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I. Introduction. The problem of cavity flows received attention early in the 
development of hydrodynamics because of its occurrence in high speed motion 
of solid -bodies in water. Many previous works in this field were mainly concerned 
with the calculation of drag in a cavitating flow. The lifting problem with a 
cavity (or wake) arose later in the applications of water pumps, marine pro- 
pellers, stalling airfoils, and hydrofoil crafts. Although several formulations of 
the problem of lift in cavity flows have been pointed out before (l-3), these 
theories have not yet been developed to yield general results in explicit form 
so that a unified discussion can be made. 

The problems of cavitating flow with finite cavity demand an extension of the 
classical Helmholtz free boundary theory for which the cavity is infinite in 
extent. For this purpose, several self-consistent models have been introduced, 
all aiming to account for the cavity base pressure which is in general always less 
than the free stream pressure. In the Helmholtz-Kirchhoff flow these two pres- 
sures are assumed equal. 

Of all these existing models, three significant ones may be mentioned here. 
The first representation of a finite cavity was proposed by Riabouchinsky (4) 
in which the finite cavity is obtained by introduciing an “image” obstacle down- 
stream of the real body. A different representation in which a reentrant jet is 
postulated was suggested by Prandtl, Wagner, and was later considered by Krei- 
se1 (5) and was further extended by Gilbarg and Serrin (3). Another representation 
of a free streamline flow with the base pressure different from the free stream 
pressure was proposed recently by Roshko (6). In ,this model the base pressure in 
the wake (or cavity) near the body can take any <assigned value. From a certain 
point in the wake, which can be determined from the theory, the flow downstream 
is supposed to be dissipated in such a way that the pressure increases gradually 
from the assigned value to that of the free stream in a strip parallel to the free 
stream. Apparently this model was also considered independently by Eppler (7) 
in some generality. Other alternatives to these models have also been proposed (8)) 
but they do not differ so basically from the above three models that they need 
to be mentioned here specifically. The mathematical solutions to the problem 
of flow past a flat plate set normal to the stream have been carried out for these 
three models (9,6). All the theories are found to gi.ve essentially the same results 
over the practical range of the wake underpressure. That such agreement is to 
be expected can be indicated, without the detailed solutions for the various 
models, from consideration of their underlying physical significance, as will be ‘_ ‘i 
discussed in the next section. 

* This study was supported by the U. S. Navy, Office of Naval Research, under Contract 
N6onr-24420 (NR 062-059). Reproduction in whole or in part is permitted for any purpose 
of the U. S. Government. 
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In the present work the free streamline theory is extended and applied to the 
lifting problem for two-dimensional hydrofoils with a fully cavitating wake. 
The analysis is carried out by using the Roshko model to approximate the wake 
far downstream. The reason for using this model is mainly because of its mathe- 
matical simplicity as compared with the niabouchinsky model, or the reentrant 
jet model. In fact, it can be verified that these different models all yield practi- 
cally the same result, as in the pure drag case; the deviation from the results of 
one model to another is not appreciable up to second order small quantities. 
The mathematical considerations here, as in the classical theory, depend on the 
conformal mapping of the complex velocity plane into the plane of complex 
potential. By using a generalization of Levi-Civita’s method for curved barriers 
in cavity flows, the flow problem for curved hydrofoils is finally reduced to a 
nonlinear boundary value problem for an analytic function defined in the upper 
half of a unit circle to which the Schwarz’s principle of reflection can be applied. 
The problem is then solved by using the expa.nsion of this analytic function in- 
side the unit circle together with the boundary conditions in the physical plane. 
In order to avoid the difficulty in determining the separation point of the free 
streamline from a hydrofoil with blunt nose, the hydrofoils investigated here are 
those with sharp leading and trailing edges which are assumed to be the separa- 
tion points. Except for this limitation, the present nonlinear theory is applicable 
to hydrofoils of any geometric profile, operati:ng at any cavitation number, and 
for almost all angles of attack as long as the wa’ke has a fully cavitating configura- 
tion. 

As two typical examples, the problem is solved in explicit forrn for the circular 
arc and the flat plate for which the various flow quantities are expressed by sim- 
ple formulas. From the final result the various effects, such as that of cavitation 
number, camber of the profile and the attack angle, are discussed in detail. 
It is also shown that the present theory is in good agreement with the experi- 
ment. 

II. Remarks on Models in Free Streamline Theory. The total force (drag 
and lift for two-dimensional flows) exerted by the fluid on a solid body may of 
course be expressed as an integral of the local force, which consists of both the 
pressure and viscous stresses over the surface of the solid. However, it is also 
possible to express the total force in terms of integrals over surfaces at a dis- 
tance from the body by applying the momentum theory. In the case of the real 
fluid flow past a bluff body, experimental observations indicate that the dis- 
continuous surfaces in the flow, or free streamlines, are actually thin shear layers, 
into which the vorticity is fed from the boundary layer in front of the separation 
point. The shear layers in general do not continue smoothly far downstream, 
but roll up to form vortices, alternately on each side with a certain frequency. 
These vortices diffuse rapidly and are eventually dissipated in the wake. With a 
constant upsteam velocity, the wake flow is thus only stationary in the mean. 
Because of this complicated wake flow, it seems ratsher fruitless to apply the 
momentum theory which requires a dct,ailcd consideration of the free streamlines 
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at infinity. A more realistic way to formujlate the problem is thus to obtain a 
solution which is accurate near the body by taking appropriate consideration 
of the cavity pressure. It is physically plausible that the detailed structure of 
the wake far downstream has indeed negligible influence upon the flow field near 
the body. Consequently, one may represent the dissipative wake flow by an 
equivalent model of potential flow, if properly chosen. 

The general character of cavity flows depends on the value of the cavitation 
number u which is defined by 

u = (P - pg),l($pU2) 

where P denotes the pressure of the undisturbed free stream, U is its rel 
velocity, p is the fluid density, and p, is the pressure of the vapor or gas i 
cavity. Physical cavities usually have finite length and positive cavi 
number (u > 0, or p, < P). Some mathematical formulations have bee 
gested previously to investigate the possibility for obtaining the solu 
steady cavity flows of ideal fluid satisfying the following conditions: 

(i) the cavitation number is greater than zero, u > 0, or p, < P; 
(ii) the cavity pressure is uniform throughout the cavity; 
(iii) the pressure of the fluid is nowhere less than the cavity pressure 
(iv) the pressure is continuous across the cavity boundary. 

The first two conditions are imposed because of their physical reality 
case is physically unreal). The third conditdon follows from the potent 
theory that the velocity cannot have a maximum in the interior of the fl 
The last condition states that the interface between two phases of flui 
withstand any pressure jump. It then follows from (ii) that the free st 
are surfaces of constant velocity; also, (iii) always implies that the cavi 
ary is convex towards the interior flow. Application of Bernoulli’s equation with 
condition (iii) shows that the velocity is maximum on the cavity 
It should be noted that these conditions differ, only in (i) from the classi 
for which u = 0 (or p, = P), corresponding to an infinitely long ca 
Aow is restricted to be everywhere potential. flow, then the cavity 
finite length for D >= 0. For if the cavity were to close up at the rear 
then the free streamlines from two sides of the body should meet either at a 
stagnation point from opposite directions or with a cusp in the d 
tion. The first conjecture contradicts (ii), while the second altern 
(iii), Though the streamlines may reverse in direction and form a 
as often observed, the jet cannot terminate in the physical plane. The above 
argument indicates the need of models of potential flow to represent the dissipa- 
tivc wake downstream if the formulation of the problem is to be r 
the scope of potential theory. 

Now the problem of flow past a two-dimensional flat plate set 
stream, forming a finite cavity, shall be reviewed to exhibit the 
of these models. In the model of Riabouchinsky, an image plate 
is put downstream of the real plate A. The free streamlines r 
and the flow field is assumed irrotational everywhere. The total force on the pair .I 
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FIG. 1. Flows in the physical and hodograph plane for the various models. Note the 
resemblance of the streamlines in the hodograph planes near the plate AC. 

of plates then vanishes, but the calculation of the drag on A alone yields the 
following approximate expression for the dr,ag coefficient: 

CD(U) zz (1 + u + [8(7r + 4)]-‘+L(O) S (1 + a)Cn(O) (2.2) 

where CD(O) = 2%/(4 + r) = 0.88 is the classical Helmholtz solution for 
(r = 0. The physical significance of the image plate can perhaps be justified 
by the following argument. In a coordinate system where the fluid at infinity 
is at rest, the force holding A’ does an amount of negative Work, equal to W = 
-DU, where D is the drag on A and U is the speed of the traveling plates. The 
coefficient of work defined by C, = W/(+,dZ), where 1 is the plate width, 
then equals -CD . Now if the wake is approximated by a vortex street and 
CD be calculated from the vortex energy shed into the wake, the result is (see 
Ref. 10, p. 557) 

CD = ; 
[ 

1.59 ; - 0.63 ; 
2 

( )1 . (2.3) 



240 T .  YAO-TSU WU 

where a is the spacing between consecutive vortices in the same row and u, 
is the receding velocity of the vortices relative to the undisturbed flow. If the 
air is taken to be the fluid medium (because of more data available in this case), 
the measured underpressure (11) corresponds to u 
Co = 1.93. For the same flow, Heisenberg (10) she 
tive experimental values, that Eq. (2.3) yields C 
by the image plate, even though it does not ex 
representation of the energy shed to the wake, 
the flow if the flow is assumed to be potential. It 
Eq. (2.2) together with the assumed flow configl 
a certain restriction that A' must be of the sari 
metric bodies, such as the lifting plate, are consid 
the image body should be in symmetry with res 
stream or only to a point in the cavity. In the former case, the physical reasoning 
suggests that a circulation around the cavity is n 
on the pair of bodies; while in the later case, the potential is continuous every- 
where in the fluid. A clarification of this vague p 

In the reentrant jet model, the free streamlint 
of the cavity to form a jet which flows upstream 
is supposed not to impinge on the real body but 
allowing it to flow on a second Riemann sheet in 
Thus, in the original physical plane, the point inf 
source, while the jet represents a sink. Physical 
away from the first sheet is then closely associate’ 
the wake. For even though the jet can usually be 
by the turbulent mixing, at least its observed VI 
theoretical value. For the flat plate flow, the thf 
formula as Eq. (2.2), the jet width is 0.22(1 + (I 
lifting problems, it can be shown from considerat 
will turn in direction and eventually flow towards 
sheet for small enough attack angles. 

In Roshko’s dissipation model, the flow past a 1 
parts. Near the body it is described by the free st 
sible adjustment of the underpressure. The flow f: 
by an equivalent potential flow so that its pressur 
free stream value as it approaches infinity in a s 
(see Fig. lc). In this manner, the actual dissipativ 
detailed mechanism according to which the flo 
Thus, it can be seen that this model is actually c 
the other models for the air flow past bluff bodie 
equally well to cavity flows if the wake in front of the dissipation range is con- 
sidered to be the front half of the cavity. By usi 
C,(U) on the flat plate differs from the previous 
slightly by a term of O(B). Moreover, for the lif 
that the dissipative wake is parallel to the free E 
and hence needs no further modification. 
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,’ _. 
To summarize, all these models have one essentia,l feature in common: t,hey 3 _” 

8:~’ ’ are aimed to give a satisfactory description of the flow near the body by making 
1;:. 

possible an adjustment of the base pressure and thereby removing a serious 
limitation in the classical theory. For this reason, it should not be expected that 
these solutions of the flow field shall describe the wak’e far downstream. The free- 

:/<“ dom of adjusting the base pressure, therefore, yields a family of solutions con- 
taining one parameter which can be expressed in terms of (r. For pure drag prob- 

, : lems, the agreement of these theories in that they all yield the result Eq. (2.2) 
can be explained also from consideration of the hodograph involved (see Fig. 1 
and Refs. 12, 13). However, it should be pointed out that for lifting problems the 
linear relation in u for CL and CD such as given by Eq. (2.2) becomes invalid for 
moderate and small attack angles as will be shown by the present analysis, 
Consequently, the problem of calculating C,(c) and C,(U) cannot be reduced to 
the calculation of CL(O) and C&O) for a given geometric configuration, as is 
usually done in pure drag problems. 

With respect to the mathematical details involved in the analysis, these 
models differ in simplicity to some extent, especially for the lifting case. In 
Riabouchinsky’s theory, some numerical integration containing elliptical in- 
tegrals are required. Although the results obtained by using the reentrant jet 
model are expressible in terms of elementary functions, the Roshko model is 
still simpler in many respects. 

III. Formulation of the Problem. The free streamline theory is applied here 
to investigate the steady, two-dimensional flow at a given attack angle o( past 
a hydrofoil with a fully cavitating wake. The leading and trailing edges of the 
hydrofoil are assumed to be sharp and the flow configurations concerned are 
such that free streamlines separate from the hydrofoil at these sharp edges, but 
otherwise the wetted side of the hydrofoil may have any continuous profile. 
After the cavity is fully developed, the thickness of the hydrofoil has no effect 

‘, on the flow and, therefore, the hydrofoil will be assumed to be of zero thickness. 
The Roshko model (see previous sections) will be used to approximate the wake 

?‘ : far downstream. The flow in the physical space (or z-plane, where x = x + iy 
with x parallel to the free stream) is shown in Fig. 2. Outside the wake the flow 
is assumed to be everywhere irrotational. Thus, from the complex potential 

W(z) = dx, Y> + idx, Y), 

the complex velocity w can be derived as 

w(z) = dW/dz = U - iv = qe-@, 

where p, 0 are the magnitude and direction of the vel’ocity field. Here, the velocity 
at separation is normalized to Q = 1, and remains at this value along the free 
streamlines until the latter reach points D and D’ where 0 = 0. Downstream of 
these two points, the free streamlines keep parallel to the free stream on DE’ 
and D'E' along which q decreases from unity back to the free stream value U. In 
order that the cavitation number of the flow be u (see Eq. (2.1) for its definition) 
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FIG. 2 

with q = 1 on AD and BD’, U takes the value (1 + c)-‘, as can be shown by ap- 
plying Bernoulli’s equation :* 

p + &q2 = P + &dT2. I . 
The mathematical problem can be treated by finding the conformal trans- 

formation which maps the W-plane into the w-plane. From this relation the ,, 
physical plane can be deduced by an integration 

X= 
s 

dW/w 

We introduce to W a transformation in { which is given by 

4-F = -00s P + 3(i- -t m 
where 
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and bl and bf are two positive quantities defined by the potential at A and B 

Wa = b;, W, = blezRi. 

This transformation maps the entire flow in the W-plane into the interior of the 
upper semi-circle of unit radius in the c-plane. The barrier ACB corresponds to 
the semi-circle ( { 1 = 1,0 4 arg 5 6 r, and the free streamlines ADE’ and BD’E’ 
map on to the two halves of the diameter along the real axis, The approaching 
streamline EC leaves { = 0 perpendicular to the real axis and approaches C 
along the direction arg 5 = a - 0. 

Because of the way the nonlinear boundary conditions are specified in the 
x-plane (that is, with 8 described on the barrier and q given on the free stream- 
lines), we introduce the variable 

w = i log w = 0 + i log q = 6’ + ir. 

The flow in the o-plane is sketched in Fig. 2. The jump in the real component 0 
of w at C, where 7 = - m, follows from the fact that the two branches of the 
streamlines at the stagnation point C in the z-plane are orthogonal. The not,ch 
DED’ in the w-plane results from the assumption introduced in this model. At 
E, wz = --is where E = + log (1 + g). This notch can be removed by the 
transformation 

f2 = - 2/w2 + &2, & = g log (1 + rJ>. (3.2) 

It should be noted that the present case (U > 0) differs from the classical theory 
(u = 0) only by the last transformation. When I~ = 0, Q and -w become 
identical and the problem reduces to the classical Levi-Civita problem. 

It follows from the jump condition of a(<) at lc = eicnw8) that the analytic 
function Q(c) has a logarithmic singularity at cc and is regular elsewhere within 
the semi-circle. Moreover, we note that Q(c) is real for real [, and therefore the 
function Q(c) can be continued analytically over the lower half of the unit circle 
by applying Schwarz’s principle of symmetry. More precisely, since Q(0) = 0, we 
may express the function a(r) by 

Q({) = i log [(I + @‘)/(l + @“‘)I ,Jr $ A,[“. (3.3) 

The first term on the right-hand side represents the singular part of O(l) while 
the series denotes the expansion of an analytic fun&ion, regular and hence con- 
vergent, in and on the unit circle. The coefficients, ALn’s, are real and can be de- 
termined in principle from the geometry of the barrier ACB (see Sec. 4). Near the 
origin, we have 

Q(l) = %. [(-l)“+‘Esinnp + A, {” = n$ a,{“, 1 (Ii- I < 0. (3.4) 

On the barrier, where [ = ein, 0 5 q 5 1~~ we have 
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e(ll)=Rl~=8,+B+~~A,cos7a; (3.5b) 

wherepo=OforO~~<((n-~)andpo:=-~for(~-~)<~S~.Now 
from the definition of w and the expression of W in terms of [, (3.1), the physical 
plane z(t) can be obtained by integrating 

dz = eiw dW = g exp (-i($ - E”)*) r -+ $- + 2 cos p )(I-+)$ (3.6) 

which, in particular, reduces on the wetted wall, { = ei”, to 

s 

r-8 
2 = 2b2 e --i(cP-&qt (cos l;r + cos p) sin rl dq. (3.7) 

9 

The arc length of the barrier along CA or CR can be determined from 

S= 
s 

a-’ 9 dv = 2b2 Jr” e-““:‘(cos r] + cos /3) sin 9 dq; (3.8) 
‘) ‘I 

and the total length of the wetted wall is then 

S = 2b2 IT e-‘(“) 1 cos q 4; cos p 1 sin q dq (3.9) 

where 7 = Im w = -1m (Q” - e’)*. The radius of curvature of the barrier is 
given by 

R = 2 = 2b2e-““’ ( 6 cos q .f cos p 1 sin q - 
d0 

(3.10) 

If X denotes the drag, Y, the lift, then it can be shown that the force is given 
by (e.g. Ref. 14, p. 305) 

ipb2 =-- 
4 P 

exp{--i(f12-z2)*j 

where the contour for the integral is I l 1 = 1. Likewise the moment M of the 
force about the stagnation point C, positive in the sense of n&e-down, is found 
to be (14) 

(3.12) 

the integration is taken around the semi-circle BCA in the c-plane. The above 
integral cannot be reduced to one on a closed contour, and, therefore, must be 
evaluated separately. 

The above formulas are merely formal representations of various physical 
quantities. The magnification factor b for the physical plane may be eliminated 
from Eqs. (3.8)-(3.10). If the boundary va,lue R(s) is applied to these two re- 
sulting equations, an identity containing all the coefficients A, in the parameter 
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of q can be obtained. From this identity the coefficients A, can, at least in princi- 
ple, be determined. The factor b can then be expressed by (3.9) in terms of the 
wall length X, and in turn, X, Y, M can be aalculated from Eqs. (3.11), (3.12). 
In practice, however, to determine the coefficients A, from the identity would 
necessitate some expansion of the functions of r] involved in the identity into 
series. This procedure leads to infinitely many transcendental equations in 
infinitely many unknowns. In order to obtain the general result in explicit form 
with sufficient accuracy, the analysis is carried out by replacing the expansion 
in Eq. (3.3) by the three leading terms only, that is, 

Q(S) = i log [(l + se-@)/(l + re”‘)] + A$ + AZ? + -4~5~. (3.13) 

If two particular points are suitably chosen on the arc ACB at which the bound- 
ary values of R and 0 are applied, we get four transcendental equations from 
which the four unknowns, /?, Al , A,, and As can be determined, expressible in 
terms of the cavitation number (r, the attack angle a, and the profile shape. The 
rest of the physical quantities can then be calculated as shown below. 

a. Lift and Drug. In the integral representing the force, given by Eq. (3.11), 
the integrand has inside the contour 13‘ 1 = 1 (only one pole at !: = 0, but has, in 
addition, two branch points at ti = fe. Besides, the function a([) in the inte- 
grand has on the contour a logarithmic singularity at C and its conjugate point 
in the l-plane. Thus, if a branch cut is introduced from D to D’ along the real 
axis in both the {- and Q-planes and two other branch cuts from C to its conju- 
gate point outside of the unit circle in l-plane (see Fig. 2), the integrand is then 
one valued inside and on the contour in the cut plane. In practical applications, 
the values of the cavitation number v usually fall in the range 0 < u < 1, cor- 
responding to 0 < .rz < 0.123, which can therefore be considered small. More- 
over, the modulus 1 0 1 is always greater than E on the contour. Therefore, the 
exponential function in Eq. (3.11) can be expanded in terms of the small quan- 
tity E’, 

exp{-i(Q’--E’)+j =exp -&+$+O(E~+= e 
i 

7 --in 

I ( 
1+$+ O(e3). (3.14) 

It can be verified that the term of 0( e4) has indeed negligible value and thus may 
be omitted. Upon substitution of Eqs. (3.13), (3.14) into (3.11), the resulting 
integral is of the form to which the theorem of residues can readily be applied. 
From the residue of the integrand at [ = 0, on’s obtains the following result: 

(sin p + A,/2)2, (3.15) 

Y = a&l -I- e2/4) (sin ,8 cos /3 + A, cos p -+ A2/2) 

+$cos,(sinfi+$)+[(sinB+$) (3.16) 
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In Eq. (3.16) the quadratic terms in AZ and AZ are omitted because their contri- 
bution is negligible. It should be remarked here that Eq. (3.16) is valid when the 
denominator, (sin /3 + Ar/2), of the last term is greater than zero, implying 
further that the drag X is always positive definite. For, if this quantity vanishes, 
then the expansion of L?(l) near c = 0 (see Eq. (3.4:)) starts with l2 and hence the 
mapping fails to be conformal at l = 0, indicating that the flow configuration is 
basically different from what is being considered. If this quantity becomes nega- 
tive, then the function Q(p) changes its branch, implying physically that the 
cavity shifts sides on the barrier so that different boundary conditons should be 
used. With the modified boundary conditions, the present formulation, however, 
would remain valid. 

The factor b2 in the above equation can be expressed in terms of the arc length 
S of the barrier. To evaluate the integral representing X in (3.9), we first expand 
exp (-7) in a way similar to that in (3.14), 

edTcq) = exp { Im (Q2 - Ed)*) = eTcl) 
[ 

1 $- h - 2 e2 & + O(e’)] (3.17) 

where Q(eiV) = e(q) + iT(v), and 8, T are given in Eq. (3.5) with A4 = AS = 
. . . = 0. Substituting Eq. (3.17) into (3.9), we ob’tain 

X = 2b2 I’ (1 + s AZ) [I + & A, sin W] [I -I- cos (17 - P)l sin 17 drl 

in which the higher order terms of A, are neglected. The function T/(8’ + T’) 
is positive and, as can be shown, is bounded above by a constant of order unity, 
which depends on the value of 8 at B but is independent of E. Hence the con- 
tribution from the term of O(.e2) is very small relative to the first order term. 
Carrying out the integration, we finally obtain 

Sb-‘=J=4+~sin/3+A1 (r+~sin/3)+%A2cos~#-$A~sin& (3.18) 

For a flat plate set at an angle (Y, moving at the idea,lized limiting condition 
u = 0 (.z = 0), the coefficients A’s all vanish, as required by the condition of 
conformal mapping, and /3 = (Y (see Eq. (3.5b)),, then Eqs. (3.15), (3.16) and 
(3.18) reduce to the classical result for an oblique lamina, (see Ref. 15, p. 102). 

b. Moment of Force; Stagnation Point; Center sf Pressure. Applying a similar 
approximation, as described in Eq. (3.17), to Eqs. (3.12) and (3.7), and further 
neglecting As , we obtain 

M = 2bzpR1ir exp {i(P + A1 cos II + AZ cos 271)) 

- [sin /3 + (A1 + 2A2 cos q) (1 + cos p cos v)l(sin2 $x(q) drl 

where 
I n-i3 

z(q) = 2b2eCiP 
J 

[I - iAle”” - iAze”i’][l + COB (7 - /3)] sin q do. 
n 
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We then substitute the integral for z(7) into the former expression, decompose ac- 
cordingly the interval into two parts: 0 6 7 S T - fl and ?r - p I q 5 ?r, 
and then interchange the order of integration so that the limits of integration. 
further simplify the involved manipulation. After some tedious integrations, 
which are otherwise straightforward, we finaUy obtain 

+ 2 (i - /3) - Az (& sin 0 + & sin3 fi - sin’ B + &)j 

l+A,++cosB 

(3.19) 
128 . 

1 + 45a fan B 
> 

+$cosP(l+;AJ, 

where b2 is given by Eq. (3.18) and 

Cl = sin p + A, + $ cos 8; C2 = i(A1 cos @ + 2Az). 

If a profile symmetrical with respect to the central chord is set with its chord 
normal to the free stream, then B = r/2 due to symmetry (see Fig. 2). Further- 
more, AZ should vanish because in this case Q(S) is necessarily an odd function of 
c (see Eq. (3.13)). It then follows from Eq. (3.19) that the moment, M about the 
stagnation poiilt, which is now at the central chord, vanishes as it should be ex- 
pected. 

Because of the indefinite location of the stagnation point, the moment of 
force is usually calculated or measured referring to a fixed point. Hence, we derive 
here the moment MO about the leading edge. This further requires the calculation 
of the position of stagnation point. Denote the distance along the wall from the 
stagnation point to the leading edge by X0 ; then XC, can be calculated from Eq. 
(3.8) by letting the lower limit 7 = T. Proceeding in a manner similar to that 
described for the equation previous to (3.18), we obtain 

X0 ES 2b2 ie (1 + A, sin 0 - Az sin 20 + A3 sin 36))[1 - cos (0 + /3)1 sin 6 d0 

which finally leads to 

t&bF2 = Jo = 2(1 - cos p) + sin @(p - sin Z/3) 

+ Al@ + Q sin p - $ sin 2/3 -I- & sin 4p) 

+ A&$ cos fi - 3 sin p + + s:ina @ - 2 sin5 8) 

+ &A3 sin ~[COS ,~3(2 + sin” 6 -t- 24 sin” p) - 21. 

The factor b2 can be eliminated by using Eq. ((3.18) to give 

/.L = So/X = Jo/J. 

(3.20) 

(5.21) 
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Again, for a symmetric profile normal to the free stream, 0 = 7r/2, and AZ = 0, 
it can be verified from Eqs. (3.18) and (3.20) that p = $. For small values of 
P (corresponding to small 01, as can be seen from Eq. (3.5b), Eq. (3.21) reduces to 

P = 3#* + O@“> (3.22) 

which shows that the stagnation point is extremely close to the leading edge for 
small angles of attack. 

Knowing the ,position of the stagnation point, the moment Mo about the lead- 
ing edge then becomes, for profiles of small camber, 

MO = M + (Y cosct + Xsina)& (3.23) 

Having obtained MO , we can determine the location of the center, of pressure, 
measured from the leading edge, to be approximately at 

X1 = Mo/(Y cos (Y + X sin (w), 

or, in percentage of the chord, 

(3.24) 

v = it&/X = p + (M/S)(Y coti cy + X sin CC)-‘. (3.25) 

Now, consider again a symmetric profile normal to the free stream, 01 = p = 
7r/2. We have shown before that P = 4 and .M = 0, hence v = +. For small 
values of LY (p is also small as previously explained), Eq. (3.22) states that M is 
very small; Eq. (3.16) reduces to Y s apb2(@ + A, + AZ/~); Eq. (3.18) gives 
S s 4b2; and M GS 2?rb4p[s(p + A, + A2/2) -I- $-(A1 + 2&J] from Eq. (3.19). 
Thus, for small a! and cr, we have approximately 

v cs i% + *(Al + 2A2)/@ + Al + A2/2) + w>. 

Hence the center of pressure ranges from & to 4 of the chord. 

(3.26) 

c. Some Basic Features of the Free Streamlines. In this section the shape of the 
free streamlines AD, BD’ and the location of the points D and D’ will now be 
calculated. First, we show that the assumed curvature form of the free stream- 
lines; namely, concave towards the cavity, imposes certain conditions on, the 
coefficients A1 , A2 and A, . Denote the distance along the streamline # = 0 by 
s, positive when away from the point C. On AD, [ = -E with 1 4 .$ 2 .$I where 
-& is the value of { at D; while on BD’, { = 4: with 1 2 t 2 & where .$2 = {Dg . 

Then the radius of curvature R = --s/de ton AD and R = ds/de on BD’ 
should both be positive. We shall first consider R on AD. From the definition of 
Q = 8 + iT and x(c) (see Eqs. (3.2), (3.6)), o and Q are both real on AD, and 
hence 

1 dz 1 dZ: de e(dxl /de R=-$=--m-z--- 
dt de de 8 dC; / dE 

(1 - p)(l -- 2t cos p + ,$2)2 
2sinp + (1 - 25cosp + t2)(A1 - 2A2t + 3mE2) 

Ii‘rom this equation it follows that the condition R(t) 2 0 for f 5 1 requires 

2 sin 0 + (1 - 2.$ cos /3 + E2)(A1 -. 2A2E + 3A,P) > 0. (3.27) 
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Consequently R(4) increases from R(1) = 0 as [ decreases from 1. A similar 
requirement for positive R on BD’ is, for Ez 5 E 5 1, 

2 sin ,8 + (1 + 26 cos p + &(A1 :+ 2A,4 + 3A& > 0. (3.28) 

It will be only stated here that these two subsidiary condlitions are in general 
satisfied owing to the facts that the coefficient of the first term in Eq. (3.4) is 
positive and that A,% decrease rapidly with respect to A1 . However, no furt,her 
elaboration will be made here on these points. 

A parametric representation s(f), y(l) of the free streamline AD can be ob- 
tained by,integrating Eq. (3.6) along p = -4 from ,$ = 1 to t 2 & . On AD, 
r = Im w ’ = 0, and hence, referring to the point A, we have 

x 4 ~--~*=--- 2J s 1 ‘c3-“(l - 25 cos /9 + E2) (1 - k”> cos 0 d[, (3.29) 

Y-Y‘%= -g 
s 
lf f”(1 - 2g cos /3 + &(l - fl’) sin 0 d4. (3.30) 

In the above equations cos 0 and sin 0 are complicated functions of .$, 

0 = - (0” - I?)*, (3.31) 

0 = -2tan-’ 4 sin @ 
1 - ‘$ cos 0 

- A,4 + L42t2 - 143t3. 

To simplify the calculation, we approximate Eq. (3.31:) by 13 = -(0 + E) 
on AD, which should be good for /3 both small and large. Then we obtain the fol- 
lowing approximate formulas 

cos e = (1 - 2f cos p + p cos 2p)/(1 - 2[ cos p + .$“> , 

sine _ 2[(1 - tcosp) sinB+ (A1$ - A29 - E)(l - 2$!cosP+ ~2cos28) 
1 - 2#5cos/? + ‘$2 

. 

Substituting these values into Eqs. (3.29), (3.30) and carrying out the integra- 
tions, we finally obtain 

2J(z - &4)/S s 3(1 - r;“)(,$-z - cos 2j3) 

- 2 cos p(1 - 4)‘[-’ + 2 sin’ 13 log 5; 
(3.33) 

W(y - y.J/X G (2 sin p + Al + 2~ cos a)(1 -. t)“/.$ 

--E ( 
1 -$ + log if 

) 

4 (sin 2P + 2A1 cos p + A2 + E cos Z/3) 

bg f + $0 - F% 
(3.34) 

+ S(A1 cos 28 + 2A2 cos P)s)(l - 8”(2 + 0 

- 4A2(1 - t2);“>” cos 2/3 
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To find the location of D, (x0 , y,,), we first determine the value .$I corresponding 
to Q = -E. Then, by letting $2 - --E and r = -& in Eq. (3.4), we obtain I 1 

b = iI 
[ 

1 + uf;+ Ok2J]. 

Using this value of <I , one can easily derive from Eqs. (3.33), (3.34) that 

xD~~{~+O(~)}=~(2~~)1[1+o(u)], (335) 

yD E ; 
i 
;i + O(log2) 

1 
’ *3+ [l + O(u log u)]. = 17 (3.36) 

The above value of XD and yD may be regarded respectively as the half-length I 
and half-width of the cavity. Thus we see th,at for v small the cavity length is 
proportional to g-‘, while the cavity width, proportional to 0-l. It may also be 
seen that the free streamline near D lies close to a parabola 

y2/x s a&Y/J = b2(2 sin 13 + A1)2 = C, say. 

Then a comparison with Eq. (3.15) shows that the drag X can be expressed by 

X E 7rpb2(sin /3 + AI/~)~ = ?rpC/4 

which is the general formula of Levi-Civita (1.6). 
Now, in order to determine these unknown coefficients Al, A*, Aa and p 

and thus to exhibit explicitly the effects of cavitation number u, the attack angle 
a! and the profile geometry, two specific examples, the circular arc and the flat 
plate, will be worked out below. 

IV. Cavitating Hydrofoils with Circular Arc and Flat Plate Profile. Let us 
first consider the hydrofoil having the circular arc profile, with radius R and 
arc angle 2-r (see Fig. 3). The flat plate is just a special case withy -+ 0 (R + w ). 

FIG. 3. The circular arc profile 
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We shall here restrict ourselves to sma,ll values of y, say, y < a/4. The arc 
length S and the length 1 of the chord AB are then 

s = 2yR; 1 = 2R sin y = 2-yR(l - r2/6). (4.1) 

Now we choose the end points A and 11 to which the following boundary condi- 
tions are applied : 

(i) en = 7r - a! + y, (ii) & = -o( - y, 

(iii), (iv) radius of curvature at A and .I3 = R = X/2y. 
(4.2) 

These four conditions enable us to determine A1 , A, , A:% and p which in turn 
can be used to check the radius of curvature at other points on the boundary. Ap- 
plying (i) and (ii) to the definition of 0 (see Eqs. (32), (3.5)), we obtain 

0e = (0; + 2)’ = [(a + y)” + cc’]’ = /3 + Al -b A, $- A,, 

@A = -(& + E2)* = -qj- + a - y -- +.s2/e, = --?r + (3 - A, + Az - A3 . 

In the second equation the value with 4 power is expanded for eA is always much 
greater than E, but in the first equation no expansion is made because the ratio 
s/e, may not be small. Adding and subtracting these two equations, we have 

A, + AB = Y + 3 ([(a + d2 + ~~1’ - (cy. + r) t + ; (s - a + r)-’ (4.3) 

p + Az = a + 4 {[(a + y)” + 2]” - (a + y)] - g(T - a + y)“. (4.4) 

In applying the conditions (iii), (iv), we first note that at B, 7 = 0 and 

de = ce’ + E2)’ !!? -+ - (e’ + “‘* (A, + 4A2 + $4 ) sin q, -_ 
6 en dq es * 3 a,~ q -+ 0. 

Hence, from Eq. (3.10) 

- eni;a++c;~’ (A1 + 4A, + 9As)-l = 5 = f$ = 6 ; 

AI + 4A, + 9A, = (4rlJ)(a + r>t(a + Y)’ + E”]-‘(1 + cos PI. (4.5) 

Similarly, application of the boundary condition (iv) at A yields 

A1 - 4A, + 9As = (4y/J)(l - cos @)[l + O(C’)]. (4.6) 

In Eqs. (4.5) and (4.6), J, as defined by Eq. (3.18), also contains A1 , A2, AS 
and p. Thus Eqs. (4.3)-(4.6) together with (3.18) represent five transcendental 
equations for five unknowns A1 , Az , As, /I and J. The solution, however, can 
easily be approximated with good accuracy by using an iteration procedure. For 
the present purpose, the following approximation is sufficient 



252 T. YAO-TSU WJ 

(4.7b) 

Ai = 
4 + r(A:+ sin @) 

a+7 
[(cz + 7)” + .9]~ “” 

2P 

Z - sin ’ 

A3 = 5 (7 - AI) - g(4 + ‘, sink ; (4.10) 

whereas J is still given by (3.18). The above result shows that (p - LY), A1, A2 

and A.2 are all of O(r, E’) for all CX; and in particular, (0 - a), Az and Aa reduce to 
O(-ye2, E*) for CY close to x/2. Moreover, the fact that A3 is much smaller than A, 
indicates a good accuracy of the expansion given by Eq. (3.13). If the above 
quantities are used to check the curvature and slope of the solid boundary at 
some other points, say at p = ei*“, one can easily find that the agreement is 
within a factor at most of O(r, E’). It should also be remarked here that if more 
terms were taken in the expansion (3.13), then the first three coefficients Al , 
Az , A3 would differ slightly from the above value (4.8-4.10). However, it can be 
verified that the “improvement” of the solution by taking terms more than 
three is actually unappreciable. 

Now we define the conventional drag coefficient, lift coefficient and moment 
coefficient (about the leading edge) as follows: 

x = &J.mD ; Y = $3U21CL ; Mo = &dm&, . 

Then, for y not too large ( <r/4), we compile some of the previous resul 
note that U = (1 + cr)-$, we finally obtain: 

CL= f sin /3 cos /3 ,f A, cos ,O + 2 1 
‘OS’ 

P + A/W 
[(sin/3+%1>1+sinp(sin~++!) (4.13) 

++~A~+A~ 

2\ 

C,, = g ( 1 + CT + %) K + p(C, cos (Y -t. CD sin cy) (4.14) ; ‘: 
*. 

,$j:: 
6 a: 
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(b) 

; 

where 8, A, , A2 , A3 are given by Eqs. (4.7)-(4.10); J is given by (3.18); K, by 
(3.19); p, by (3.20),~ (3.21) and E = 3 log (1 + u). 

The results for the flat plate hydrofoil can be deduced from the above expres- 
sions by ptitting y = 0. For the circular arc hydrofoil with its convex side toward 
the approaching stream at positive cr (see Fig. 4a), the above formulas still hold 
if y assumes a negative value. For flow configurations with positive y but nega- 
tiGe (Y (see Fig. 4b), the results are that CD.stays the same, but CL and CM have 
oppositive signs as those of flow case (4a). 

There’are however, several points of complication at which the above results 
may become invalid, and thus should be applied with great care. First, there in 
general exists a certain small cr, say, Q! P , positive or’ negative, at which the free 
streamlirie AD given by Eqs. (3.33), (3.34) would cut. info the solid boundary. 
It’ could be conjectured that a partial cavitation,‘th& -is, with the rear erid of 
the cavity reattached to the boundary, probably is established for a: around a),, . 
The .present theofy certainly does not cover partially cavitating flows. Second 
there is another cr#cal value of a, say, crO(‘y, u) at wh.ich /3 = 0, implying that 
the stagnation point is then at the leading edge. Hence the cavity will shift @de 
on the boundary for OL < (Ye . The value bf (Y~ is in gene+ less than cyP. Third, in 
flow ‘co$gurations shown in Fig. 4, the streamlirie will be in a more crXca1 
position at B than at A. In other words, the flow & rhore likely to separate in 
front of B for small enough cu; and thus a rear part of the boundary will be inside 
the full cavity. This critical condition will take place when either the slope or the 
radius of curvature of streamline BD’ at B is numerically greater than that of the 
solid b@dar$ at B. These points will be tou&ed upo:ti in the following explicit 
calculations, though the clarification of these points requires further study. 

a. In&ned Flat Plate. For an inclined flat plate, y = 0, and hence Eqs. (4.7)- 
(4.10) reduce to 

p = a + *[(a” + E2)) - a] - $k/(?T - a), (4.15) 

Al = &[(a” + e2)” - a] + &e”/(r - a), A2 = 0, As = --*Al (4.16) 

and 
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J = 4 + T sin p + A*(* + 2.72 sin /3). 



T. YAO-TSU WIT 

The expressions for CL and CD then can be simlplified to: . 

c,~~(l+.+~) 1 cosfl (sinfl+A,) +& 

8 sin B(sin /3 + A,)’ + A:(A1 - sin 8) ‘--“’ : 
(sin 6: + AJ2)’ 3. 

In the idealized case of u = 0 (hence E = 0), ,B = LY and A1 , AZ , Aa all vanish, 
the above result then reduces to Rayleigh’s th.eory of the oblique lamina (e.g. 
ref. 15, p. 102): 

2rsin2cr 

When (Y = r/2 but u > 0, Eqs. (4.17)-(4.19) blecome 

(4.21 ,I,. 

which agree, up to the term in u, with the known results (see also Eq. (2.2)). 
For general values of (Y and u, one more physical requirement, howeverSl 

should be pointed out. For a fully cavitating flow past the oblique flat plate, ther,; 
local pressure is everywhere normal to the plate and, besides, there is no singular, 
force at leading edge as in the noncavitating case. Consequently CL and CD should ; 
satisfy the condition 

CD/C, = tan (Y for all a! and u. (4.22):‘. 

In the special cases (i) u = 0, (ii) cy close to r/Z/21 and u > 0, the above condition: 
is obviously satisfied (see Eqs. (4.20), (4.21)). However, in the general case, it is: 
rather difficult to derive this relation from Eqs. (4.18), (4.19), beoause of tvi 
camplicated manner in which the dependence on Q! and u appears. Bnder this, 
circumstance, the condition (4.22) can only be used as a check in numerical corn-.: 
putation to assure the correctness of this theory. 

Another approximate formula for CL, when ,rr is small but u is left arbitrary,:~ 
has been given by Bets. The main idea is first to linearize the Bayleigh’s formula 
(4.20) to obtain ?r~y/2 and then by adding to this1 quantity the pressure coefficient’: 
on the upper suction side, namely, u, to obtain 

CL = &ra! + 0. (4.23)i 

This approximation appears, in general, too rough. 
On the other hand, as u increases the cavity dimension diminishes (see Eqs. 

(3.37), (3.38)) ; in some cases it is observed experimentally that the cavity col- 
lapses completely for Q approximately greater than 1.5. In the latter flow condi- 
tion C, and CD then resume their noncavitating (aerodynamic) values: 

c L s 2?f sin ‘X, CD s (2 coa cx)C, (4.24) 

where C, is the mean friction coefficient on one side of the plate. 
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11 / / 1 FLAT PLATE 1 
, GAME LEGEND AS FIG. 6, 

70 60 90 
a. ATTACK ANGLE IN DEGREES 

FIG. 6. The dependence of CL on Q 

The value of CL given by (4.19) is plotted against (Y for different values of u 
in Figs. 5 and 6. The aerodynamic value of CL given by (4.24) is also shown for 
comparison. For a given value of u, there is a certain small (Y, say, (Ye at which 
the cavitating value of CL becomes equal to the aerodynamic value if the fully 
cavitating model is assumed still possible (e.g. LYE = 4.5’ for u = 0.4). A further 
extrapolation (dotted lines) of Eq. (4.19), without justification, to smaller LY 
would yield an implausible result that the cavitating value of CL would be greater 
than its corresponding aerodynamic value. As a phyGca1 conjecture, this result 
is unacceptable. Instead, we expect that near (Y = LYE partially cavitating flow 
takes place, a transitional stage between the fully cavitating and fully wetted 
conditions. This argument is supported by experimen.tal evidence, as shown by 
the double-dotted lines in Figs. 5 and 6. Thus, the aerodynamic value of CL for 
a fully wetted hydrofoil is actually the asymptote to which the cavitating CL at 
every CT approaches from below as a! decreases from LY,, . 

The value of CD given by Eq. (4.18) is similarly plotted in Figs. 7 and 8. In 
the cavitating range of practical interest, the Reynoldls number of the flow is in 
general very large, say, of the order 5 X 10” or greater. Then the frictional drag 
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0, ATTACK ANGLE IN DEGREES 

FIG. 6. values of CL for small a! 

coefficient C, , as can be estimated by using the Prandtl-Schlichting formula* 
‘(e.g. ref. 17, p. 33), is of the order 0.0015 which is much smaller than the cavity 
CD for almost all LY and u and can thus be neglected. 

A series of experiments (18) was carried out in the Hydrodynamics Laboratory, 
California Institute of Technology, at about the same time the present theoretical, 
result was obtained. In order to compare the theory with the experimentsj Ct 
and CD are further cross-plotted against u in Figs. 9 and 10 in which the experi- 
mental data are also shown.* The agreement is very good. As a further check, 
the value CL/CD is plotted against a! for several u and is compared with cot cz in 
.Fig. 11. The deviation is less than a few percent, implying the accuracy of the 
present theory. 

Some of .the salient points of the previous results may be summarized here. 
(i) The results plotted in Figs. 9 and 10 show that for a! large, say, greater;; 

than 45O, the values of C, and CD approach respectively the asymptotes * 

C&, 4 = (1 + QYdO, 4, C&J, a) = (1 + u>CdO, 4, (4.25); 

* In these experimental data, the oorrectilon due to tunnel-wall effect was not taken into 
account. However, the cavitation number o was computed based on the measured cavity 
pressure which presumably absorbs a part of t$e wall-effect correction. For the detailed 
description, refer to Ref. (18). 
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a, ATTACK ANGLE IN DEGREES 

Fro. 7. The dependence of C.0 on CY 
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FIG, 8. Values of CD for small a: 
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- THEORY. FULLY CAVITATED FLOW 
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FIG. 9. The dependence of CL on o 

0. CAVITATION NUMBER 

FIG. 10. The dependewe of CD on u 
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a, ATTACK ANGLE IN 0EGREE:S a, ATTACK ANGLE IN 0EGREE:S 

Fra. 11. Values of CL/CD for the flat plate Fra. 11. Values of CL/CD for the flat plate 

which are shown as dotted lines. For ry small, they deviate appreciably from these 
asymptotes; the deviation is much more marked for CL smce here the deviation 
of Co is magnified by a factor cot (Y. For instance, the slope dC,/du becomes 
greater than unity for (Y < 15” and g > 0.2. 

(ii) It is to be noted from Figs. 5 and 6 that, after the hydrofoil at small a! 
is fully cavitated, dC,/dcy decreases to values much smaller than that of fully 
wetted case, which is approximately equ.al to 2~. This means that fully cavitating 
hydrofoils are quite insensitive to variations of attack angle CL However, the 
drag coefficient is relatively more sensitive due to the relation (4.22). Differentiat- 
ing Eq. (4.22) with respect to QI, we have 

- - = - - t is csc Lo! 
Co da CL da 

Thus, the percentagewise change of Co is always greater than that of CL . 
The location of the stagnation point, CL = &/A’, as given by Eqs. (3.18) and 

(3.20), is plotted in Fig. 12 for this oblique flat plate by using the quantities 
given in Eqs. (4.15)-(4.17). It is of interest to note that u has really negligible 
effect on (u. With the aid of Figs. 9, 10 and 12, the moment coefficient CM, about 
the leading edge of the flat plate (see Eq. (4.14) with y = 0) is further computed 
and plotted against g in Fig. 13. The theoretical value of CM0 is also in fair agree- 
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ment with the experimental &a (18). From these results the location of the 
center of pressure 

v = C’M,/(CL 008 0~ + CD sin CX) (4.27) 

can be easily deduced. The result shows that v, like JL, is also independent of u 
for all practical range of u (see Fig. 12). It, varies almost linearly from one-third 
chord at small (Y to half-chord at (Y = 7r/2.. 
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r 
s !  
g  FIG. 14. Some calculated locations of the free streamline ii‘ 
;i 
;’ 
t 

The location of the free streamlines, as given by Eqs. (3.33), (3.34), is computed 
P L* and plotted for a! = 10” in Fig. 14. 
& 
1 

b. An Example of Circular Arcr Hydrofoils; .Further Discussicn~. With a knowl- 
edge of some essential hydrodynamic features of the flat plate hydrofoil, we may 

F further note several general characteristics of the camber effect in cavity flows by 
p 
” examining the circular arc profile. 
m jj ,First, when both y and E are assumed to be small,, then at cx = 7r/2, we have 
$ 
f  2 

;A‘ A ey+&~~, A,=-&- 0.057 ) A2 and (/3 - LY) = O(&); 

and hence 

C D 5% 4+” (1 + d [l + 3(44; *) 1 , CL = 0. (4.28a) 

Therefore 

dCD 
( ) dr 

z-8?r 
(13x12 - 3(4 + 7r)2 

(1 + a) z f (1 + a). (4.28b) 

$ These equations then represent the effect of c,amber on pure drag problems. 
i; 
k Second, in order to exhibit the ‘effect of camber on CL and ,CD for all cy, we con- 
t 
$ sider the limiting case E + 0 and y + 0, in which case 
1 

dA1-+ 1 
ci!Az @ cos ff 

p 
j: i&- ’ Y~=-&34+7rsin~* 

1 It then follows from Eqs. (4.12), (4.13) that as c: --+ 0,~ --+ 0, 

dCL N 7r cos ct 
& - (4 -I- 7r sin cy:,i 1 1 + g 21 sin ff + 4 7 sin” OL ) ; (4.29) 
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.‘) u sin cy cos” LY ‘I I. -_ dCD N 4n sin a 
& - (4 + * sin a)” 

1. - + sin- a + 
4(4 + u sin LY) ’ 1 

\4.3U) 

Therefore, 

as ct+ 0, y + 0 and E -P 0, (4.31) ‘j 

dCD 8?r 
- “3(4 +7r)2’ d-Y 

dCL 
dy-+O as a( 3 a y + 0 and E --) 0. (4.32) : 

This result shows that for small LY positive camber is very favorable for increasing 
CL with negligible effect on CD . On the other hand, when u is so large that the I 
hydrofoil is fully wetted, then we obtain the well-known aerodynamic value of 
C L: 

CL = 2r sin a + r 
( ) 2 ’ 

from which we derive 

kc!?\ (Lt.14 

\ d-t / “’ 
\-.“&I 

a-90, q-b0 

Although the value of dCJ&y for fully cavitated hydrofoil is less than that in ’ 
fully wetted flow, a comparison, however, can be made on a different basis. If ) 
we compare these values at the same effective angle of atack (aerodynamic) 

then the aerodynamic value of C,, is almost the same for same (Ye, but the 
cavitated value of CL still increases with increase in y, holding (Y, tied. The rate I 
of increase in this case can be estimated to be d’CJdy = 3 at equal (Y~ . The in- 

0.6 

c 0.5 
l5 
P 
= 0.4 

z 

c, 0.3 
CIRCULAR ARC. o-=0 

OO- ---Ye 40 - 90 
a. ATTACK ANG1.E IN DE:GREES 

FIG. 15. Effect of camber on CL at Q = 0 
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a. ATTACK ANGLE IN DEGREES - -- 

FIG. 16. Effect of oiirnber on CD at u = 0 

CIRCULAR ARC, y= a0 CIRCULAR ARC, y= a0 

0.3 0.3 - THEORY, FULLY CAVITATEG FLOUl - THEORY, FULLY CAVITATEG FLOUl 
-- EOU~ATION 14.25) -- EOU~ATION 14.25) 

0.2 0.2 - EXPERIMENTAL OATA 5 EXPERIMENTAL OATA 5 

0 a=,o* 

0.1 

BL’ 

20” 
,b 25. 

. 30* 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.6 07 0.6 0.6 0.9 0.9 

c, CAVlThTlON NUMBER c, CAVlThTlON NUMBER 

FIQ. 17 
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0.7 

c 06 

E *- 

E 0.5 
t; 
s 

- w 0.4 

i? 

u” 0.3 

4---k&-w-0 . . 

b, CAVITATION NUMBER 

Flo.18 

fluence of 7 on C;. and CD at u = 0 is shown in Figs. 15 and 16 for two particular 
values of y, 4’ and 8”. 

Rosenhead proposed an empirical formula for small cambers at u = 0 as 
follows (2) : 

and 

CP = 2n sin (Y 
--!y-- 

2cbr2-tcosa+3cos~oltan~ 
4+nsincu , (4 + 7r sin cx)” 2 (4.35 

Cr. = Cp cos 6, CD = Cp sin 6 (4.3613) 

where the angle 6 can be computed according to Rosenhead’s formulation. The 
value of 6 is in general very close to cy. Equation (4.35) is plotted in Fig. 15 for 
several points with 7 = 8”. The result shows that this formula is in good agree-’ 
ment with the present theory for (Y small. 

Finally, we present here some explicit results of a numerical example with!, 
y = 8” to show the over-all e:ffects due to u, LY and y. Since both CL(a, y, o) and ; 
CD(o, y, cz) approach their asymptotes (1 -t a)Cr,(O, y, o) and (1 + u)CD(O, y, a)< 
for ar large, the calculation is limited here to (Y 5 30”. For 10’~ < (Y < 30”, the:! 
calculated values of CL and CfD are plotted against u in Figs. 17 .and 18 together,! 
with some experimental data (18). The, agreement here may also be considered; 
as good. 
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