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Abstract

Hydrofoils have been traditionally used in marine systems for

propulsion and stabilization purposes. During 20th Century plan-

ning crafts started to be partially sustained by lift forces devel-

oped by immersed hydrofoils with the aim to decrease the wetted

area, and hence the resistance. It is clear that hydrofoil design be-

comes a very important aspect for very high speed crafts. For this

reason the flow have to be accurately solved to capture the com-

plex hydrodynamic phenomena. A complete simulation frame-

work consisting of an automatic grid generation module, a high

fidelity CFD solver and a post-processing tool has been devel-

oped with the final goal to be included in a shape optimization

process, specifically designed for cavitating or super-cavitating

hydrofoils. The simulation framework has been coded to deal

with any foil geometry with the minimum requirement of input

data. The major complexities of hydrofoil fluid dynamic such

as cavitation, laminar-turbulent transition, flow separation and

vortex shedding are solved by a non-linear fully viscous method

based on URANS equations, which has been carefully tuned for

the solution of the flow around 2D foil geometries. The frame-

work has been designed to post-process results which are given

in terms of lift and drag coefficient. The grid strategy and the

CFD solver setting have been specifically studied with the goal

to obtain a relatively fast computational method which could still

maintain high level of accuracy. The simulation framework has

been validated with two different geometries at different angles

of attack, tested at Caltech high-speed cavitation tunnel over a

wide range of cavitation indexes. Interesting results are critically

discussed involving fully cavitating flow over the entire hydro-

foil (super-cavitating) and the unsteady behavior of the hydrofoil

working at partially cavitating conditions. The multiphase flow is

numerically solved considering water and vapor as a single fluid

of characteristics that depend on an indicator scalar function as in

the volume of fluid approach. Results have been verified on suc-

cessively refined grid to understand the influence of mesh resolu-

tion on capturing the dynamic of the cavity. The main advantage

of these methods is that there is no boundary condition on the

cavity surface and the vapor flow is fully resolved allowing for a

better solution of the pressure recovery at the cavity closure.
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Nomenclature

α Angle of attack

δ Boundary layer thickness

γ Volume of fluid scalar function

κ Von Karman constant

µ,µL,µV Dynamic viscosity of the fluid mixture, liquid, vapor

νt Mean velocity parallel to the wall

ρ,ρL,ρV Density of the fluid mixture, liquid, vapor

σK cavitation index based on pK

σV cavitation index based on pV

τ = TU
c

Non-dimensional time parameter

A = cs Reference hydrofoil area

BEM Boundary Element Method

c Hydrofoil chord

cD = D
1
2 ρU2A

Drag coefficient

cL = L
1
2 ρU2A

Lift coefficient

CFD Computational Fluid Dynamic

f Vortex shedding frequency

H Height of the blunt trailing edge

n0 Nuclei concentration per unit of volume

p0 Reference atmospheric pressure

pK Pressure inside the cavity

pV Nominal saturation pressure

R Bubble radius

Re = ρUc
µ

Reynolds number

s Hydrofoil span

Sr = f H
U

Strouhal number

T Overall simulation time

U Inflow, free-stream velocity

uτ Shear velocity

URANSE Unsteady Reynolds Averaged Navier Stokes Equa-

tions

VOF Volume of fluid



y+ Dimensionless wall distance

Introduction and Background

The advances in high speed hydrofoil design have been brought

to a larger audience in occasion of the recent America’s Cup com-

petition. Sailing hydrofoil boats have been able to reach speeds

in excess of 40 knots with a simple concept: the wetted surface of

the hull is minimized and the required displacement is obtained

through a lifting force produced by submerged hydrofoils work-

ing close to cavitating condition. This is a well-known concept

in naval architecture that has been exploited since the beginning

of the 20th Century. The hydrofoils used in sailing boat races

are yet not designed for cavitating flow, but if the speed will con-

tinue to increase, major changes in the design will be eventually

needed. When very high speeds are essential, cavitation cannot

be avoided and foil shapes have to be designed with the goal of

maintaining a stable flow regime eventually compromising the

lift. It is clear that a computational tool able to predict the hydro-

dynamic characteristics of cavitating foil is essential in the design

process of such type of hydrofoils.

Super-cavitating flow conditions (i.e. the cavity is larger than the

hydrofoil chord) have been studied and used to allow ultra high

speed for the hydrofoil based crafts designed at the MIT-iShip

Lab.

The numerical simulation of the flow around cavitating hydro-

foils is a complex physical phenomenon which involves many

different challenges. The early prediction methods were formu-

lated under linear theories (Tulin (1953), Acosta (1955)) whose

main weaknesses were in the cavity shape prediction especially

for thick profiles. Uhlman (1987) used a non-linear surface vor-

ticity method to prove that the cavity size decreases with the in-

crease of profile thickness, in contrast with linear theories find-

ings. Since then many non-linear potential flow based methods

were formulated in the context of a boundary element approach

both in 2D (Kinnas and Fine (1991)) and 3D (Fine and Kin-

nas (1993), Kinnas and Fine (1992) and Kim and Lee (1996)).

Among these studies Young and Kinnas (2001) developed a sur-

face panel method to predict cavitating flows in unsteady condi-

tions.

The main problem related with cavitating flows is that the cavity

shape can be found only through the solution of the flow around

the profile which depend on the shape of the cavity itself. Panel

methods treat the cavity as a domain boundary where specific

dynamic and kinematic boundary conditions are imposed. They

are based on potential flow formulation and they need to be for-

mulated in order to iteratively solve for the cavity shape. Kin-

nas et al. (1994) developed a non-linear BEM for partially and

super-cavitating hydrofoils including a viscous model based on

the boundary layer-theory. The validity of this method has been

proven for steady-state flows, but it cannot be applied for un-

steady cavitation.

Recently a potential flow based method has been proposed by

Celik et al. (2014) who used a BEM based on source and dou-

blet distribution on the foil and the cavity with Dirichlet bound-

ary conditions, validated with numerical results obtained with a

Reynolds Averaged Navier-Stokes code. They investigated the

steady sheet cavitation over NACA 16 hydrofoils, typically used

in marine propeller design, applying an iterative method satisfy-

ing the dynamic boundary condition on the cavity and the kine-

matic one on the whole hydrofoil (including the cavity). Their

method is limited to steady cavitaton occurring on the back of

2D profiles and its application to NACA 16 hydrofoils of dif-

ferent thickness, showed some weaknesses when used for thin

profiles at different angles of attack. Their work confirms that

in case of complex turbulent flows where hydrofoils are operated

at high angles of attack a more realistic modeling of the physics

need to be involved.

The solution of the Navier-Stokes equations coupled with a suit-

able cavitation model recently brought extraordinary improve-

ments in cavitating flow predictions. Recovering viscous effects

and vortex shedding due to separation in the context of a non-

linear method to capture the cavity boundary has considerably

improved the analysis of the unsteady characteristics of cavita-

tion like the re-entrant jet prediction. However, one of the main

challenges to face when solving Navier-Stokes equations in very

high speed flows is the modeling of turbulent effects, responsi-

ble for the random fluctuations of the main flow variables. In

fact the boundary layer flow interacts with the cavity interface,

contributing to its development (Ji et al. (2015)). Many applica-

tions have been proposed for partially cavitating hydrofoils, but

only few of theme consider super-cavitating conditions. In this

paper we present a tool specifically designed for the analysis of

marine hydrofoils: the open source libraries of OpenFOAM rep-

resent the core of a comprehensive fluid dynamic analysis tool

which includes a pre-processing package for mesh generation, a

’case set-up’ automatic procedure and a post-processing pack-

age for results analysis. This CFD suite is here used to study

simple shaped super-cavitating foil geometries, with the goal to

verify and validate the computational method based on Unsteady

Reynolds Averaged Navier-Stokes Equations (URANS) which at

the moment represents the best compromise between accuracy

and computational effort. The present study represents a first step

for the validation and verification of a cavitating solver meant to

be included in the more general CFD analysis tool for hydrofoils.

The most distinguished feature of cavitating hydrofoils is the

multiphase nature of the flow, which in this study is solved us-

ing a volume of fluid approach without involving any boundary

condition on the cavity surface. In such a way the vapor flow is

fully resolved allowing for a better solution of the pressure recov-

ery at the cavity closure, both under partial and super-cavitating

conditions

Methodology

Shape optimization is nowadays a well established practice in

engineering design. Many successful applications have been pre-

sented in the past to demonstrate that designing the shape fol-

lowing intelligent optimization procedures leads to improve the

hydrodynamic behavior of marine systems. These methods are
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based on the geometry description through fully parametric mod-

els coupled with genetic algorithm driven by objective functions

numerically defined by hydrodynamic solvers. A comprehen-

sive application of this procedure as been given by Vernengo and

Brizzolara (2015) who presented a multi-objective optimization

of the shape of a multi-hull vessel around the hydrodynamic per-

formances in calm water and rough sea.

Due to the large amount of design variables and consequent ge-

ometry variations, these methods need solvers able to perform

complex numerical fluid dynamic predictions based on automatic

procedures which minimize the computational effort. It is clear

that potential flow solvers represent the vast majority of CFD

methods applied to shape optimization problems.

Many concerns rise when the complexity of the hydrodynamic

problem requires high level of accuracy in the flow field predic-

tion. Campana et al. (2006) presented a Simulation Based De-

sign environment for shape optimization specifically formulated

to deal with highly expensive objective functions such as the one

resulting from an high fidelity CFD solver as an URANSE code.

Marine systems are mostly characterized by very complex hydro-

dynamic problems, for this reason shape optimization requires

the improvement of both the optimization algorithms and the

high fidelity solvers efficiency. The present study moves toward

these goals through the development of a simulation framework

specifically designed for the hydrodynamic analysis of cavitating

and non-cavitating flows around any type of hydrofoil geometries

under specific operative conditions.

Figure 1 presents the high level flow chart of the automatic pro-

cedure, implemented through a series of codes under Linux en-

vironment. First a mesh generation tool has to be designed and

interfaced with an offset geometry output, then the CFD solver

has to be set up according to the flow conditions. At last a post-

processing tool is designed to extract CFD results in terms of

hydrodynamic performances (lift and drag) and eventually cav-

ity shape. The present work represents the key step toward the

implementation of an efficient CFD solvers in a new shape opti-

mization framework.

Numerical Grid Generation

The definition of the computational domain represents the first

step in modeling the problem of an unsteady viscous cavitating

flow around a marine hydrofoil with the final goal of predicting

the time-varying performances of the hydrofoil in terms of drag

and lift forces as well as the cavity shape in terms of length and

thickness. As previously discussed, high efficiency is required

to implement a RANSE code into an optimization framework:

unsteady simulations must be set up in order to reduce the com-

putational time capturing the fundamental physical aspects of the

problem when the transient-free stage is achieved. With this re-

spect, one of the most important aspect is the determination of a

suitable numerical grid able to predict viscous cavitating or non-

cavitating flow eventually in presence of laminar-turbulent tran-

sition.

For this purpose a hybrid mesh composed by three different re-

Figure 1: High Level Flow Chart of the Automatic Procedure for

URANSE predictions of cavitating flows

gions has been designed: a structured grid is used to discretize

the region close to the hydrofoil surface while two unstructured

grids are used for the near-body and the far flow fields. Bound-

ary layer effects consequence of the non-slip condition lead to

very high velocity and pressure gradients close to wall bound-

aries where a very high grid resolution is required to capture the

effect of viscosity, vortex shedding and variable fluctuations due

to turbulent effects. A structured grid helps reducing numerical

errors due to sparse and irregular matrices and allows the control

of the dimensionless wall distance y+, defined as:

y+≡
ρuτδs

µ
(1)

This parameter is very important to set up the right boundary

conditions at solid surface. As a matter of fact, it is well known

that viscous effects are always present in the region where y+≤
5−6 which is also the so-called viscous sub-layer (Piquet, 1999).

For high Re number convective effects are important only at y ≥
δ, where δ is the boundary layer thickness. It can be observed

that for y+>> 1 and y/δ << 1 the mean velocity profile follows

a logarithmic law:

u+=
νt

uτ
=

1

κ
lny++B (2)

Where νt is the mean velocity parallel to the wall, uτ =
√

|τW |
ρ is

the shear velocity (deriving from the shear stress τW , κ is the von

Karman constant (0.41), B is an empirical constant related to the

thickness of the viscous sublayer and y+ is the non dimensional

distance from the wall. Wall functions rely on the existence of

this logarithmic region and they were introduced with the goal
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to keep reasonable computational time in turbulent flows numer-

ical simulations, exploiting the physical characteristics of wall

bounded flows (Launder and Spalding (1972)). Kalitzin et al.

(2005) Knopp et al. (2006) and Knopp (2006) presented some

of the many successful applications of wall functions for the so-

lution of the boundary layer of fully turbulent flow. In this cases

relatively coarse grids with y+ greater than approximately 30 can

be used for the solution of the flow in the logarithmic layer rely-

ing on different formulations for the solution in the viscous sub-

layer and the buffer layer (Launder and Spalding (1972)).

Bonfiglio and Brizzolara (2015) demonstrated that in case of

transitional laminar/turbulent flow, wall functions do not allow

for the prediction of the boundary layer physics, eventually lead-

ing to very inaccurate results. When the flow Re decreases even-

tually to fully laminar or transitional flow, the grid resolution

close to the wall has to be increased in order to achieve very low

y+ values thus resolving the flow characteristics up to the wall.

This physical considerations justify the needing of a flexible tool

able to generate different structured grid close to the hydrofoil

surface in order to simulate very different flow conditions. More-

over, in case of cavitating and super-cavitating flows, the pres-

ence of an interface region introduces a further intricacy in the

mesh generation process, for this reason a near-body region out-

side the boundary layer is designed with the goal to increase the

accuracy in cavity development prediction. This is the more re-

fined of two nested unstructured regions discretized with tetrahe-

dral elements distributed according to a Delaunay triangulation

algorithm Delaunay (1934). Having two nested regions allows to

decrease the number of cells in the far-field (outer unstructured

region) without affecting the resolution of the cavity shape hence

optimizing the global cells number.

The structured region close to the hydrofoil is bounded by two

closed loops built around the foil profile: the first loop is obtained

from the intersection between a transverse plane and the hydro-

foil surface (internal loop), while the second (external loop) is

an offset of the internal loop at a certain distance o. The region

of fluid in between these loops is the one where viscous effects

are more relevant, hence the o value is not given a priori, but

it is an input parameter to be selected according to the partic-

ular flow condition (e.g. boundary layer thickness, presence of

flow separation, recirculation or re-entrant jet, etc). Introducing

a body-fitted curvilinear coordinate system (n and t) and being d1

the size of the first cell close to the wall in the direction normal

to the surface (n) and d2 the size of the cell close to the external

loop (farthest from the body in the structured region), it is possi-

ble to determine the number of cells and the progression in the n

direction.

pn =
o− d1

o− d2
nn = logpn

d2

d1
+ 1 (3)

The cells size in t direction is related to the size in n direction (d2)

according to an aspect ratio factor AR to be tuned according to the

particular flow conditions; no progression is used for distributing

cells along the tangent direction. Describing the hydrofoil profile

through a series of cubic splines of generic length l:

pt = 1 nt =
l

d2AR
(4)

The surfaces used to mesh the structured region can be composed
by several patches, one for each cubic spline used to model the
hydrofoil profile. Each patch is bounded by the two cubic splines
of the internal and the external loop and two straight lines per-
pendicular to the hydrofoil and connecting the ends of the inner
and outer splines. The set of splines and straight lines is gener-
ated according to the requirements of a structured grid, hence a
neighbor connectivity is maintained in the whole near-body re-
gion.
At first the hydrofoil geometry needs to be defined through input
files containing the x, y and z coordinates of the points represent-
ing each wing section. Then the meshing tool reads coordinate
files storing them in a primary set of points. These points are
interpolated and a secondary set of points s generated with the
goal to increase the accuracy in the geometry definition. The sec-
ondary set of points is used to define normal directions to the foil
surface necessary to define the external outline bounding the fluid
region adjacent to the hydrofoil geometry. A set of three normals
(backward, forward and the sum of the previous two) can be as-
sociated to each primary point (Fig. 2). Defining the normal to
the hydrofoil surface at the previous point (nB) and the normal
at the following point (nF ) the normal at the primary point can
be obtained following equations (5), (6) and (7). The hydrofoil
extrusion is defined moving each primary point of a quantity o in
the normal direction n.

nB = [
(zi − zi−1)

√

(yi −yi−1)2 +(zi − zi−1)2
;−

(yi −yi−1)
√

(yi −yi−1)2 +(zi − zi−1)2
]

(5)

nF = [
(zi+1 − zi)

√

(yi+1 −yi)2 +(zi+1 − zi)2
;−

(yi+1 −yi)
√

(yi+1 −yi)2 +(zi+1 − zi)2
]

(6)

n = [
nB1 +nF1

√

(nB1 +nF1)2 +(nB2 +nF2)2
;

nB2 +nF2
√

(nB1 +nF1)2 +(nB2 +nF2)2
]

(7)

Figure 2: Normals in different geometries ("ordinary" - "convex"

- "concave")

The ends of the cubic splines are indicated in the geomtery input

file through a series of instructions defining three different types

4



(a) ordinary corner (b) convex corner

(c) concave corner (d) Sharp Leading Edge

Figure 3: Grid definition for different geometries

of corners: ordinary, convex or concave (figure 3). A particular

instruction is given in case of sharp leading or trailing edges, typical of

supercavitating hydrofoil (lecav, tecav). If the ending point of a spline

is ordinary, the primary point of the external loop will be obtained mov-

ing the corresponding internal point in the direction of n of a quantity oo.

oo =
o

cos θ
2

(8)

Being θ the angle between nB and nF . If the corner is defined as ordi-

nary, the mesh generated will be similar to the one showed in Fig. 3(a).

Considering two adjacent cells, they will share a face: increasing an-

gle θ leads to high skew angles between adjacent cells. To reduce the

skewness keeping high mesh quality, in case where the hydrofoil profile

curves in or out, the instructions concave or convex will launch two dif-

ferent routines to introduce additional patches between the two surfaces

obtained from the two splines sharing one end (fig. 3(b) and fig. 3(d)).

Following this procedure leads to the generation of a series of patches

that are discretized using a structured algorithm.

Triangular elements are used to discretize the remaining surfaces, dis-

tributing the cells according to the cells size at the boundary points of

the cavity-refinement region and the far-field. The size of the cells lo-

cated at the computational domain boundaries is chosen as a multiple of

d3, the size of the remaining points is a consequence of the geometric

distribution of cells in the structured mesh region.

The mesh generation is completed with the definition of the computa-

tional boundaries: inlet, outlet, top, bottom and hydrofoil.

The mesh generator tool performs the following steps (according to the

flow chart in figure 1):

• Conversion of the input files (hydrofoilGeometry.dat) into a series

of grid geometry instructions.

• Conversion of the grid geometry instructions into a .msh formatted

file using an external meshing tool.

• Conversion of a .msh formatted grid into a grid suitable for RANSE

solver. (gmshToFoam utility)

• Setting up of main folders where the simulation of the hydrofoil at

different angles of attack is performed

The external meshing tool is GMSH, a three-dimensional grid genera-

tor able to deal both with structured and unstructured grid, developed

by Geuzaine and Remacle (2009). The information required to perform

the mesh generation are included in an input file described in table 1.

Once input files are ready, the mesh generation is launched in bash and

Table 1: entries for the input file

1 Angle of attack to simulate (list ending with eao) [deg]

noa eao [/]

1 Scale Factor [/]

2 Offset (o) [m]

3 Near wall cell size (d1) [m]

4 Size farthest cell from the wall (near-body region) (d2) [m]

5 Size farthest cell from the wall (d3) [m]

6 Cells Ratio [/]

7 Reynolds number [/]

8 Chord Length [m]

9 Turb.Mod.: 0=lam./1=sa/2=kε /3=kωSST /4=kkl/5=rkε [/]

10 Turbulent Intensity [%]

11 Cavitation Parameter 0=nonCavitating 1=cavitating [/]

12 Water Dynamic Viscosity [kg/ms]

13 Water Density [kg/m3]

14 Water Saturation Pressure [Pa]

15 Reference Atmospheric Pressure [Pa]

16 Vapor Dynamic Viscosity [kg/ms]

17 Vapor Density [kg/m3]

18 Simulation Time [s]

19 Timing control for write output to file [s]

20 Three dimensional extrusion [m]

21 Number of CPUs for each Angle of Attack [/]

22 0=SteadyState/1:Transient(laminar)/2:Transient(generic) [/]

23 Transient-free simulation time [s]

24 Free Stream=1/2=Cavitation Tunnel [/]

25 Major Axis Ellipse/Length Tunnel [m]

26 Minor Axis Ellipse/Depth Tunnel [m]

27 Distance of the LE from the inlet of the domain [m]

28 Initiall x of refinement region [m]

29 Overall length refinement region [m]

30 Overall breadth refinement region [m]

31 Aspect Ration of cells in the prism layer [/]

32 Wall Funtions: 1=yes 0=no [/]

the numerical grids are stored in the respective simulation folders. Once

the automatic generation of the mesh is performed it is possible to set

up simulations according to the particular nature of the hydrodynamic

problem.

Entry 1 in table 1 defines the list of angles of attack to be simulated.

At the end of the list a code line indicating the end of the list is re-

quired (eao). From entry 2 to entry 6 a set of parameters governing cells

dimension in the structured region as well as the cell distribution in the

unstructured one are required. The maximum aspect ratio of the cells AR

is defined in entry 31. Entry 27 represents the distance of the hydrofoil

leading edge from the inlet, while entries 28,29 and 30 are used to place

the cavity-shape refinement region in the computational domain. Two

different domain shapes can be designed according to entry 24: an ellip-

tical geometry is in fact preferred in case of a simulation of free-stream

flow, while a rectangular shape can be chosen in case the numerical pre-

dictions have to be validated with cavitation tunnel experiments. The

overall dimension of the computational domain are given in entries 24

and 25. The present automatic tool is specifically designed to be used

in 2D simulations, but since OpenFOAM is intrinsically a 3D solver, an

extrusion must be given in the direction perpendicular to the plane con-
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taining the hydrofoil (entry 20).

Different turbulence models can be used in the numerical simulation

(entry 9) and they can be eventually coupled with wall functions at solid

boundaries (entry 32). The user can define the turbulence intensity level

at the inlet (entry 10) and the flow Re (entry 7) as well as the nature of

the hydrodynamic simulation: cavitating or non cavitating flow (entry

11) and steady or unsteady solution (entry 22).

From entry 12 to 17 the user has to specify the thermophysical char-

acteristics of water and vapor in terms of density, dynamic viscosity,

reference atmospheric pressure and water saturation pressure.

Simulation time can be controlled through entry 18 as well as the

transient-free time necessary for the results post-processing (entry 23).

The flow field output can be given with a time frequency different from

the calculation time-step. In case where only the global results (lift and

drag) are required, reducing the writing time-step is convenient for the

overall computer usage both in terms of disk memory usage and of com-

putational effort.

In the present paper the automatic procedure will be tested on two dif-

ferent hydrofoil shapes investigated by Parkin (1956). Very few 2D tests

on super-cavitating hydrofoils are available in the open literature. The

experimental results are compared with the numerical prediction of the

cavitating flow around a flat plate (fig. 4(a)) and a circular arc (fig. 4(b)).

(a) Flat Plate Geometry

(b) Circular Arc Geometry

Figure 4: Parkin Geometries. Dimensions in mm.

Hydrofoils geometry and mesh topology

Geometries described in figure 4 are particularly interesting for the pres-

ence of sharp leading and trailing edges which enhance cavitation in-

ception at relatively low speeds. Sharp edges are often used in cavi-

tating hydrofoil design whenever predictable performances need to be

ensured in a large range of operating conditions: the presence of a sharp

edge causes a localized negative pressure peak which acts as a cavitator

triggering the detachment of the cavity at the same point over a wide

range of angles of attack and cavitation indexes (Brizzolara (2015)). In

conventional super-cavitating hydrofoils they are typically present at the

leading edge and at the two edges of the blunt trailing edge. The aim is

to induce the detachment of the supercavity at the leading edge at low

cavitation indexes and to induce separation and base cavitation at rela-

tively high cavitation indexes or low angles of attack.

Both the flat plate and the circular arc geometries were experimentally

tested at relative low Reynolds number. Parkin (1956) reported two dif-

ferent flow velocities (25 fps and 30 fps) without specifying which value

was used for each run. In the present study results for 30 fps will be

reported. Due to the small scale of the hydrofoils and the relatively

low speed, a Reynolds number of 4.52e+ 05 for the flat plate and of

6.19e+05 for the circular arc lead to laminar flow regime over the en-

tire hydrofoil wetted surfaces so no turbulence models were used in the

numerical solution of the flow equation, i.e. the Navier-Stokes equa-

tions.

The size of the cell close to the wall in the direction normal to the sur-

Table 2: Flat Plate: parameters used to generate the FP series

used in the mesh-sensitivity analysis at α = 0 and cavitation in-

dex σV = 0.141.

Name d1/c d2/c d3/c o/c Cells

No

Est.

y+
FP1 1.35E-5 2.70E-4 4.73E-2 8.0E-4 30118 2.67

FP2 9.00E-6 1.80E-4 3.15E-2 8.0E-4 73002 1.78

FP3 6.00E-6 1.20E-4 2.10E-2 8.0E-4 154814 1.19

FP4 4.00E-6 8.00E-5 1.40E-2 8.0E-4 351908 0.86

Table 3: Circular Arc: parameters used to generate the FP se-

ries used in the mesh-sensitivity analysis at α = 0 and cavitation

index σV = 0.277.

Name d1/c d2/c d3/c o/c Cells

No

Est.

y+
FP1 1.35E-5 2.70E-4 4.73E-2 8.0E-4 37233 3.10

FP2 9.00E-6 1.80E-4 3.15E-2 8.0E-4 83698 2.06

FP3 6.00E-6 1.20E-4 2.10E-2 8.0E-4 189082 1.38

FP4 4.00E-6 8.00E-5 1.40E-2 8.0E-4 432930 0.92

face is controlled by the parameter d1/c and a geometric progression is

used to distribute cells in the near-wall region according to the parameter

d1 and the size of the cell at the boundary of the structured region: d2/c.

The computational domain dimensions have been chosen to reproduce

the cavitation tunnel used for the experiment at Caltech (Knapp et al.

(1948)), thus having a length of 0.58 m and an height of 0.36 m. The

leading edge is located at 0.265 m from the inlet and different angles

of attack are simulated rotating the hydrofoil around the leading edge.

Thetrahedral elements in the far field are distributed according to the size

of the elements at the end of the major axis farthest from the hydrofoil

d3/c while the extension of the structured region is indicated through

the parameter o/c.

The cell size close to the wall and the progression in the structured region

(where a finer resolution is needed to accurately solve for the bound-

ary or shear layers) have been systematically refined in order to obtain

four different numerical grids characterized by decreasing y+ values as
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shown in figures 5 and 6. Tables 2 and 3 presents the numerical values

used for the mesh generation. Grids used in the present study are char-

acterized by low values of y+, hence the laminar boundary layer is en-

tirely solved up to the wall without the need for extrapolating functions

(wall functions). Four snapshots in figures 5, 6 and 7 give a graphical

representation of the numerical grids whose parameters are presented in

tables 2 and 3. The refined region of unstructured elements aimed to in-

crease the accuracy of the cavity interface production is evident in figure

5. Figure 6 shows a close-up of the structured elements around the sharp

leading edge. The grids used for the circular arc geometry are presented

in figure 7, where the near-body refinement regions are shown for the

four sets of parameters in table 3.

Figure 5: Numerical grids used in the sensitivity study. FP1

(top-left), FP2 (top-right), FP3 (bottom-left) and FP4 (bottom-

right) (Table 2). Computational Domain

Figure 6: Numerical grids used in the sensitivity study. FP1

(top-left), FP2 (top-right), FP3 (bottom-left) and FP4 (bottom-

right) (Table 2). Leading Edge

Figure 7: Numerical grids used in the sensitivity study. FP1

(top-left), FP2 (top-right), FP3 (bottom-left) and FP4 (bottom-

right) (Table 3). Near-body region

Physical and Numerical Models

The prediction of the flow around an hydrofoil is here obtained through

the numerical solution of the Navier-Stokes equations, which in a Carte-

sian reference frame are written as follows:

∂(ρui)

∂xi
= 0 (9)

∂ui

∂t
+

∂(uiu j)

∂x j
=

∂

∂x j
(ν

∂ui

∂x j
)−

1

ρ

∂p

∂xi
+gi (10)

The system is a set of partial differential non linear equations in the un-

knows of pressure and velocity components. Modeling a cavitating flow

implies the addition of a set of equations describing the thermophysical

behavior of the fluid which can change its phase from liquid to vapor and

vice-versa. Cavitation is a well-known phenomena and occurs in general

in regions with high flow velocities where the pressure field drops below

the vapor tension of the fluid at the local temperature.

Lord Rayleigh (1917) is considered the pioneer of the physical descrip-

tion of cavitation, his equations describe the dynamic of a spherical bub-

ble with radius R(t) in any point r of an incompressible, inviscid fluid

giving an external pressure P(t) and an internal pressure p(R).

Ṙ =

√

3

2

p(R)−P(t)

ρ
(11)

The cavitation model used in the present study is the one proposed by

Sauer and Scnherr (2001) which uses (11) to model the evolution of

cavitation nuclei approximated to generic spherical bubbles of given di-

ameter. In this study, the numerical solution of the flow governing equa-

tions is obtained using the open source libraries of OpenFOAM based

on a finite volume approach with a collocated arrangement of variables.

The unsteady cavitating viscous flow simulations are performed using

interPhaseChangeFoam: a multiphase flow solver designed for two

incompressible isothermal immiscible fluids with phase-change. This

solver uses a volume of fluid phase-fraction based interface capturing ap-

proach. Hence momentum equations are solved for a single fluid mixture

whose density and viscosity depend on the local concentration of vapor

and water defined through the indicator function γ for which a transport

equation is solved together with Navier-Stokes equations (OpenFOAM

Foundation (2014)). The unsteady prediction of the cavity shape relies

7



on the accurate solution of the volume of fluid variable. A compressive

convection scheme increases the accuracy of the interface prediction us-

ing an additional velocity field Ur to steepen the gradient of volume frac-

tion function γ close to the cavity boundary. The conservation equation

for γ is therefore written as:

∂γ

∂t
+∇ � (γU)+∇ � [γ(1− γ)Ur] =

ṁ

ρV
(12)

Where the right hand side term represents a source term that will be dis-

cussed later in this section.

Ur represents the relative velocity between vapor and water: large values

correspond to sharper interface but they might lead to numerical insta-

bilities. In this approach the cavity surface is modeled as a fictitious

interface where the VOF fraction γ assumes an intermediate value be-

tween 1 (liquid) and 0 (vapor): γ = 0.5. For this reason the numerical

grid includes a refinement region of unstructured cells downstream the

trailing edge where the cavity is supposed to develop. The solution of

equation (12) leads to the determination of the physical characteristic of

the fluid mixture:

ρ = (1− γ)ρL + γρV (13)

µ = (1− γ)µL + γµV (14)

The source term, rhs in (12) represents the vapor production, determined

on the basis of equations that regulate the phase change of the fluid (va-

porization and condensation):

ṁ =







ṁ+ =CV
ρV ρL

ρ γ(1− γ) 3
R

√

2(pV−p)
3ρL

if p < pV

ṁ− =CC
ρV ρL

ρ γ(1− γ) 3
R

√

2(p−pV )
3ρL

if p > pV

(15)

The bubble radius is given in terms of n0 which represents the nuclei

concentration per unit of volume of pure liquid:

R =

(

γ

1− γ

3

4π

1

n0

)
1
3

(16)
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Figure 8: Shnerr Sauer model: Drag coefficient over nuclei con-

centration in 1 m3 of water. Nuclei Diameter: dnuc = 2E − 6.

σv = 0.141, α = 0 deg, Re = 4.52e5

A sensitivity study aimed to understand the influence of the nuclei con-

centration in the drag coefficient prediction has been performed and the

results are presented in figure 8. A proper tuning of the cavitation model

parameters may leads to a very close match between the numerical pre-

diction and the experiments performed by Parkin (1956). The increase

of nuclei concentration in the fluid leads to a larger vapor concentration

at the hydrofoil surface which results in smaller time-averaged drag val-

ues. On the other hand, the larger number of cavitation nuclei increases

the flow instabilities, leading to larger standard deviation values (indi-

cated through the error bar in figure 8).

The numerical prediction of cavitating flows is achieved through the so-

lution of the continuity and the momentum equations expressed in terms

of a velocity and a pressure equation: the former solved using a smooth-

Solver with a Gauss Seidel smoother suitable for symmetric algebraic

systems, while the latter using a multigrid method (GAMG - Geomet-

ric Algebraic Multi Grid) with a Diagonal Incomplete Cholesky based

smoother. The outer iterations required for the solution of the non-linear

partial differential system of equations rely on the PISO algorithm (Issa

(1985)).

Being the nature of cavitation essentially unsteady, it is particularly

important to accurately solve the problem in time domain. For this

reason an implicit Euler scheme time discretization has been selected

with a variable time-step calculated in order to keep the maximum local

Courant number under a certain threshold (Co < 1). The solution of the

volume of fluid fraction function is achieved using a smoothSolver with

a Gauss Seidel smoother and a Multidimensional Universal Limiter with

Explicit Solution (MULES) algorithm to avoid unbounded solution for

the variable γ: if a cell is completely filled with a certain phase, it cannot

be further filled with any other phases Kissling et al. (2010). The range

of Re numbers investigated in the present study do not require any tur-

bulence modeling.

The numerical set-up described above leads to the numerical solution of

the pressure and velocity fields as well as the VOF scalar function.

Results

Different cavitating flow conditions can be distinguished through the

definition of a nominal cavitation index σV (KV ), based on the fluid sat-

uration pressure at ambient temperature and a cavitation index based on

the actual pressure inside the cavity σK (KK).

σV =
p0 − pV

1
2 ρV 2

σK =
p0 − pK

1
2 ρV 2

(17)

The flat plate (or wedge) geometry has been investigated at two different

angles of attack. Figure 9 shows results for the flat plate geometry at

α= 0 deg reported in terms of drag coefficient cD versus cavitation index

σV . A large range of σV was considered. The velocity and pressure field

expressed in terms of the local cavitation index σK together with the

cavity interface (boundary) line obtained for each simulation point are

given in figures 11, 12, 13 and 14. For cavitation index σV = 0.141

and σV = 0.608 respectively. The variation of cavitation index σV has

been obtained increasing the reference pressure p0 at the given uniform

inflow speed (30 f t/s).
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Figure 9: Drag Coefficient predictions at different cavitation in-

dexes σv. Flat Plate geomtery at Re = 4.52E5, α = 0 deg. Dots:

numerical results obtained with different mesh resolutions; curve

experimental measurements

At this angle of attack (α = 0 deg), the wedge is interested by base sep-

aration at high cavitation indexes and base cavitation at lower cavitation

indexes. The cavity forms at the two sharp corners of the blunt trailing

edge and it develops in the wake. The flow aft of the trailing edge and

consequently the cavity is highly unsteady (particularly at the highest

cavitation numbers), so the results are given in terms of averaged forces

and snapshots of the flow field at different instants of time. Figure 9

demonstrates the very good agreement between the drag prediction ob-

tained with the proposed numerical method.

The total simulation time has been chosen according to the non-

dimensional parameter τ defined as:

τ =
TU

c
(18)

Where T is the total simulation time up to the measurement, U is the

undisturbed flow velocity and c is the hydrofoil chord. The large value

of non-dimensional simulation time (τ = 20.7) has been selected with

the aim to allow the whole development of the cavity length. The un-

steady nature of cavitation does not allow to obtain a time-independent

(steady state) result, for this reason a time-averaging process has been

used over a non-dimensional time interval of τ = 6.2. These time av-

eraged forces are compared with the measured forces in cavitation tun-

nel. Even though no information about the experimental procedure of

data analysis is reported by Parkin (1956), results in figure 9 are in ac-

cordance with experiments with a maximum error for the prediction at

σV = 0.155 (7.6%) while in the remaining cavitation index range the

error is below 5%. The standard deviation is higher at high cavitation

indexes (26%) and it decreases for low σV . This confirms the unsteady

nature of cavitating flow which directly corresponds to a fluctuation of

the hydrodynamic forces. This phenomenon, in fact, increases at shorter

cavity lengths, found at higher cavitation indexes. Figure 10 gives an

example of the periodic fluctuation predicted for the lift component of

the hydrofynamic forces around the zero mean, for the wedge hydrofoil

at α = 0 deg. The fluctuation corresponds to a periodic vortex shedding

, as better discussed later on in this section.
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Figure 10: Lift Coefficient numerical predictions at σv =
0.608. Flat Plate geomtery at Re = 4.52E5, α = 0 deg (black-

continuous). Best-fit sinusoidal function of frequency f = 374

Hz

Figure 11 presents some snapshots of the flow field predicted by the

URANS model at the lowest cavitation index (σV = 0.141) in terms of

velocity contour in the whole flow field. The vapor wake flow is stag-

nant right after the trailing edge where the flow detachment due to sharp

edges create a recirculating region. The flow velocity inside the cavity

increases getting closer to the cavity closure point. Far from the trailing

edge the vapor and the liquid phase gradually reach the same velocity

and no shear layer effects are present at the cavity interface. However in

the closing region of the cavity the liquid phase flow closes quite sharply

causing steep pressure recovery which in certain cases can lead to sep-

aration and vortex shedding. According the simple cavitation model

implemented in the URANSE solver, which search for a sharp interface

between the two phases, the cavity boundary effectively behaves like a

rigid boundary up the the cavity trailing edge. In this region the vapor

phase interacts with the liquid phase, partially mixing and dispersing and

partially condensing (due to the high pressure peak).

The pressure recovery at the cavity trailing edge is clearly visible in

figure 12 where the σK contour are plotted on top of the interface be-

tween the two phases: a very strong fluctuating pressure recovery re-

gion is experienced at the cavity closure. Figure 12 confirms that the

cavitation model used in this study tends to impose a constant pressure

inside the cavity equal to the saturated vapor tension. This is in disagree-

ment with pressure values measured inside the cavity in the experiments

which turned to be lower than the vapor tension.

When the reference ambient pressure is increased to reach higher cavi-

tation index the length of the cavity reduces, as shown in figures 13 and

14. At σV = 0.608 a very short bubble is experienced at the trailing edge

of the hydrofoil, drastically changing the flow field with respect to the

lower cavitation indexes. Figure 13 shows the condition when the cav-

ity closes right after the hydrofoil trailing edge, where very short cavity

with a stagnant vapor flow still exists. First stages of bubble develop-

ment (top-left panel in figure 14) are still characterized by a pressure

recovery downstream the cavity, but after this initial transient state, a

vortex shedding similar to the one due to flow aft of bluff bodies is ex-

perienced. The Von Karman vortex street is a consequence of the partic-

ular shape of this hydrofoil which clearly enhances separation at fixing

points. The shedding frequency is usually reported in terms of Strouhal
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number, defined as:

Sr =
f H

U
(19)

Where f is the shedding frequency, H is the characteristic length (trail-

ing edge height in this case) and U the free-stream velocity. The vor-

ticity shed strongly depends on the free-stream velocity: increasing Re

number generally leads (for similar flow patterns) to higher Sr. Being

β the apex angle of the hydrofoil, experiments on wedge sections have

been performed by Sjunnesson et al. (1991) on a β = 60 deg wedge

at Re = 4.5E4 and resulting in Sr = 0.25. The unsteady cavitating flow

past the β= 10 deg wedge predicted in the present study showed a vortex

shedding characterized by a Sr = 0.319, higher than the one measured

by Sjunnesson et al. (1991). The difference is due to the presence of

the cavity and to the higher Re, both having the effect of enlarging the

recirculation zone hence increasing the Sr.

Figures 15 and 16 present the validation of the predicted drag and lift

forces for the flat plate (wedge) inclined at an angle of attack of 7 deg

(face line to undisturbed inflow). The four different mesh resolutions

presented in table 2 have been used to verify the numerical model over

different flow conditions. The numerical simulation settings presented

in the previous sections lead to very accurate prediction for the drag co-

efficient as shown in 15. The relative error with respect to experiments

is generally below 5% being slightly larger for higher cavitation indexes.

The average error in the whole σV range is 1.6% for mesh setting FP1,

3.1% for FP2, 2.8% for FP3 and 3.5% for FP4. An increase in mesh res-

olution does not show a clear trend in terms of error reduction, while it

surely implies higher computational times. This confirms the robustness

of the grid strategy.

While the drag coefficient seems to be accurately predicted in the whole

σV range, the lift coefficient shows larger discrepancies with respect to

experimental results, especially at higher cavitation indexes. The rela-

tive error for the coarsest grid is always below 10%, having an average

value of 6.8% and generally increasing for higher cavitation index. More

refined grids generally improve the lift coefficient prediction: 6.02% for

mesh setting FP2, 5.0% for FP3 and 5.0% for FP4. It has to be observed

that when the cavitation index increases, the cavity length reduces cre-

ating a recirculation region close to the hydrofoil trailing edge which

results in a Von-Karman vortex shedding similar to the one in figure 14.

As it is evidenced by the high values of standard deviation in figure 16,

vortex shedding is responsible for the oscillation of forces on the hydro-

foil surface.

Figure 17 presents a comparison between the cavity shape predicted

by the proposed numerical method and that captured during the experi-

ments, for the wedge profile at α = 7 deg. A series of 5 microseconds

exposure time photographs of the experiments are available at several

cavitation indexes, showing the instantaneous structure of the cavity and

the wake behind the cavity.

These pictures are visually compared with the URANS results given in

terms of VOF contours at τ = 20.68 (red color indicating vapor and blue

liquid). The flow condition at σV = 0.191 is presented in figure 17(a): a

supercavity detaches from the leading edge and cover the whole hydro-

foil surface, extending far from the blunt trailing edge. The total length

of the cavity cannot be compared for this particular σV , but the cav-

ity thickness on the hydrofoil surface predicted with the URANS solver

generally is well in agreement with the experiments.

(a) τ = 0.41

(b) τ = 4.13

(c) τ = 10.35

(d) τ = 20.69

Figure 11: Unsteady flow solution: velocity Contours at cavita-

tion index σV = 0.141 at different non-dimensional time instants

/tau. Last time step corresponds to the steady state solution. In

black VoF = 0.5
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(a) τ = 0.41

(b) τ = 4.13

(c) τ = 10.35

(d) τ = 20.69

Figure 12: Unsteady flow solution: σK Contours at cavitation in-

dex σV = 0.141 at different non-dimensional time instants /tau.

Last time step corresponds to the steady state solution. In black

VoF = 0.5

(a) τ = 0.41

(b) τ = 4.13

(c) τ = 10.35

(d) τ = 20.69

Figure 13: Unsteady flow solution: velocity Contours at cavita-

tion index σV = 0.608 at different non-dimensional time instants

/tau. Last time step corresponds to the steady state solution. In

black VoF = 0.5
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(a) τ = 0.41

(b) τ = 4.13

(c) τ = 10.35

(d) τ = 20.69

Figure 14: Unsteady flow solution: σK Contours at cavitation in-

dex σV = 0.608 at different non-dimensional time instants /tau.

Last time step corresponds to the steady state solution. In black

VoF = 0.5
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Figure 15: Drag Coefficient predictions at different cavitation

indexes σv. Dots: numerical results obtained with different mesh

resolutions; curve experimental measurements. Flat Plate ge-

omtery at Re = 4.52E5, α = 7 deg.
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Figure 16: Lift Coefficient predictions at different cavitation in-

dexes σv. Dots: numerical results obtained with different mesh

resolutions; curve experimental measurements. Flat Plate ge-

omtery at Re = 4.52E5, α = 7 deg.

An increase of σV results in a reduction of the cavity length and thick-

ness as confirmed by figure 17(b), which presents results for σV = 0.284.

The cavity length predicted by the CFD method perfectly matches the

experiments. A good agreement is found also in the cavity thickness,

both on the hydrofoil surface and in the wake region.

The wake instability starts to occur at higher cavitation indexes: in figure

17(c), results for σV = 0.534 clearly show a very short cavity length that

in this flow condition closes at about 0.5c aft of the trailing edge. Cav-

ities shorter than half a cord are known to be unstable (Acosta (1955)).

Also in this case an almost perfect agreement between the predicted and

the measured shape has been found.

Figures 18 and 19 present results obtained for the circular arc at α = 0

deg. Also in this case, the four different grids presented in table 3 have
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been used in the whole σV range. Global results in terms of drag coeffi-

cient are reported in figure 18.

(a) σV = 0.191 Top pannel CFD, bottom pannel EFD

(b) σV = 0.284 CFD

(c) σV = 0.534 CFD

Figure 17: Comparison of the cavity shape predicted by the pro-

posed numerical model and the exprimental observation. Flat

plate at α = 7 deg. τ = 20.68

The particular shape of the hydrofoil creates a very complex flow pat-

tern which results in a highly unstable flow over the entire σV range. A

good agreement is found with experiments also for this profile shape:

the relative error with respect to measured values is generally below 5%,

slightly increasing for higher cavitation indexes, where flow instabilities

become more relevant. Grid FP2 shows the best overall accuracy in the

prediction of the drag force and in general no significant improvements

are brought in by more refined grids.

The camber on the face of this hydrofoil geometry produces lift also at

α = 0 deg. The numerical prediction of cL are compared with experi-

ments in figure 19. It can be observed that the URANS solver predicts

a negative averaged value of lift in the whole σV range, while positive

values have been measured at higher cavitation indexes in the cavitation

tunnel. At these flow conditions the cavity shape instabilities can drasti-

cally affect the flow pattern in terms of pressure and velocity fields close

to the hydrofoil surface. The standard deviation of the numerical drag

signal is twice as large as the average value at the highest σV .
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Figure 18: Drag Coefficient predictions at different cavitation

indexes σv. Dots: numerical results obtained with different mesh

resolutions; curve experimental measurements. Circular Arc ge-

omtery at Re = 6.19E5, α = 0 deg.
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Figure 19: Lift Coefficient predictions at different cavitation in-

dexes σv. Dots: numerical results obtained with different mesh

resolutions; curve experimental measurements . Circular Arc ge-

omtery at Re = 6.19E5, α = 0 deg.
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(a) σV = 0.277. Top pannel CFD, bottom pannel EFD

(b) σV = 0.421 Top pannel CFD, bottom pannel EFD

(c) σV = 0.834 Top pannel CFD, bottom pannel EFD

Figure 20: Comparison of the cavity shape predicted by the pro-

posed numerical model and the exprimental observation. Circu-

lar arc profile at α = 0 deg. τ = 30

This adds some concerns on the accuracy of the experimental mea-

surements, since no information in given about the unsteady nature

of the measured forces. Nevertheless, numerical prediction of lift for

σV = 0.273, σV = 0.277, σV = 0.414 and σV = 0.421 are generally

characterized by a relative error of approximately 5% for the four grids

used in this study.
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Figure 21: Drag Coefficient predictions at different cavitation

indexes σv. Dots: numerical results obtained with different mesh

resolutions; curve experimental measurements. Circular Arc ge-

omtery at Re = 6.19E5, α = 10 deg.
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Figure 22: Lift Coefficient predictions at different cavitation in-

dexes σv. Dots: numerical results obtained with different mesh

resolutions; curve experimental measurements . Circular Arc ge-

omtery at Re = 6.19E5, α = 10 deg.
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(a) σV = 0.264 Top pannel CFD, bottom pannel EFD

(b) σV = 0.444 Top pannel CFD, bottom pannel EFD

(c) σV = 0.792 Top pannel CFD, bottom pannel EFD

Figure 23: Comparison of the cavity shape predicted by the pro-

posed numerical model and the exprimental observation. Circu-

lar arc at α = 10 deg. τ = 30

Figure 20 shows the comparison between the experimental and the nu-

merical cavity shape for the circular arc geometry at α = 0 deg. Figures

20(a) and 20(b) show results at σV = 0.277 and σV = 0.421 respectively.

A supercavitating flow regime is predicted at these operating conditions

and the numerical results agree with experiments both in terms of cavity

length and thickness.

Figure 20(c) confirms what presented in figure 19: the URANS solution

shows larger differences with the experiments. The CFD predicts a par-

tial cavitation on the pressure side close to the leading edge, while the

cavity has vanished in the suction side. At the same σV = 0.834 exper-

iments show a supercavity covering both the suction and the pressure

side.

The circular arc geometry has been simulated at an angle of attack

α = 10 deg: global results are shown in figures 21 and 22 for cD and

cL respectively. In this particular flow condition the FP1 grid show the

largest deviation (underestimation) on the drag coefficient in almost the

entire σV range. The high values of standard deviation noticeable in fig-

ure 21 indicate that as for α = 0 deg, the flow conditions are strongly

unsteady in the whole cavitation index range. The relative error with

experiments is generally lower than 8%, having an average value over

the σV range of 5% for FP1, 3.2% for FP1, 1.9% for FP3, and %2.3 for

FP4, hence showing an advantage in terms of accuracy in adopting finer

resolution grids.

Figure 22 presents results in terms of lift coefficient. The cL is underes-

timated by averagely 20% for all the numerical grids tested in this study.

Figure 23 gives an explanation for the discrepancies in the lift force

prediction. Experiments show the existence of a cavitation bubble de-

taching at the leading edge, while the URANS solver predicts the cav-

ity detachment at the sharp edge located at 29.51 mm from the leading

edge. This is due to an higher pressure field predicted by the CFD solver,

which results in a lower lift force. Figure 23 also shows that the length

and thickness of the cavity are slightly underpredicted by the URANS

solver.

Conclusion

A new simulation framework, specifically designed for the fluid dynamic

analysis of 2D hydrofoils has been described in detail and validated

against experimental measurements on two different supercavitating hy-

drofoils. The computational tool is fully automated and it was developed

with the final aim to be included into a shape optimization procedure.

The simulation framework consists of three main modules: the pre-

processing tool which performs the numerical grid generation of any

type of hydrofoil geometries, the CFD package based on the solution of

the Navier-Stokes equations and a post-processing module, specifically

designed to give results in terms of transient-free lift and drag coeffi-

cients.

The main advantage of such a framework is the simple interface with

external tools for geometry generation (input) and the minimal require-

ment of input data. The capability of dealing with any type of hydro-

foil geometries, building robust hybrid structured/unstructured numeri-

cal grids represents the most important step forward towards the reduc-

tion of computational times usually required for high fidelity simula-

tions.

The mesh generation is automatically performed in few seconds for dif-

ferent hydrofoil shapes at different angles of attack. The numerical sim-

ulation is automatically set-up according to the specific flow regime that

has to be predicted. The possibility of tuning the RANS solver accord-

ing to the specific fluid dynamic problem allows to easily switch from

cavitating to non-cavitating flow, in steady or unsteady conditions, with
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or without wall functions, using different turbulence models.

The simulation framework has been verified on a series of successively

refined grids and validated using two different hydrofoil geometries. The

RANS solver has been tested in laminar flow regime without wall func-

tions using an unsteady solver specifically designed for cavitating flows.

The multiphase flow has been solved using the well established VOF

capturing technique which partially drove the design of the numerical

grid.

Two series of tests done in the high speed cavitation tunnel of Caltech

on two different 2D super-cavitating hydrofoils have been taken as refer-

ence data for validation. Unfortunately no many other experimetnal re-

sults on 2D supercavitating hydrofoils are available in addition to these.

The numerical predictions in terms of cD and cL have been compared

with the values measured by Parkin (1956) in a systematic series of sim-

ulations which covered two different angles of attack and a wide range

of cavitation indexes. Drag coefficient has been accurately predicted

both for the wedge and the circular arc geometry at each angle of at-

tack. Numerical results generally showed a relative error with respect

to experiments of approximately 5% both for the drag and for the lift

coefficient of the wedge hydrofoil. Some discrepancies have been found

in the cL predictions of the circular arc geometry.

An interesting comparison have been made possible by a series of pho-

tographs of the cavitating flow shot during the experiments, generally

showing a good match between the numerical and the experimental cav-

ity shape.

The presented tools is now mature enough to be incorporated into more

complex design by optimization procedure and it is expected to allow

for the design of unconventional super-cavitating hydrofoils with reli-

able and consistent hydrodynamic performance.
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