	470	940
3	5	22.6	1.0	2240	, 970	2105	750	270	,020
	5	23.4	1.0	2240	1970	2105	650	250	900
	5							276	552
	5	25.2 24.3	1.0 1.0	21015	21015	2105 2105	276 263	263	526
4	0	26.9	2.0	2500	2105	2300	755	200	955
	0	31.3	1.5	2630	2630	2630	480	480	960
	0	33.0	1.0	2760	2700	2730	530	470	,000
	0	33.0	1.0	2760	2760	2760	530	530	060
TES	<u>т 2</u> : С)ispl = 55	40 lbs, l	_CG ≍	10 ft-for	ward tr	ransom		
14	15	15.6	2.5	1645	1840	1740	500	750	1250
	15	16. 9	2.0	, 840	, 775	, 810	650	560	1210
	15	20.8	1.0	1840	2105	1970	370	740	1110
10	10	16.5	3.0	1645	1775	1710	400	570	970
11	10	18.7	2.25	1775	1940	1860	420	640	.060
	10	23.4	1.0	2040	2170	2105	390	570	960
9	5	21.7	2.0	2040	2170	2105	520	700	1220
8	5	23.9	1.5	2070	2240	2155	380	680	1060
15	5	23.5	2.0	, 975	2170	2070	280	530	810
	5	24.3	2.0	1975	2300	2140	250	700	950
	5	25.?		2170	2300	2235	350	590	920
7	5	28. 2	1.0	2300	2470	2385	320	560	880
13	0	27.8	2.5	2370	2565	2470	460	780	1240
12	0	28.7	1.75	2435	2565	2500	470	700	1170

[Cont'd]

*Notes : 1) Based on measured rpm and speed and Design Notebook Fig.I-2.

2) The estimated thrusts are considered to be of questionable reliability and accuracy, probably because measurements of rpm and speed are not sufficiently accurate.

R -	1	6	9	9
••	•	-		

TABLE	E <u>3</u> (C	ont'd)			١				
RUN	MAIN FOIL FLAP deg	SPEED kts	TR I M deg	PROPE Fort	LLER RPI Stbd	M'S Ave.	EST I Port Ib	MATED TI Stbd Ib	HRUST ^X Total Ib
TEST	<u>3</u> : Di	sp1 = 60	40 1 bs,	LCG = 1	O-f t fo	orward tr	ansom		
18	15	16.5	2. 25	1840	1645	1740	670	430	1100
16	10 10	22. 1 24. 3	2.0 2.0	2105 2240	1975 2105	2040 2170	580 590	400 380	980 970
20	5 5 26	23.5 9 27 . ¹ 4	2. 0 1.75 1.5	2240 2370 2370	2170 2105 2:	2205 300 225 2335	650 540 450	540 390 160	1190 700 840
17	5	26.9	1.0	2435	2240	2335	660	350	1010
19	0 0	26.5 27. 8	2.5 2.0	243 5 2565	2235 2300	2 <u>33</u> 5 2430	600 780	300 360	900 1140

,,,

"Notes : 1) Based on measured rpm and speed and Design Notebook Fig. 1-2.

2) The estimated thrusts are considered to be of questionable reliability and accuracy, probably because measurements of rpm and speed are not sufficiently accurate.

CONTIDENTIAL

TABLE 4

RESULTS OF EXTENDED BUILDER'S TRIALS SPEED TRIALS AT TWO ADDITIONAL LCG'S

RUN	MAIN FOIL	SPEED	TRIM	PROPE	LLER RP	MS
	FLAP			Port	Stbd	Ave.
	deg	kts	deg	1 b	16	16
<u>TEST 4:</u>	Displ =	5540 lb, L	CG = 9.25-ft	forwar	d trans	som
23	15 15	19.5 20.4	۱.5 1.5	1910 1975	1840 1840	1875 1910
21	10	21.7	1. 75	2040	1840	1940
22	5 5 5	21. 3 23. 5 26. 1	2.0 2.0	2040 2105 2235	1875 2105 2105	1960 2105 2170
	5	26. 5	1. 75	2300	2170	2235
25	5	26. 5 27. 4 28. 2	1.5	2300 2435 2435	2170 2235 2235	2235 2335 2335
24	0	28. 2 29. 5	2.0	2500 2565	2370 2435	2435 2500
<u>TEST 5</u> :	Displ =	5540 lb, L	CG = 10.75-f	t forw	rd tra	nsom
25	10 10 10	24. 3 26. 1 27. 8	1.0	2235 2300 2370	2105 2170 2300	2170 2235 2335
26	5 5 5	26. 5 27. 8 28. 2	1.5	2300 2370 2500	2235 2270 2235	2270 2320 2370
<u>TEST 6</u> :	Displ = Ski Inc	= 5540 Ib, cidence = 7.	LCG = 10.75-f 64 degrees	t forw	ard of	transom
29	15 15 15 15	13. 0 16. 5 17. 4 18. 2	3.0 2.0 2.0 2.0	1710 1840 1975 1975	1580 1775 1710	1645 1810 - 1845
27	10 10 1 a	21. 7 23. 9 25. 2	1.5 1.0	2040 2170 23 00	1975 2105 2105	2010 2140 2205

[Cont'd]

TABLE 4	(Cont'd)
---------	----------

ð

RUN	MAIN FOLL SPEED		TRIM	PROPELLER RPM S		
	FLAP deg kts	deg	Port 1b.	Stbd 1b	Ave. 1 b	
test 6	_ Cont' d:					
31	5 5	.4 _0.5	2. 0 2. 0	2300 2435	2040 2235	2170 2335
28	5 5	25.6 29.5	1.5 1.25	2300 2500	2235 2370	2270 2435
30	0 0 0	28.2 29.5 30.0	2.0 1.75	2500 2630 2630	2370 2500 2570	2435 2565 2603

R-1699

CONFIDENTIAL

TABLE 5

RESULTS OF EXTENDED BUILDER'S TRIALS SPEED TRIALS WITH MODIFIED SKI-ELEVATION

RUN	MAIN FOIL	SPEED	TRIM	PROPELLER RPM S		
	FLAP			Port	Stbd	Ave
	deg	krs	deg	1b	lb	10-
<u>TEST 9:</u>	Displ= Skislov	5240 lb, L(wered 3.75 i	CG = 10-ft nches	forward	trans	D m
43	10	20.0	1.75	1910	1840	1875
44	10	22.6	2.0	2040	1975	2010
41	5	26. 9	2.0	2300	2170	2235
42	5	27.4	1.5	2370	2300	2335
39	5	27.8	1.0	2370	2170	2270
40	5	27.8	1.5	2435	2105	2270
45	0	29. 5		2630	2435	2535

.

CONFIDENTIAL

R- 1669

TABLE 6

RESULTS OF EXTENDED BUILDER'S TRIALS TURNING TRIALS WITH RUDDER AND DIFFERENTIAL FLAP ONLY

Table 7: Displ = 5240 lb, LCG = 10 ft forward of transom

RUN	MA I N Fott.	SPEED	PROPE	LLER	RPM S	RUI	DER	TIME FOR 30 ⁰ CHANGE	RADIUS OF TURNING
1.0011	FLAP		Port	Stbd	Ave.			IN HEADING	CIRCLE
	deg	kts	1 b	1b	lb			sec	ft
32		≈5	1120	1180	1150	max	port	20. 3	280
			1120	1180	1150	nax	stbd	19.2	270
33	10	19. 5	1975	1775	1875	max	stbd	11.6	730
	10	19.5	1975	1775	1875	MaX	port	9.4	590
	10	20.4	2040	1840	1940	max	port	9.4	620
34	5	25. 2	2300	2105	2200	nax	port	5.2	420
	5	25. 2	2300	2105	2200	nax	port	5.2	420
	5	25. 2	2300	2105	2200	nax	port	5.8	470
	5	25. 2	2300	2105	2200	nax	port	6. 2	500
35	5	25. 2	2300	2040	2170	nax	stbd	9.0	730
36	0	26. 9	2500	2240	2370	HAX	stbd	5.8	500
	0	26. 9	2500	2240	2370	ni ax	port	6. 8	590
	0	26. 9	2500	2240	2370	nax	port	7.2	620
	0	26. 9	2500	224(2370	nax	port	7.0	610

-CONFIDENTIAL

R-1699

TABLE7

RESULTS OF EXTENDED BUILDER'S TRIALS TURNING TRIALS WITH RUDDER DIFFERENTIAL FLAP AND DIFFERENTIAL ENGINE RPM

Test 8: Displ = 5240 lb, LCG = 10-ft forward of transom

RUN	MA N Foil	SPEED	PROPE	LLER RI	PM S	RUDDER	TIME FOR 30 ⁰ Change	RADIUS OF TURNING
	FLAP		Port	Stbd	Ave.		IN HEADING	CIRCLE
	deg	kts	1 b	lb	1b		seç	ft
37	-	≈ 5	0	1640	820	Centered	10.6	180
			0	1640	820	Centered	11.2	190
			0	1640	820	Max stbd	6.1	100
			0	1640	820	Max stbd	6. 7	110
38	5	24. 3	Not	Recor	ded	Max port	3.0	240
			Not	Recor	ded	Max port	5.4	420
			Not	Recor	ded	Max port	3.2	250
			Not	Recor	ded	Max stbd	4.2	330
			Not	Recor	ded	Max stbd	5.8	460

R-1699

This page unclassified

TABLE 8

TITLES OF MOTION PICTURE RECORDS OF A ONE-THIRD SCALE MANNED MODEL OF SKI CAT, HIGH-SPEED HYDROFOIL CATAMARAN FOR NAVAL SHIP SYSTEMS COMMAND CONTRACT NO0014-67-A-0202-0031 JULY-AUGUST 1973

> BUILDER'S TRIALS AT LAKE NUBANUSIT NEAR HANCOCK, N. H.

MANNED MODEL ON TRANSPORT AND LAUNCHING TRAILER PRIOR TO LAUNCHING

LAUNCHING OPERATIONS 24 JULY 1973 MODEL THEN TOVED TO MOORING FOR FURTHER OUTFITTING

LOW SPEED TURNS AND TAKE- OFF

SPEEDS FROM 19 TO 35 MPH DISPL = 5540 LBS

> **TAKE-OFF** AND FLY-BY DISPL = 6040 LBS

> **TURNING PERFORMANCE DISPL = 5240 LBS**

BOW SKIS LOWERED 3.75-1N TO INCREASE HULL-WATER CLEARANCE DISPL = 5240 LBS

PILOT-INDUCED "GALLOPING" DEMONSTRATES CRAFT'S RUGGEDNESS AND MILD IMPACT BEHAVIOR

THE END

DAVIDSON LABORATORY FILM NO. 78

This page unclassified

5,040 15 CRAFT

FIG.4. RPM AND TRIM VERSUS SPEED FOR VARIOUS DISPLACEMENTS, NORMAL LCG (10.0 FT FORWARD OF TRANSOM

FIG. 5. COMPARISON OF ESTIMATED DRAG (FROM DESIGN NOTEBOOK, FIG. A31 WITH ESTIMATED PROPELLER THRUST BASED ON MEASURED SPEED AND RPM AND DESIGN NOTEBOOK FIG.I-2

FIG.6. RPM VERSUS SPEED FOR VARIOUS LCG POSITIONS MIDDLE DISPLACEMENT=5540 LBS

CONFIDENTIAL

FIG. 7. RPM VERSUS SPEED, NORMAL LCG, 5240 LB DISPLACEMENT, SKIS LOWERED 3.75 IN.

R-1699

CONT

TULINT

TAT

APPENDIX

DESIGN NOTEBOOK

- A. Vehicle Characteristics
- B. Hull Characteristics
- t. Foil System Characteristics
- D. Equipment List
- E. Structural Analyses
- F. Measured Weights
- G. Hydrostatics
- H. Estimated Drag
- I. Estimated Thrust and Torque

R-1699 A-1

This page unclassified

VEHICLE CHARACTERISTICS

This page unclassified

R-1699 ∧-2
TARGET WERNES

This	page	unclassified
------	------	--------------

HULL	GROUP	/	1250
FOIL SISTER	"	3	.350
MACHINERY	,	2,3	1800
OUTFIT-	"	4.5,6	200
LIGHT WRIGHT			4100
Cerw			330
		、	4430
USEFUL LOAD (PAYLO	nd y Fuer	-)	610
			5040 -

HULL CHARACTERISTICS

$$C_{A} = \frac{A}{RV - Z^{A}}$$

$$A = \frac{G}{2} = 2520 \text{ Mmall}$$

$$R = 40^{4} - 7.62^{4}$$

$$C_{A} = \frac{2520}{(1+)(1+0)^{3}} = 8.5$$

$$K = \frac{C_{A}}{(52)^{2}}$$

$$L = 320^{4} = 26.62^{4}$$

$$\frac{L}{73} = \frac{320}{20} = 16$$

$$K = \frac{8.5}{(1+0)^{2}} = .0332$$

$$\frac{L}{7} = \frac{26.67}{(250)^{3}} = 7.86$$

This page unclassified

R-1699 B-2

(PACKINSON)

.

FOIL SYSTEM CHARACTERISTICS

 $2 \lambda_s = (.04)(5040)(\frac{100}{24.5})^* = 35.0^* \qquad \lambda_s = 12.5^{-4}$ $\lambda_s = 5040 - (52.5 + 35) = 4952.5^{+}$

R-1699 C-3

<u> Skiller - Charpers pistics</u>

$$\frac{A_{L}}{S} = \frac{S_{L}}{S_{L}} \qquad ((l = constraint))$$

$$M = \frac{S_{L}}{S_{L}} = \frac{S''}{S_{L}} = \frac{10!}{(3420)(.67)^{2}} = .066$$

$$C_{REQ} = \frac{K_{S}}{g_{L}} = \frac{10!}{(3420)(.67)^{2}} = .066$$

$$T = 49^{0}$$

$$C_{L} = .012 T^{-11} \chi^{1/2} = \left[\frac{.066}{.012(4!)^{11}} \right]^{1/2} = 1.20$$

$$L = \lambda \cdot b = (1.20)(.67) = .80' = 9.6''$$

$$S = B_{L} = (67)(.60) = .54 = 7^{10}$$

This page unclassified PRATE / IFT CHARACTERISTICS ALL CATEDS (CL + CONSTRANT) & = SPAJ = 32" = 2.67" C = AVG. CHOED = 6718 = 12"=1" Sp = PIANFUNA APIA = (2.63)(1) = 2.63 == 2 DEPTH / CHON'S RATIO = 4/ = ,33 ASPECI RATIO = 2.6) = 2.6) (TN 4168) K2 = ,73 K= = .72 $\frac{dCL}{dk} = \left(\frac{2\pi}{523}\right) K_{1} K_{3} \left(\frac{19}{1000}\right) = \left(\frac{2\pi}{523}\right) (13) (13) \left(\frac{2.67}{2.67}\right) = .0302 / 000, \ \alpha$ FLAR CHORD RATIO = 4 - 33 FLAP : PAN RATIO = / (X5)c = .62 (TN 3911) Ke = 1.12 K1 = 1 elC1 = (elC2)(X5), (K,)(K) = (,0302)(,62)(12)(1) = . 021 /005. 5 $C_{RrEQ} = \frac{157}{9} = \frac{157}{(3420)(2.47)} = .0165$ X = 05 = <u>.0165</u> = .79°

R-1699 C-4

د الاقتياب وال

$$\frac{G_{L,M,M,L}}{D_{L,M,L}}$$

$$\frac{D_{L,M,M,L}}{D_{L,M,L}} = \frac{1}{L_{L}} =$$

R-1699 c-6

V= 14.4 KNOT. (MINIMUM FLYING SPEED) $C_{L} = \frac{4952}{(592)(12)} = .692$ $\alpha = .13^{5}$

CAMPATION CHECK

$$\frac{E_{OK}}{V_{c}} = \left[\frac{K - (A_{c}) (K_{c})}{2.54 (K_{c})} \right]_{cov}^{V_{c}} \frac{1}{cov} \frac{1}{V_{c}} \\
K = (H, 7) (H4) + (H, K_{c}) (64) = 2191 \text{ psr} \\
K_{r} = (H, 7) (H4) + (H, K_{c}) (64) = 2191 \text{ psr} \\
K_{r} = (H, 7) (H4) + (H, K_{c}) (64) = 2191 \text{ psr} \\
K_{r} = (H, 7) (H4) + (H, K_{c}) (64) = 2191 \text{ psr} \\
K_{r} = (H, 7) (H4) + (H, K_{c}) (65) = 4536^{2} \\
C_{r} = H_{r} + (H, 7) (H5) + (H5) (16) \\
V_{c} = \left[\frac{2191 - (A_{c}) (H5) + (H_{c})}{(2.54)} \right]_{cov}^{V_{c}} \frac{1}{(H5)} = 102.35^{2} \text{ fr} / \text{sc} \\
V_{k_{c}} = \frac{102.35}{(H6)} = 63.52 \text{ scors}$$

.

R-1699 C-7

$$\frac{S_{TK'UT}}{V_{c}} = \left[\frac{K}{2.54(3/2)}\right]^{V_{c}} = 2117 \text{ psr}$$

$$K = (14.5)(144) = 2117 \text{ psr}$$

$$\frac{1}{2} = .10$$

$$V_{c} = \left[\frac{2117}{2.54(.10)}\right]^{V_{c}} = 91.29 \text{ pr}/scc$$

$$V_{k_{c}} = \frac{91.29}{2.54(.10)} = 54.02 \text{ enors}$$

$$V_{k_{c}} = \frac{91.29}{1.69} = 54.02 \text{ enors}$$

$$\frac{S_{TAY,NY-} - f_{OM} - f_{NW} e^{i(SCTION)}}{V_{c}}$$

$$V_{c} = \left[\frac{K}{C_{R_{m}} + C_{R_{m}}}\right]^{V_{m}}$$

$$K = (14, 3)(144) + (1.163)(64) = 2191 \text{ psc}$$

$$C_{R_{DM}} = 2.541 \frac{1}{2}(1 + .6C_{c})$$

$$\frac{1}{2}(1 - .025)$$

$$C_{c} = .11$$

$$= 2.54(.025) + .6(.1) = .2525^{-1}$$

$$C_{R_{MW}} = 2.54\frac{1}{2}(1 - .254)$$

$$\frac{1}{2}(1 - .254)$$

$$V_{c} = \left[\frac{2.941}{.25765 + .254}\right]^{V_{c}} = 65.51 \text{ rt /scc}$$

$$V_{K_{c}} = \frac{65.51}{1.47} = .38.76 \text{ KWOTS}$$

$$G_{ENVIRON}$$

$$H = C_{H} g S_{E} c_{F}$$

$$S_{E} = (G)(.25) = 1.5 m^{-1}$$

$$C_{F} = 3'' \cdot .75''$$

$$C_{H} = (MC_{H}) C_{E} + (MC_{H}) S$$

$$(MC_{H}) = .095$$

$$(MC_{H}) = .095$$

$$(MC_{H}) = .0105$$

$$C_{H} = .095 C_{E} + .0105 S$$

C+ = .095 Cl+.0105 & - (.095) (.697) + (.0105) (15.3) = .2269

H = (.2269)(592)(15)(25) = 50.4 FT #

 $P = \frac{50.4}{.125} = 403^{=\pm}$

R-1699 C-9

à. C

EQUIPMENT LIST

PROPERSION EQUIPMENT

2

4

2

2

4

12

1'

8

ENGINES

VOLVO PENTA BBIDDA WITH FOLLOWING EQUIPHENT 1.52:1 REVERSE - REDUCTION GEAR 12V, BBA. ALTIPNATOR REFIEL INSTRAINT FANGL SINGLE KRILL CONTECL WITH CABLES (22') PROJECTER SMATT CONDUNG (1% SMART DIAM.)

TOROUS Marie Coupunts

FEDIANL MODEL 43A 4"FLANGE, 1"SHAFT DIAM.

PRODUCE SUDATS.

15" ENAM, 96 5" LONG, 14" KCY WAY MITTI NUTS & NEYS & PINS. 17-41 PL STANLISS

PEDRELLES

CONVIEINN EPONZE, MARE 1315 ZAN, X 16" DITCH, L.H. 116" SHAFT DIAM.

PROPELLER SUMET BEARINGS BV BIPLEY - BUNEFISH

116° summer anna

FROMINE SUMPT SLALS

O-Entes PRICE PRP 568-216 Coypound 4200-70

Super-los Hose & Comps

1%" 1.D. HOSE BLISS FIG. QS 200 - M365 CLA-105 PROMUSON LAUMANIA

This page unclassified

SIMPT SENE SUPPLY Hove & CAMPS

14" 1.D. MOSE BLISS FIL. QS200-M365 CLAMPS

This page unclassified

10' 4 129₂923 *****

For Signal Eminarial T D-4

Varie -

SHITH VALVE COUP. 316T - 36" FOMALE PIRE THEAD Summers, But VALVE ٦,

2,

EXMOUT FOUNDAENT

R-1699 D-6

This page unclassified

Hose & Cenanas

3" I.D. MOSE Bins Fil, QS200 - M485 CLAMPS

Burnt	Augura Ir. Im
Liller 1-	GOIPHY ALL
We want to at the state of a state of the st	and the state of t

Burn: Purip (Dower) Buss File, 36960-0000

Hose + CLAMPS

BLISS FIG. 1378, 34" 1.D. TUBING BLISS FIG. QS200 - MIRS CLAMPS

BRGE POMP ENDER

BILGE Porto (MANUAL)

Buss Fis, 2658

ジン こ

VENTILATION EQUIPMENT

R-1699 D-8

This page unclassified

2

1

BUSS FIG. 2701, 3"DIAM, ID'LENGTHS

BLOWFE SWACH

BLISS FIG. 1152M

ELECTRICAL EQUIPMENT	D- 5	This page unclassif	ied
BATTORIES SEARS 28W96482N 12N. 2019.H		24,9	د ک
BARE 28W 21808		2, 5,	4 4

R-1699

٠

CONTROL	EQUIPHICAT
Distances in the second state	A Construction of the second se

CORLE CEARORS & SALAS

BALL JOINTS

CLEMSES

Morse	A29132
MOESCE	A42034

This page unclassified

ς

4

٢

2

2 2

DUTTIT

/

STRUCTURAL ANALYSES

This name unclose if: a

STREES CERECTED	R- 1699 E - 2	This name unclassified
TVAN. STRESS	Propositi	WAL KINT
	Mariocary	SPRUCE
FREXIDENTL IL GRAIN	2960	6740
Evening 11 "	6400	5610
Beneinly 1 "	1100	210
SHEAR 11 DEL "	, 1230	1150
SHEAR' ROLLING	369	

REFERENCE : BAUMEISTRY MARKS, STANDAND HANDBOOK FOR MECHANICAL TRENSECES" SEVENTH EDMON, Mc GROW - HILL.

Nore :

FLEXURAL STEENGTH OF MANUCANY PLYNDOD WAS VERIFIED BY TEST.

$$\begin{aligned} \mathcal{T}_{H} = 2(.04) = .094'' \\ \mathcal{T}_{H} = 2(.04) + .000)^{2} (.04)(0) = .000468 \\ \mathcal{T}_{H} = 2(.04) + .000)^{2} (.04)(0) = .000468 \\ \mathcal{T}_{H} = \frac{.000465}{.074} = .00498 \\ \mathcal{T}_{H} = \frac{.000465}{.074} = .00498 \\ \mathcal{T}_{H} = .0094'' \\ \mathcal{T}_{H} = .094'' \\ \mathcal{T}_{H} = .0044'' \\ \mathcal{T}_{H} = .004'' \\ \mathcal{T}_{H} = .004''' \\ \mathcal{T}_{H} = .004''' \\ \mathcal{T}_{H} = .004''' \\ \mathcal{T}_{H$$

$$\begin{aligned} f_{11} = \sum (\cos \cos i - i + i) = \frac{3}{2} (\cos \sin i - i + i) = \frac{3}{2} (\cos \sin i - i + i) = \frac{3}{2} = \frac{3}{2} (\cos \sin i - i) = \frac{3}{2} = \frac{3}{2} = \frac{3}{2} (\cos \sin i - i) = \frac{3}{2} = \frac{3}{2}$$

R-1699 E-4

$$\frac{Discurd Londows}{2} = MPRIMUM PRITTUDE = 1.33'$$

$$\frac{1}{2} = SIME EDTE (EVER FRAL FROM MAY, ME) = \sqrt{29} = \sqrt{23(43)(13)} = 9.23 \text{ m/s}$$

$$B = MUKL ZEADERSE + 26.5°$$

$$V_{P} = REVERSENDED IELOCHTY OF STREAMTION LIVE = \left(\frac{1}{2}\right)\frac{1}{23} = \left(\frac{1}{2}\right)\left(\frac{9.13}{15}\right) - 29.1 \text{ fr}/\text{sc}$$

$$P_{P} = STREMATION PRESSURE = \left(\frac{0}{2}\right)(V_{P})^{2} = \left(\frac{1}{2}\right)\left(\frac{29.1}{15}\right)^{2} = 5.88 \text{ period}$$

$$\frac{STREES Charton Pressure = \left(\frac{0}{2}\right)(V_{P})^{2} = \left(\frac{1}{2}\right)\left(\frac{29.1}{15}\right)^{2} = 5.88 \text{ period}$$

$$\frac{STREES Charton Pressure = \left(\frac{0}{2}\right)(V_{P})^{2} = \left(\frac{510}{2}\right)\left(\frac{9.1}{12}\right) = 3.06 \text{ m}^{2}/\text{m} \text{ mintrud}$$

$$\frac{1}{2} = RENDING FROMONT IN PRATING = PERIOD E (SSU(PS))(1) = 3.06 \text{ m}^{2}/\text{m} \text{ mintrud}$$

$$\frac{1}{2} = RENDING FROMONT IN PRATING = PERIOD E (SSU(PS))(1) = 3.06 \text{ m}^{2}/\text{m} \text{ mintrud}$$

$$\frac{1}{2} = CLETION MODULUS OF FROMONT = 00447 \text{ mintrud}$$

$$\frac{1}{2} = CLETION MODULUS OF FROMONT = 00447 \text{ mintrud}$$

$$\frac{1}{2} = RENDING STREES IN PRATING = \frac{1}{2} + \frac{500}{10041} = 2062 \text{ period}$$

$$(2960)$$

- 12 = FRAITING DESIGN PRESSURE = 5.88 per
- Re = LONGITUDINAL DESIGN PRESSURE = A p = (.6) (5.86) = 3.53 pin

$$\frac{S_{RCLS} C_{HECK}}{L = SPAN = 15.75"}$$

$$L = SPAN = 15.75"$$

$$M = PRNEL MIDTH = 3.5"$$

$$M = RENDING MOREAST IN ADMITUDINAL = p \frac{1}{12} \frac{1}{12} = (3.52) \frac{(15.75)^2 (3.5)}{12} = 255"$$

$$N^{R}$$

$$Z = SECTION MEDIULS OF CONSTUDINAL = (1)(1)^{2} = .167 .N^{2}$$

$$A = RENDING STRESS M CONSTUDINAL = \frac{17}{2} = \frac{255}{.167} = 1520 \text{ pai} (6200)$$

R-1699 E-6

This page unclassified

$$\frac{Dr_{MM}}{\Delta r_{MM}} = \frac{1}{2} \frac{1}{$$

HULL BOTTOMY FROMES (FOIL FOLNONDA)

$$\frac{De_{1}(A,J)}{V} \frac{don b}{V} = 1875^{*} \quad (nssumes and on farme)$$

$$\frac{Sinvest}{V} \frac{G_{1}(A,J)}{V} = 1875^{*} \quad (nssumes and on farme)$$

$$\frac{Sinvest}{V} \frac{G_{1}(A,J)}{V} = 14^{*}$$

$$M = 2GNDINS MOMENT IN FRAME = \frac{DL}{V} = \frac{(1575)(14)}{V} = 3280 \text{ is}^{*}$$

$$M = 2GNDINS MOMENT IN FRAME = R(15) + 10 = .40^{*}$$

$$M = 2GDTN CFFRAME = 4^{*}$$

$$R = 2GDTN CFFRAME = 4^{*}$$

$$R = 3EGTDN MODULUS OF FRAME = \frac{M}{G} = \frac{3280}{107} = 1.07 \text{ is}^{3}$$

$$M = 8GNDINS SINESS IN FRAME = \frac{M}{2} = \frac{3280}{107} = 3075 \text{ period} \quad (2960)$$

 $\frac{\text{Keels}}{\text{E-8}} \quad (\text{Form Townow}) \qquad \overset{\text{R-1699}}{\underset{\text{E-8}}{\overset{\text{E-8}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{E-8}}{\overset{\text{E-8}}{\overset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}}{\underset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{E-8}}{\overset{\text{Construct}}}{\underset{\text{Construct}}}}{\underset{E-8}{\overset{Construct}}}{\underset{\underset{E-8}}{\overset{Construct}}}{\underset{\underset{E-$

HULL	Side	PROVING	

 $\frac{\partial c_{max} \lambda (n_{max})}{\partial c_{max}} = 1.97 \text{ point} (2^{\circ} S.W. OVER WITH)$ $\frac{\partial c_{max} \lambda (n_{max})}{\partial c_{max}} = 1.97 \text{ point} (2^{\circ} S.W. OVER WITH)$ $\frac{\partial c_{max} c_{max}}{\partial c_{max}} = 4^{\circ}$ $M = SAMN = 4^{\circ}$ $M = BENDING MOMENT IN PLATING = \frac{p l_{Max}}{12} = \frac{(1.9)(4)(1)}{12} = 2.62 \text{ in}^{\circ}/N \text{ minth}$ $\frac{1}{2} = \frac{p l_{Max}}{12} = \frac{3}{16} \left(H.P. FACE CEAN LONG. \right)$ $\frac{1}{2} = \frac{p control g}{12} = \frac{p control g}{12} = \frac{1782}{12} \frac{p cont}{12} (2960)$

R-1699 E - 9

HULL	Sinc	LONGINDINAL

DESIGN LOODING p = (2+265)(44) = 1.67 per

 $\frac{STRESS CHECK}{L} = SPAN = 15.75"$ L = SPAN = 15.75" L = ARNEL MIDTH = 5" $M = BENDING MOMENT IN LONGITUDINAL = P \frac{PH}{P} = \frac{(160)(155)^2(5)}{12} = 193 \text{ in}^{#}$ $Z = SECTION MODULUS OF LONGITUDINAL = (1)(1)^2 = .167 \text{ in}^3$ $R = BENDING STRESS IN LONGITUDINAL = \frac{PH}{P} = \frac{193}{.163} = 1160 \text{ per}^{*}$ (500)

R-1699 E-10.

KNUCKLE PLATING	R-1699 E-I]		
		This page unclas	ssified
DESIGN LONDING			
$A = \left(2 + \frac{8}{12}\right) \left(\frac{1}{1\sqrt{12}}\right) = 1.$	19 per		
STREES CHACK			
l = smw = 6"			
NO = UNIT NIDTH = 1"			
M = ECNOING MOMENT IN	J PLATINS - plin	$= (1.19)(3)^{2}(1) = 3.$	ואיזבינה און "נו דב
> PLATING TANCENESS	= 3/16" (M.P. F.	E GRAIN LONS.)	
Z = SECTION MODULUS OF	- REATING = .00147	in anora	
		•	(1001)

A = BENDING STREES IN PLATING = <u>M</u> = <u>3.57</u> = 2429 price (2960) 2 .00147

KNISCHER .	LONGINDOWAL
And the other designment of th	

This page unclassified

R-1699 E-12
R- 1699 E- 13

This page unclassified

$$\frac{D_{x \leq 16.3} \ \text{Londing}}{p} = \frac{(2 + \frac{16}{12}) \left(\frac{14}{144}\right)}{11} = 1.48 \text{ pin}$$

SPRESS CHACK

$$l = SHN = 19"$$

$$d = FRNEL WIDTH = 16"$$

$$M = RENDING MONICUT IN FRAME = p \frac{(16 - (148)(19)(1)}{12} - 212 m"$$

$$d = CFFECTIVE THICKNESS OF FRAME = .15" (14"H.P. FACE CHINN VERT.)$$

$$l = JEDENTH OF FRAME = 4"$$

$$2 = SECTION HODDILUS OF FRAME = \frac{12}{12} = \frac{(15)(4)}{12} = .40 N^{3}$$

$$A = EENDING STRESS IN FRAME = M = \frac{212}{14} = 1281 \text{ pmu} \qquad (940)$$

DECK PROTING	R-1699 E-14.
	This page unclassified
DESIGN LOADING	
12 = (2) (64) = . 89 per	(2' S.W. OVER DICK)
STELSS CHECK	
R = SPAN = 14.25*	
NO = UNIT WIDTH = /"	
M = PENDING MONENT IN PLATING	= $p \frac{\ell^2 w}{\ell^2} = (\frac{89}{\ell^2})^{\frac{1}{2}} = 16.14 \text{ in } \frac{9}{\ell^2} \text{ in mistry}$
* = PLATING THICKNESS = 3/4	" (M.P. FACE LEANS LONG.)
2 - SECTION MODULUS OF PLATH	NI = , 000 468 , N , N NISTH
R = BENDING SINESS IN PLATING	= <u>M</u> = <u>Mar.14</u> = 3448 per (7960)

_ ----- --

R-1699 E-15

- Design Lonsing, p = plating Desnen precisione = , 89 pic

STATUL CLICK

$$l = SPON = 20"$$

$$l = SPON = 20"$$

$$l = PONCL WIDTH = 16"$$

$$M = ECNONG MOMENT IN FRAME = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 474 into 3"$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

$$r = Pol^{2} \frac{1}{6} - (S9) 20(12) = 1728 into 3$$

	R-1699
BURRHEID PLATING	E-16

Design Londing
$\mathcal{P} = \left(\frac{12 \cdot 8}{12}\right) \left(\frac{21}{144}\right) = .925 \text{ pine}$
STRESS CARCE
l = sugal = 16"
NO = UNIT WIDTH = 1"
M = 2ENDING MOMENT IN PLATE = -p (ut = (.925)(14)(1) = 19.7.14 / 10 WIDT
Z = SECTION MODULUS OF PLATE # . OD 808 IN /IN WIDTH ("4" M.P. FACE GRAIN VI
$a = Bendows streess in PLATE = \frac{19.7}{2} = 2438 \mu (2960)$

-

P = MAL ENGINE MOUNT LOAD = (1.5)(<u>640</u>) = 320^{TT}

$$\frac{STRUSS}{L} = SRAN = 14'$$

$$M = SRAN = 14'$$

$$M = SENDING FROMENT IN GIRDLE = \frac{PL}{8} = \frac{(320)(.4)}{5} = 560 m^{44}$$

$$Z = SECTION FRODULUS OF GRADLE = \frac{(2)(1)}{4} (.5) = .167 (1"M.P. FACE CRAINSONN)$$

$$A = BENDING STRUSS IN GRADER = \frac{M}{2} = \frac{5.0}{.167} = 3353 \text{ pink} (2960)$$

HULL GIPDER

R-1699 E-18

This page unclascif ied

I, " MOMENT OF INVERTIA ABOUT 18"WL = 6184 + 138 - 6322 , 14 d = NEUTRAL AXIS BELOW 18" M.L. = 55.08 = 1.55" (16.115"WL) 35.16 I. - MOMENT OF INCESIA DEOUT NEUTRAL AKIS = I, - Al' = 6322-(35,46)(1.55) = 6237 , 1"

$$\frac{M_{AYMANAA} \mathcal{B}_{i} \mathcal{M}_{i} \mathcal{M}_{i}}{M^{2} \left(\frac{M}{2}\right)} = \left(\frac{s_{i} \mathcal{M}_{i}}{y}\right) \left(\frac{3}{2} \frac{s_{i}}{z}\right) = 200,000 \text{ m}^{\text{H}}$$

MONNING OF INERTIA (HORIZONTAL BENDING)

$$Starse Chick = \frac{M_{c}}{I} = \frac{(200,000)(1641.55)}{6237} = 627 pm (DECK) (716) (100) (100)$$

R-1699 E-19

This page unclassified

172-1	Dimensions	Ania	Lenc	Monewor	Lene	Hoverst we Incerim	<u>h</u>	12
Keel	(1) 55" × 1"	5,50	0	0	0	0	5.5-	. 14
Borrow it	(z) 9" X.094"	1.69	Ĺ	10,14	6	60,64	8	9
BarroyLocks	(2) 1° × 1°	2.00	6	12,00	4	22.00		
Curre s	(c) 1" x1.5"	3,00	9.5	28.10	9.5	270,50		
Sipe it	(z) 16" Y.094"	3.38	14	47,32	14	662.48	8	18
Side Louis	(4) 1" * 1"	4.00	14	56.00	14	294,00		
Koucres	(2) 1' Y1.25'	3.50	17.5	61.20	13.5	1000.00		
KNUCKLE R	(2) 16" X, 294"	3.01	18	54.18	18	975.24		
Knocachows.	(2)1 41	2,00	17.5	35.00	17.5	612,50		
GUNNALES	(2) 2" x 1"	4.00	17.5	20.00	17.5	1225,00		
Deck	(1) '36 Y,014"	3,38	0	0	0	0	36	345
		35,46		374.34		5742.56		406
			2			ں ا		

Z = MOMENT OF INTERIA ABOUT Q = 5743 + 406 = 6149 IN 4

 $M = \binom{W}{4} \binom{2}{2} = \binom{5000}{4} \binom{300}{2} = 200000$

 $\frac{S_{TRESS} C_{HECK}}{Z} = \frac{M_{C}}{5149} = 585 \text{ per}^{(2940)} (3940) (6700$

E-20 HULL - PRIDE CONST This page unclassified DESIGN KOND (FIX I WILL, CONTREVEL & GODS NT. AT & OF OTHER WILL) W = GROSS MT. = 5000" L = EFFECTIVE MOMENT ACH = (6+ 3/2) 12 = 90" m = NUMBER OF EFFECTIVE FLADS = 4 $M = \text{EENDING MONTONT IN BHD, = <math>\binom{W}{2} \binom{Q}{2} = \frac{(\pi M)}{2} \binom{QU}{4} = 56250 \text{ in}^{*}$ STREES CHECK A = VLET. DISTAILLE BETWEEN THE RODS = 10" T = TENSION IN THE ROD = 14 = 56250 . 2812 # & = THE ROD DIAM. - .25" A. = TENSILE AREA IN TIERE = (265)(25) - .049, " -2, = TENSILE STOP IS IN THE ROD = T = 2×17 = 57 300 pm C * compression in BAD, FLANCE = 2T + 2(2612) = 5625 AC & COMMENSULE AND AND BAD, FLANKE & 2(4) = EIN (5610) AL = COMPRESSIVE STRESS IN BUD FINNER = C = SZ25 . 203 prec A: = EERENG NOLA AT SNELL = R(L) = 12,15 (1100) LE = EEDRING STRISS IN SNELL = C = 5675 - 469 per An = ROLLING SHEAR AREA IN BUD WEB = (2)(36)(1) - 144 ... (365) AR = ROLLING SHERE STOLES IN END WERE = C = 5025 = 29 year As = DREAT SHEAR AREA IN THE WEB = (2,(36)(3) = 1812 (2:2) No = DIRECT SHEAR STRESS IN EAD AND - C. SRIS. = 313 year

R-1699

Seman Torque Eby

 $\frac{\sum_{n \in \mathbb{N}} \sum_{i \in \mathbb{N}} \frac{1}{i} \sum_{i \in \mathbb{N}} \frac{1}{i} = \frac{1}{i} \frac{1}{i} \sum_{i \in \mathbb{N}} \frac{1}{i} \frac{1}{i} = \frac{1}{i} \frac{1}{i} \sum_{i \in \mathbb{N}} \frac{1}{i} \frac{1}{i} = \frac{1}{i} \sum_{i \in \mathbb{N}} \frac{1}{i} \sum_{i \in \mathbb{N}} \frac{1}{i} = \frac{1}{i} \sum_{i \in \mathbb{N}} \frac{1}{i} \sum_{i$

Survey Chick

2 " and a most 144"

- al Expect 25 pt = 12"
- 2 EXTERE PROTING YINGROUSS =, 165"
- A BHEAC STRESS AS REGING = <u>100,000</u> _ 308 per (12) 2 last 2 (141)(12)(155)

R-1699 E-21

R-1699 E-22

$$\frac{STRESS (Unce (Ourbb.))}{2}$$

$$\frac{2}{2} = Distance to contract Freescal (.9)(9) = 8.1$$

$$C = Choeb = 12"$$

$$d = SPAN = 16"$$

$$M = Brinding moment in role = p (lefc = (3.63)(4.1)(4)(2) = 6676 in = 2$$

$$R = Scition Hodolus or Holl = .78.0^{3}$$

$$R = Scition Hodolus or Holl = .78.0^{3}$$

u - 1699 E-23

STROT

This page unclassified

 $\frac{Devision Konsing}{\Delta} = Gross intergrow = 5000"$ k = cond fractor = .33 m = number of intercentie strutts = 2 $S = side rough presserver = \Delta d = (5000)(33) = 833"$ $\frac{Smell Course}{2}$

L = STROT RENGTA = 20", C= CADED = 12", A= TAILCRUISS = 1.2" M = EENDING MOMENT IN STEUT = RS = SU(127.) = 16660 IN" 2 = SECTION MODULUS OF STRUT = . DE te = . DE (1.2)(2) = 1.38, ~ A " BENDING STRESS IN STRUT = M + 16600 - 12100 ...

 $\frac{DESERN LOND}{P + PUSHEOD DESIGN LOAD = 403*}$ $\frac{Sarr Burning IOND}{B + \frac{H^2EI}{E^2}}$ $E = 30 \times 10^{6}$ $I = .007 + \frac{9}{10} DIMM, 200)$

$$\mathcal{L} = 53''$$

$$\mathcal{B} = \frac{3^{2}(30\times10^{6})(.005)}{(52)^{2}} = 528^{2}$$

R**-**1699 E-25

$$\frac{Dr_{SHA}}{P_{0}} = \int_{0}^{1} \frac{1095M34}{267} = \frac{151}{267} = 56.6 = .393 \text{ pure}$$

$$\frac{1}{2} = \frac{10005}{2000} \text{ redoe} = 2$$

$$\frac{1}{2} = \frac{10005}{2000} \text{ redoe} = 2 = (.393)(1) = .366 \text{ pure}$$

$$\frac{570755}{21000} = \frac{10005}{20000} = (.393)(1) = .366 \text{ pure}$$

$$\frac{570755}{2} = \frac{6}{2000} \text{ redoe} = 12^{11} \qquad (2007 \text{ cmorb} = 16^{11})$$

$$\frac{1}{2} = \frac{1000}{2000} = 12^{11} \qquad (2007 \text{ cmorb} = 16^{11})$$

$$\frac{1}{2} = \frac{1000}{2000} = 12^{11} \qquad (2007 \text{ cmorb} = 16^{11})$$

$$\frac{1}{2} = \frac{1000}{2000} = 10000 \text{ redoe} = \frac{11}{2} = \frac{1000}{2} (10)(12) = .1057.3^{2}$$

$$\frac{1}{2} = \frac{1000}{2000} = \frac{1000}{2000} = \frac{11}{2} = \frac{1000}{2000} = \frac{1000}{200} = \frac{1000}{200} = \frac{1000}{2000} = \frac{1000}{2000} = \frac{1000}{2000} = \frac{1000}{2000} = \frac{1000}{2000} = \frac{1000}{200} = \frac{1000}{$$

C	•
<u>SK</u>	-

 $\frac{D_{2,5,(k,1)}}{p} = \frac{1}{2} \frac{1}{2} \frac{1}{(k)(k)} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{(k)(k)}$ $\frac{1}{k} = \frac{1}{2} \frac{1}{2} \frac{1}{(k)(k)(k)} = \frac{1}{2} \frac{1}{2} \frac{1}{(k)(k)(k)} = \frac{1}{2} \frac{1}{(k)(k)(k)} \frac{1}{(k)(k)}$ $\frac{S_{FFCLS}}{S_{FFCLS}} \frac{S_{FFCLS}}{S_{FFCLS}} \frac{S_{FFCL}}{S_{FFCLS}} \frac{S_{FFCL}}{S_{FFCL}} \frac{S_$

r-i 699 F-I

This page unclassified

MEASURED WE I GHTS

For How Asserving 1710 10.63	15122
Some Manufacture of the second s	
CENTA SECTION ASSIMELY 660 10.57	6994
Hypersena 200 9.30	19.40
Parg. 1000 - 22 0 -	0
4302 T 105	45120
Connect all 330 10	3000
F-013 1386)	- 111
Vilaier	<u>4.00</u>
72	42757
Enerois (NOM.) 200 - 8.57 -	1734
The 1000 These 540th 10.02	55491

· ·-

R-1699 F-2

This page. unclassified

$$\frac{P_{011}}{P_{011}} \frac{P_{011}}{P_{011}} \frac{P_{011}}{P_{011}} = 900 - 10 = 900^{4}}{P_{011}}$$

$$\frac{P_{011}}{P_{011}} \frac{P_{011}}{P_{011}} = 900 - 10 = 900^{4}}{P_{011}} = 100^{4}$$

$$\frac{P_{011}}{P_{011}} = 100^{4}$$

$$\frac{P_{011}}{P_{011}} = 100^{4}$$

$$\frac{CENTECTION}{MENTET}$$

$$\frac{K_{EMD}}{ME} = 300 - 10 = 300^{m}$$

$$\frac{K_{EMD}}{ME} = 300 - 10 = 290^{m}}$$

$$\frac{660^{m}}{660^{m}}$$

$$LCG = (300)(20-9)(16/2) + (290)(20-12)(16/2) = 0.57' FMD. 7200009$$

$$\frac{660}{660}$$

This page unclassified

HYDROSTATICS

SECTION PROPERTIES

R~1699 G~4

This page unclassified

$$\frac{S_{TATTON}O}{2}$$

$$A_{y} = 2\left(\frac{16.7 \cdot 2.12}{2}\right)(y) = 14.8\% \text{ m}^{-1}$$

$$G_{y} = 2(2.11) = 12$$

$$A_{z} = 2\left(\frac{16.7 \cdot 2.52}{2}\right)(z) = 32.96$$

$$G_{y} = 2(2.16) = 20$$

$$A_{12} = 2\left(\frac{16.7 \cdot 2.92}{2}\right)(z) = 54.24$$

$$G_{12} = 2(2+12) = 2\%$$

$$A_{16} = 2\left(\frac{16.7 \cdot 2.92}{2}\right)(z) = 2\%$$

$$G_{16} = 2(2+12) = 2\%$$

STATION 1

$$A_{4} = 2\left(\frac{2+3.12}{2}\right)(4) = 20.48$$

$$G_{4} = 2(2+4.12) = 12.24$$

$$A_{5} = 2\left(\frac{2+4.25}{2}\right)(5) = 49.60$$

$$G_{4} = 2(2+8.6) = 20.32$$

$$A_{12} = 2\left(\frac{2+5.33}{2}\right)(2) = 87.96$$

$$G_{12} = 2(2+12.4) = 28.8$$

$$A_{12} = 2\left(\frac{2+5.60}{2}\right)(3.2) + 2\left(\frac{5.60+2.20}{2}\right)(2.5) = 136.16$$

$$G_{14} = 2(1+12.4) = 28.8$$

Starin 2

 $A_{4} = z\left(\frac{2+4}{2}\right)(4) = 25.60$ $G_{4} = z(2+4.6) = 13.2$ $A_{5} = 2\left(\frac{2+6.5}{2}\right)(8) = 70.40$ $G_{5} = z(2+9.4) = 22.8$ $A_{12} = z\left(\frac{2+2.6}{2}\right)(9.4) + z\left(\frac{2.6+9.0}{2}\right)(2.6) = 133.40$ $G_{12} = z(2+14) = 32$ $A_{14} = z\left(\frac{2+2.6}{2}\right)(9.4) + 2\left(\frac{2.6+11.2}{2}\right)(2.6) = 214.32$ $G_{15} = 2(2+14) = 40$

Station 3

 $A_{y} = 2\left(\frac{2+4.2}{2}\right)(4) - 32.60$ $G_{y} = 2(2+5.6) = 15.6$ $A_{5} = 2\left(\frac{2+90}{2}\right)(6.6) + 2\left(\frac{9+9.8}{2}\right)(1.4) = 98.92$ $G_{5} = 2(2+11.2) = 26.4$ $A_{12} = 2\left(\frac{2+90}{2}\right)(6.6) + 2\left(\frac{9+12}{2}\right)(5.4) - 186.00$ $G_{12} = 2(2+15.6) = 35.6$ $A_{16} = 2\left(\frac{2+90}{2}\right)(6.6) + 2\left(\frac{9+12}{2}\right)(9.4) = 292.56$ $G_{16} = 2(2+202) = 44.4$

$$\frac{Station 4}{4}$$

$$Q_{4} = 2\left(\frac{2+9.5}{c}\right)(4) = 41.6$$

$$Q_{4} = 2(2+3.5) = 19.2$$

$$Q_{4} = 2(2+3.5) = 19.2$$

$$Q_{4} = 2(2+3.5) = 29.5$$

$$A_{1L} = 2\left(\frac{2700}{2}\right)(4.6) + 2\left(\frac{9.6+152}{2}\right)(4.2) = 341.12 \quad G_{1L} = 2(2+21.6) = 47.2$$

$$\frac{G_{1077001}5-10}{G_{14}} = 2\left(\frac{2+10}{2}\right)(4) = 48$$

$$G_{14} = 2\left(\frac{2+5.4}{2}\right)(4) + 2\left(\frac{10+12}{2}\right)(4) = 136$$

$$G_{15} = 2\left(\frac{2+13.2}{2}\right)(4) + 2\left(\frac{10+12}{2}\right)(4) = 136$$

$$G_{15} = 2\left(\frac{2+13.2}{2}\right)(4) + 2\left(\frac{10+14}{2}\right)(5) = 240$$

$$G_{12} = 2\left(\frac{2+13.2}{2}\right)(4) + 2\left(\frac{10+14}{2}\right)(5) = 240$$

$$G_{12} = 2\left(\frac{2+13.2}{2}\right)(4) + 2\left(\frac{10+14}{2}\right)(5) = 360$$

$$G_{16} = 2\left(\frac{2+13.2}{2}\right)(4) + 2\left(\frac{10+14}{2}\right)(5) = 360$$

R-1699 c-6

Sin	12	7.01	$f(\tau)$	Line	f (rours)	<u> </u>	T.M.	<i>5(s</i>)
0	14.58	"た	2.44	13	24,40	12,00	1/2	6,00
1	20.48	1	20.46	9	18432	12.24	1	12.24
z	25,60	1	25,60	ç	204,80	13.20	1	13,20
3	32.80	1	32,60	2	229.60	15.60	1	15,10
4	41.60	1	41.60	6	249,60	19.20	/	19.20
5-	48.00	1	48,00	5	240,00	21.60	/	21,60
6	45,00	/	48.00	4	192,00	21.60	1	21.60
2	46.00	1	48.00	3	144.00	21.60	1	21,60
8-	48.00	/	46,00	z	96.00	21.IP	1	21.60
9	41.00	1	4t,00	1	48,00	21.00	1	21.60
10	48.00	1/2	24.00	0	٥	21.40	ん	10,80
			391.92		1662,72			185,04

$$\Delta = 2 \underbrace{(32)}_{(1 > 28)} \underbrace{(4)}_{(1 > 28)} = 930^{#}$$

$$ACB = \underbrace{(32)}_{(1 > 28)} \underbrace{(46.2.72)}_{391.92} = 11.3^{1} EWD. TEANS.$$

$$S = 2 \underbrace{(32)}_{(1 \times 5.04)} = 52.2 ET^{2}$$

$$AT_{T} = 2 \underbrace{(15)}_{14/4} = .6667 ET^{2}$$

Elyprostatics

This page unclassif ied

Sin.	A	TH.	+(+)	Line	+(~~)	G	T.M.	<u>f(s)</u>
0	32.96	1/2	16.48	10	164.80	20,00	1/2	10,40
/	49.60	1	49.60	9	446.40	20.32	1	20,32
٢	20,40	1	70,40	8	563,20	22.40	1	22.60
3	98.92	1	98.92	7	692.44	26.40	1	26.45
4	125.12	1	125.12	6	250.72	29.60	/	29.60
5	136,00	1	136.00	5	680,00	30,40	1	3240
6	136,00	/	136.00	4	544.00	30,40	1	30.40
>	136.00	1	136.00	3	408.00	30.40	/	30.40
Ŷ	136,00	1	136,00	2	272.00	30,40	1	30,40
9	136.00	1	136.00	1	136.00	30.46	1	30,46
10	136.00	1/2	<u> 38.00</u>	0	<u> </u>	30,40	K	15,20
			1108.52		4657.56			276,32

$$\Delta = 2 \underbrace{(32)(1108.52)}_{(1728)} (64) = 2622^{4}$$

$$ACB = \underbrace{(32)}_{(1728)} \underbrace{(46C)56}_{(1708.52)} = 11.2^{2} FWD. TRANS.$$

$$S = 2 \underbrace{(32)}_{(1708.52)} = 122.70 FT^{2}$$

$$AT = 2 \underbrace{(126)}_{(144)} = 1.87 FT^{2}$$

<u>HYDROSTATICS</u> <u>12" WL</u>

Sta	A	T.M.	f(r)	line	f (MON.)	<u> </u>	<u>T.H.</u>	<u> 1(s)</u>
0	54.24	1/2	27.12	10	271.20	26.00	1/2 .	14.00
1	\$7.96	1	87.94	9	291.64	28.50	1	28,80
ζ	133,40	1	133.40	8	1067.20	37,00	1	32,00
3	186,00	1	186,00	2	1302.00	35.60	1	35.00
4	225.12	1	225,12	4	1350.72	36,40	1	38.40
5	24040	/	240.00	5	1200,00	39.20	1	39,20
6	240,00	1	240.00	4	960.00	39,20	1	37.20
2	240,00	1	240,00	3	72000	39.20	/	39,20
8	240,00	1	240,00	2	480,00	39.20	/	39,20
9	240,00	1	240.0	1	240,00	39.20	1	39,20
10	240,00	1/2	120,00	D	6	31.20	ĸ	19.60
			19 79.60		8382,76			३८५५७

$$\Delta = 2 \frac{(32)(1979.60)}{7228} (64) = 4700$$

$$ACB = \left(\frac{32}{72}\right) \left(\frac{5352.52}{1974.60}\right) = 11.3' \text{ FWD. TEAMS.}$$

$$S = 2 \frac{(32)(324.40)}{7744} = 162 \text{ FT}^{-1}$$

$$A = 2 \frac{(32)(324.40)}{7744} = 162 \text{ FT}^{-1}$$

$$A_7 = \frac{2(240)}{144} = 3.33 \text{ FT}^2$$

مالك فعازي فعام

R-1699 G-9

HYDROGATICS

16" WL

This page u	nclass	i	f	ied
-------------	--------	---	---	-----

Sin.	,0	T.M.	f(+)	live	floren)	G	7.H.	<u> 1(:)</u>
0	28.72	1/2	39.26	10	393.60	34.00	1/2	18.00
1	136.16	/	136,16	9	1225.44	39.60	,	39.60
ک	214.32	1	214.32	8	1714.56	46.00	1	40.W
3	292.56	1	292.56	2	204792	44.45	/	44.40
4	341.12	/	341,12	6	2046,72	47.20	1	47,25
5	360,00	/	360.00	5	1800,00	48,00	1	4.00
6	360,00	/	360,00	4	144000	48.00	/	48.00
2	360.00	/	360,00	3	1080.00	48.00	/	48.00
8	3(010	1	360,40	2	120.00	$\omega_{i,\infty}$	1	48.60
9	3 <i>6</i> 0,00	1	360.00	1	360,00	42.00	/	4(10
15	360,00	1/2	160,00	٥	<u> </u>	4.00	K	21.00
			3003.52		12828,24			453,20

$$\Delta = 2 \underbrace{(3)}_{(1725)} \underbrace{(64)}_{(1725)} = 7110^{\#}$$

$$ACB = \underbrace{(32)}_{(125)} \underbrace{(125)_{(125)}}_{(3003,52)} = 11.4' \text{ For } TPANS,$$

$$S = 2 \underbrace{(32)}_{(453,20)} = 201 \text{ FT}^{+}$$

$$A_T = 2 \underbrace{(31.0)}_{(444)} = 5 \text{ FT}^{-}$$

R - 1639 ∺I−1

This page unclassified

ESTIMATED DRAG

	i i i i i i i i i i i i i i i i i i i			
	•••	• •		· 1
	•	· · · ·		
	• • •	, , ,	· /	1
1000	Displacement = 5040	bs !	. /	2
	Smooth Water	inote .		. i
	Take 011 Speed = 14.45	KINOLS		-
		· · · /		
800	and a second	/		
			•	
			• • • •	
			· · ·	
<u> </u>				هر ا
			• • •	H-2
				66
		· · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	La desenva de la constante de	
) • • • •	
		· · · · · · · · · ·		8
			· · · · · ·	1 2
		· · · · · · · · · · · · · · · · · · ·		
				.
	· · · · · ·			
				: _
	0 15	20 25	30	2
	Speed	knots	· · ·	U ,
	· · · · · · · · · ·	• • • • • • •		
	FIGURE H-2, DRA	CHARACTERISTICS		: :

Dr.16	SUMMARY
the second secon	

R-1699 H**-3**

CONFIDENTIAL

			Sa	ced v.	Ewors		
	5.77	- <u></u>	11.55	14.43	14.43	-22,09	34.(2)
FOR Provery							
For houses	20	46	81	127	137	51	20
For Forence	13	26	48	23	73	124	349
Start to start to	8	16	27	42	29	69	148
Crew Carry	-	/	2	ىتى	÷	15	33
hiv ere as alla		1	/	/	1	4	8
FIRE TAYLOW	2	4	6	9	\$	10	ۍ کې
PRATE ASSEMBLIES							
PLATE LOUCES		4 1111	-	-	-	-	1
FRATE FORTRON	5	12	20	30	30	21	151
South Provence	ч	જ	14	22	14	32	69
STAT SPANY	~				う	18	41
SNAFT	1	2	4	2	4	9	21
Sugar Summer	-				3	4	14
TUER	1	2	4	6	6	16	36
Roosers							
RUDDLE FRIDA	3	6	15	14	9	21	44
Klusee Spray	***	1	1	2	え	5	11
Runce Corry	15-	15	15-	15-	7	2	2
<u>Seis</u>							
Salar		,	0	7	7	,	
Sei Lieron	3	6	11	3 16	उ	2	Ke
Fluces							
16:200	142	152	147	33	- Tan	-	_
Auco	2	4	8	ß	13	33	23
	219	305	401	416	354	561	11 11
	23.01	16,52	12.57	12.12	14.24	8,98	4.54

CONFIDENTIAL

INDUCED DIMA

Fein

Va		2	CL	<u></u>	Lr	ne	Ē	<u> </u>	XIE	<u>C</u> zi	d'	\mathcal{D}
5.77 8.645 11.55 14.43	9.76 M.64 19.51 24.39	95 2817 381 595	.6936 .6936 .6936 .6936	12	991 1781 3171 4952	اک	1	1.67	1.67	2 7	.0257 .0257 .0257 .02(7)	20,33 45.79 81.49 127,27
14.42 23.09 34.61	24.39 39.03 58.54	595 1523 3427	,6726 ,2635 ,1103	12	49 5 2 418 16 415 36		1	1.167	1.16)	25	.0277 .0105 .0044	137,17 50,57 19,96

V.		2	Ce	<u>_S</u>	LP	AR	ē	4	<u>,</u> Z	d.	di	$\underline{\mathcal{D}}_{\underline{-}}$	<u></u>	\mathcal{D}
5,77 E.L6 11,55 14,43	9.76 14.64 19.51 24.39	0 95 214 381 595	.0165 .0165 .0165 .0165	2.67	4 9 17 26	2.67	J	.63	.\$3	6.3	,0026 ,0026 ,0026 ,0026	.01 .02 .04 .07	2	, t ,0× ,0 ,1
14.43 23.09 24.64	2439 59.03 58.54	595 1523 3427	.0165 .0165 ,0165	2.67	26 67 151			,33	,33	4.8	.00 34 .0034 ,00 34	. 09 . 23 . 51	ع	'ر ۶۹ ۱.۵

R-1699 H-4

INDUCED DANG

<u>Sri</u>

Y.	V	2	Œ	R	Ls	<u>~</u>	17	<u>D.</u>	~	$\overline{\mathcal{D}}$	
5,27	9.76	95-	,C's	.67	3	4	.0699	,21	2	.42	7
8.66	1464	214	, D's's		۷			.42		.84	NOT PARCISE BUT NEGLISIE
11.55	19.51	381	.14.6		11			. >>		1.54	
14.43	24,39	سى نېرى	وارل.		18			1,26		2.52	\mathcal{L}
14.43	24.3.7	595	,0/s6	.67	18			1.26	ح	2.52	
23.09	39.03	1523	.066		45			3.15		6,30	
34.64	56.54	3427	.066		101			2.06		14.12	

R- 1699 H - 5

HULL Dring

Vr	V	2	List		d	<u> </u>	<u>Ar</u>	l	Re	<u>C</u> _f	<u> </u>	Dr	Dr.	\mathcal{D}
5.22	9.76	95	805	42.35	.942	154	3,05	26.67	2.09 Y 10	.0026	.0031	49,74	91.94	141.68
8.66	14.14	214	1811	3229	.775	135	2,35		3,15	.00244	,00324	93.60	58.25	151.88
11,55	1.51	381	322)	1813	.525	105	1.30		4.20	.00233	.00313	125.22	21.64	147.06
14.43	24.39	575	50 40	0	٥	18	0		5.26	,00728	,00378	32,99	0	37.99

$$D_r = \left(\frac{A}{2}\right)(24) A_r = 32 A_r$$

R-1699 H-4

FOIL ?	Penrie	r Dr	<u>.).7</u>						
2-	$C_{\ell} \in C_{\ell}^{2}$] 2(~7+.c	2005)(1.2	1/2+1)				<i></i>	
Ve	V	2	C	Ru	C_{f}	1/2	CQ	ى	\supset
5.77	9.76	95	1	2.87 × 105	.0046	.075	.01177	12	13.42
8.66	14.64	214		1.18 × 104	.00425		.01101		28,27
11.55	19.51	381		1.57	,00402		.01051		48.05
14.43	24.39	595		1.97	,00387		.01618		72.69
14.43	24.39	575	1	1.97	.00387	.075	01018	12	22,69
23.04	31.03	1523		ع ر ، ح	.00356		.00950		173.62
34.64	58.54	3127		4,72	,60332		,00898		369,29

D = 0	$C_{1} = C_{2}$	5 2 <i>[Cq+,u</i>	2002)	1.2/+1)				_	
Ve	V	2	c	_ <u></u>	<u>_</u>	te.	<u>C</u> R	<u> </u>	$\overline{\mathcal{D}}$
5,22	9.2.	9		2.67 × 155	.0046	.10	,01210	6.67	2.67
8.66	14.64	214		1.18 4 104	,00425		.01131		16.14
11.55	19.51	381		157	,00402		,01080		27,45
14.43	24.37	595		1.97	,2038)		.01046		41.57
14.43	24.3.7	595	1	1.97	,@387	.10	,01046	4.67	29.06
23.07	39,53	1523		3.15	,00 356		,03972		69.49
34.64	58.54	3427		4.72	,0035 Z		.00923		147.72

$$\frac{S_{TAY,UT} - S_{TAY,UT} - D_{PARG}}{D} = C_{R} g + \frac{1}{2} m Q^{2} = .24}$$

$$\frac{V_{e}}{S_{1}, 77} - \frac{V}{9, \chi} - \frac{g}{95} + \frac{1}{.10} + \frac{1}{.01} + \frac{C_{e}}{.24} - \frac{D}{2} + \frac{1}{.44}$$

$$\frac{V_{e}}{S_{1}, 0} + \frac{V_{e}}{.44} + \frac{2.14}{2.14} + \frac{1}{.03}$$

$$\frac{11, 55}{.14, 43} - \frac{1}{.39} - \frac{5.95}{.95} + \frac{10}{.01} + \frac{.24}{.44} + \frac{1}{.53}$$

$$\frac{14.43}{2.39} - \frac{5.95}{.10} + \frac{.01}{.24} + \frac{1}{.44} + \frac{5.71}{.44.2}$$

$$\frac{14.43}{.34.24} - \frac{5.23}{.34.24} + \frac{5.71}{.34.2}$$

$$\frac{14.43}{.34.24} - \frac{5.23}{.34.24} + \frac{5.71}{.34.2}$$

$$\frac{14.43}{.34.24} - \frac{5.23}{.34.24} + \frac{5.71}{.34.24} + \frac{5.71}{.34.24}$$

$$\frac{14.43}{.34.24} - \frac{5.23}{.34.24} + \frac{5.71}{.34.24} + \frac{5.71}{.$$

R-1699 H-7

CONFIDENTIAL

PARASINIC DRAG

STRUT	- 1.011	INTE.	C. C. C.C.C.	der Z	Dung			
75		11/2			•			
\mathcal{L}	CR	1/8 = (i)/3	$\sum_{i=0}^{n}$	5				
V.	V	0	(\bar{y})	\sim	Ţ	<i>.</i>	7	
5.22	9.X		.0835	.0802	.0875	4	.23	
8.6h	14.64	214			·		.53	
11.55	19 51	381					.94	
14.43	24.39	595					1.46	
14.43	21.39	595	.06 25	.0802	.08 75	4	1.46	
23.09	39.03	1523					3.24	
34.64	58.54	3427					8.42	
Ve 5.27 8.66 11.55 14.43 23.09 34.64	V 9.X 14.64 19.57 24.39 24.39 39.03 58.54	9 214 381 595 595 1523 3427	(J/) .08 2)-	0802	<u>J</u> . .0875 .0875	4	23 .53 .94 1.46 1.46 3.54 8.42	

 $\frac{F_{ENCE} - F_{ENCTION} D_{ENG}}{D = C Q S}$ $C Q^{U} = 2 (C_{q+1}, coording)$

$$C_{L_{q}}^{L_{q}} \leq C_{q+1} \cos(\theta)$$

Ve	<u></u>	<u>_</u>	L	Re	C_{t}	C.C	<u> </u>	$\underline{\mathcal{D}}$
5.77	9.%	95	1	7.57 × 105	0046	0108	1.67	1.51
8.66	14.64	214		1.18 × 104	,00425	,0101		3.61
11.55	19.51	381		1.57	,00402	,00964		6,13
14.43	21.39	595		1.97	,00387	.00934		9,28
14.43	24.39	595		1.43	,20387	.00934	1,25	6.95
23.09	39.03	1523		3.15	,00356	,20822		لاصا. حا
34.64	یک، <u>5</u> ی	3427		4.22	,00332	,00 \$ 2 4		35,20

PLACE	Frier	ion Z	mai					
\mathcal{D} =	CDg	S ,	,					
	Cali ^c =	26-7.	యంక్)			,	,	
Ve	V	-8	Ċ.	Re	C_{f}	Cl	S	\square
5.22	9.2	95	1	2.87 × 105	.0046	.0108	5,33	5,47
8.66	14.24	214		1.15 × 106	.00425	.0101		11,52
11.55	19.51	381		1.57	,00402	,00964		19.58
14.43	2439	595		1.97	,00387	.00934		29.62
14.43	24.39	595	1	1.97	,003&7	.00934	5,33	29,62
23.09	39.03	1527.		3.15	.0356	,00872		70,79
34.64	58.54	3427		4,72	,00332	46800.		150,51

n-1699

H-Y

r 8

CONTREMIME

\mathcal{D} =		S 2((q. 7. l		27(+1)			¥.*	r	
Va	V	9	c	R_	<i>C</i> ₇	-1/2	_ <i>C</i> _		$\overline{\mathcal{A}}$
5.77	9.2	95	1.33	1.05 ¥ 104	,00435	.1188	.01177	3,56	3,98
3.66	14.64	214		1.57	,00402		.01101		8,39
11.55	19.51	341		2.10.	,00382		,01056		14.32
14.43	24.39	595		2,62	.00369		.01026		21.73
14.43	2.1.39	575	1.33	2.62	,00369		.01026	2.22	13,55
23.07	37.03	1523		4.20	.00339		.00957		32,36
34.64	58,54	3427		6.29	,00317		,00907		69,00

$D = CQ f^2 q - CQ = \frac{2}{2} q$								
Ve 5.77 8.46 11.55 14.43	V 9.X 14.64 19.51 24.39	95 214 381 595	+	<u>C.l</u> .24	0	$\overline{\mathcal{D}}$		
<i>14.43</i> 23.01 34.44	24.37 39.02 58.54	595 1523 3427	6371,	,21	2	2.16 18.33 41.24		

Parame Dani

$$D = C_{2} q A$$

$$C_{2} (1) = d$$

$$A = d L$$

$$\frac{V_{e}}{A} = d L$$

$$\frac{$$

$$D = Ch_{q} d^{2}m$$

$$Ch_{q}^{2} d^{2}m$$

Vr.	<u> </u>	<u></u>	L	C.e	<u>~~</u>	$\overline{\bigcirc}$
5.77	9.%	95	.0938	.24	0	D
8.66	14.64	214				D
11.55	19.51	381				٥
14.43	24.39	595				D
14.43	24.39	595	,0938	,24	2	2.51
23.09	89,03	1523				6,43
34.64	58.54	3427				14.47

$$\begin{array}{c} \mathcal{D} \cdot \mathcal{C}\mathcal{L}_{\mathcal{P}}\mathcal{A} \\ \mathcal{C}\mathcal{L}^{\mathcal{P}} : (\mathcal{D}) := \mathcal{L} \\ \mathcal{A} = \mathcal{L}\mathcal{L} \end{array}$$

Ve	V	<u> </u>	$\underline{\prec}$	<u>C</u> P	2		A	\mathcal{D}
5.22	9.75	95	H.71	.0164	,1583	4,00	,6332	
8.66	14.64	214						2.22
11.55	19.51	351						3,9%
14.43	24.34	595						6.18
14.43	24.29	595	14.71	,0164	,1583	4.00	.6332	6,18 CONTRACTOR
23,09	3913	1523						IS.82 CONTIDENTIA
34.64	58.54	3427						35,59

har
PARASINE Duni

R-1699 H-i;

CONTREENTIAL

RUDDE	e [10)	(2.00) ·	Door.	7				
D=		S 2(C)	7. 000 ST	١				
	-	- C · y 		, ,			***	
Ve		2	<u> </u>	Re.	<u>C.r</u>	$\underline{C}\underline{C}\underline{C}$	2	
5.77	9.76	95	.75	5.90 × 105	.00465	.01136	2.50	2.70
8.66	14.64	214		8,85	,00449	.01058		5.66
11.55	11.51	381		1.18 × 104	.00425	,0151		9.62
14.43	24.39	595		1.48	.00407	,00974		14.49
14.43	24.39	595	625	1.23 × 10	,00421	,01002	1.46	8.70
23,09	39.03	1523		1.97	(BEQ)	.00934		20,77
34.64	58.54	3427		2.95	,0036	.00 88		44.03

$$D = Cog d^2 - Ceg d^2 - Ce^2 = 24$$

Ve.			+	<u>_C.l</u>	n	$\overline{\mathcal{D}}$
5.77	9.26	-695	.0633	.24	ح	,32
8.64	14.64	214				.21
11.55	19.51	3 %				1.27
14.43	24.39	575				1.98
14,43	24,39	595	,0833	,24	ک	1.98
23.09	<i>3</i> ?,>3	1523				5,08
34.64	58.54	3427				11.42

$$\frac{\text{Reduce Covery Dang}}{D = (G4) \begin{pmatrix} d_{2} \end{pmatrix} \begin{pmatrix} d_{2} \end{pmatrix} \begin{pmatrix} d_{2} \end{pmatrix} \end{pmatrix} m$$

Vr	2	4.	~	\square
5.>>	1.67	.0833	2	14.87
8.66				14.67
11.55				14.87
14.43				14.87
14.43	1.167	.0833	ک	2.26
23.09				2,26
34.64				2,26

Parnsin Ding

R**-1699** H-12..

CONFIDENTIAL

$$\frac{Sri Friction Dring}{D = C2 + S}$$

$$Cd = Cy + 00058$$

V.	V	2	£	Pe	C+	CD	S	\mathcal{D}
5.22	9.76	95	55	4.33 × 104	.00337	,00413	2.32	2.92
8.65	14.64	214		6.49	,20315	.00395	- •	6,23
11.55	19.51	321		8.65	.00249	.00 379		10,64
14.43	-24.34	595		1.08 8 10)	00258	,20368		16.14
14.43	24.39	595	. \$0	1.57 × 104	,00402	,00 482	1,07	3,67
23,09	31.23	1523		2.52	,0037	,0045	•	233
34.64	58.54	3-127		3.78	.00345	,00425		15.58

AEROZYWIAR Dring

D •	$C_{\mathcal{A}}^{\mathcal{A}}$	5			
12 5.55 6.56 11.55 14.43	V 9.55 14.64 19.51 24.39		<u>C</u> (,50	<u>1</u> 2 32	D 1.98 4.50 8,10 12.78
14.43 23.09 34.64	294.39 37,03 58,54	.71 1.81 4.07	.50	36	12.78 32,58 23,26

ESTI MATED THRUST AND TORQUE

PROPELLER CHARACTERISTICS

The propellers were modified subsequent to completing the builder's trials by increasing the pitch and bending the trailing edge down to form a "full cup" blade contour. The characteristics of the original and modi-fied propeller are 1 isted in the following table:

	Original (Columbian Bronze ''Mako'' Sty 1 e)	Modified		
Diameter, in	131	13 ¹ / ₂		
Pitch (effective)	16	18.9(estimated)		
P/D	1.2	1.4		
Blade Area Ratio	0.77	0.77		
Rotation	Left Hand	Left Hand		
Material	Manganese Bronze	Many. Bronze		

THRUST AND TORQUE ESTIMATES

Axial Flow

Estimates of thrust and torque for the two alternative versions of the propellers were made on the basis of data published by Gawn and Burrill, "Effect of Cavitation on the Performance of a Series of 16-in Model Propellers," <u>Transactions</u>, Institution of Naval Architects, 1957. "Maps" of propeller thrust and torque, as a function of propeller RPM and vessel speed for axial flow conditions taking account of the development of cavitation, are given in the accompanying Figures i-2 to 1-5. Lines of constant advance coefficient, J = speed of advance/ (Di am x rps), are included in these figures.

Inclined Shaft Effects

Only a very few published investigations treat the effect of shaft inclination on the complete system of forces acting on marine propellers

or statements

And and a state of the state of

and even fewer include effects of cavitation, The only complete set of experimental investigations of propeller performance characteristics with incl incd shaft and cavitation was recently reported by Peck and Moore to the Spring Meeting of the Society of Naval Architects and Marine Engineers in April 1973. This reference gives complete tabulated information for four commercial-type propellers, having four blades and differing pitch ratios. The force 3 i agram in the sketch below indicates the mechod of resolving the force components and of presenting results:

Sket ch I - I, From Peck and Moore Paper

Comparable results for three-bladed propel lers (or, indeed, any other propellers) are not yet available. Consequent ly, for the purposes of the present investigations, an attempt will be made to generalize these results as much as possible for purposes of analysis of results of tests with the I/3-scale model of SKI-CAT. Two kinds of analysis problems will be considered: (1) the case of the builder's trials, where vessel

speed and propeller RPM are known and it is desired to estimate the propeller thrust for preliminary comparison with the predicted drag, and (2) the case of the comprehensive trials, where vessel speed, propeller RPM and shaft torque are measured and it is desired to derive the propeller thrust. These cases will be considered separately.

(1) Known Sp- ed and RPM

In this case, one can obtain the expected thrust developed by the propel let-s, in axial flow, from the curves presented in the previous section, which include a dependency on cavitation index. To estimate the effects of shaft inclination on thrust developed, the data presented by Peck and Moore have been plotted in Figure 1-6 in the form of the ratio of the horizontal component of thrust at 15-deg shaft inclination to that at 0-deg inclination as a function of $J/\frac{P}{D}$ (~1-"slip") for one of the propellers tested. This generalized presentation shows that in the region $J/\frac{P}{n} \approx 0.85$, which is approximately the operating point for the ski-cat propel lers, the axial-flow thrust should be modified by a factor which depends on the craft speed (cavitation index). Figure 1-7 shows the multiplying factor as a function of craft speed corresponding to $J/\frac{P}{D} \approx 0.85$ for three propel lers : there are differences among the rzsults, but the trends are general ly simi lar. The amount of scatter of the multiplying factor is rather greater than hoped for, but it appears preferable to apply the correction, especially at higher speed, instead of ignoring the effect of shaft inclination.

Other factors could affect the thrust developed by the propeller; for instance, a possibility of air-drawing down the inclined propeller shaft. It is not possible to account for factors such as these for the present analyses. However, the approximate analysis described above has been used to analyze the extended builder's trials results (presented in the text of this report).

(2) Measured Torque, RPM and Speed

For the comprehensive trials, torsion meters will be fitted in the propeller shaft, inboard of the stuffing box. With this measured data improved estimates of thrust can be obtained since both thrust and torque

are composed of suitably resolved components of the blade element lift and drag.

The axial-flow thrust for a given torque, RPM and speed may be estimated by correcting the thrust obtained from Figure I-5 for the measured speed and RPM by the ratio of measured torque to the torque obtained from Figure 1-4 for the same speed and RPM. This value should then be corrected further to approximately account for shaft inclination affects. The final estimate would be expressed as

$$T_{corr,incl} = T(V,RPM)_{axial} \cdot \left\{ \frac{Q_{measured}}{Q(V,RPM)_{axial}} \cdot \left\{ \frac{T(V,RPM)_{incl}}{T(V,RPM)_{axial}} \cdot \left\{ \frac{Q(V,RPM)_{axial}}{Q(V,RPM)_{incl}} \right\} \cdot \left\{ \frac{Q(V,RPM)_{axial}}{Q(V,RPM)_{axial}} \right\} \cdot \left\{ \frac{Q(V,RPM)_{AX}}{Q(V,RPM)_{AX}} \right\} \cdot \left\{ \frac{Q(V,RPM)_{AX}}$$

or,

$$\mathbf{T}_{corr,incl} = T(V, RPM)_{axial} \cdot \left\{ \frac{Q_{measured}}{Q(V, RPM)_{axial}} \cdot \left\{ \frac{TD/Q_{incl}}{TD/Q_{axial}} \right\} \cdot \left\{ \frac{TD/Q_{incl}}{TD/Q_{axial}} \right\}$$

where

$$T(V,RPM)_{a \times ial}$$
 is found in Figure I-4 (modified prop)
Q(V,RPM)_{a \times ial} is found in Figure I-5 (modified prop)

and the ratio $(TD/Q)_{incl}/(TD/Q)_{axial}$ must be estimated from the published data of Peck and Moore. Figure 1-8 shows the effect of cavitation index and advance coefficient on this ratio for 15-deg shaft inclination for one of the propellers tested, Figure 1-9 gives values of this ratio as a function of speed for three propellers, all at $J/\frac{P}{D} \approx 0.85$. It is suggested that these results be applied for analyses of comprehensive trials results.

This page unclassified

Mbdified Propeller (Sept 1973)

R-1699 1-8

FIGURE 1-4. MODIFIED PROPELLER (Sept 1973)

FIGURE 1-5. MODIFIED PROPELLER (Sept 1973)

FIGURE 1.-6. EFFECT OF CAVITATION INDEX AND ADVANCE COEFF 1C I ENT ON RATIO OF THRUST FOR 15-DEG SHAFT INCLINATION TO THRUST IN AX IAL FLOW. REF : PECK AND MOORE, PRO-PELL 4530, P/D = 1.19.

FIGURE 1-7. EFFECT OF SPEED ON RATIO OF THRUST FOR 15-DEG SHAFT INCLINATION TO THRUST IN AXIAL FLQW, J/(P/D) ≈ 0.85.

FIGURE 1-9., EFFECT OF SPEED ON THRUST TO TORQUE RATIO IN INCLINED FLOW, $J/(P/D)\approx 0.85$.

r- 1699

This page unclassified

Contract N00014-67-A-0202-0031

DISTRIBUTION LIST

(3)Department of the Navy 1. Naval Ship Systems Command Code 03Z22 Washington, D. C. 20360 (1)2. Department of the Navy Office of Naval Research Scientific Officer (Code 438) Arlington, Virginia 22217 (1)Department of the Navy 3. Office of Naval Research 495 Summer Street Boston, Massachusetts 02210 (2)4. Di rector Defense Documentation Center Cameron Station Alexandria, Virginia 22314 (20)Department of the Navy 5. Naval Ship Research & Development Center Code 114 Bethesda, Maryland 20034

This page unclassified