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ABSTRACT

Minimum preééure envelopes, computed for'steady two-dimen-
sional flow, with an empirical correction for viscosity, are pre-
sented in graphic form for three foils: NACA 66 (TMB modified
nose and tail) thickness with the NACA a = 0.8 camberline, the
BuShip; Type I section and the BuShips Type II section. In addi-
tion, design charts for selecting an "optimm" foil are included.
A comparison of these folls, designed to have a favorable operat-
ing renge of minimum pressures for a specified cavitation number
and 1lift coefficient, shows the 66 (modified) form to provide a

slightly wider'margin for angle changes. Also with zero camber,

P

the 66 (modified) section has a greater range of favorable mini-

mum pressures than the other foills.

ATMINISTRATIVE INFORMATION

This work was funded by BuShips Subproject S-F013-1109, Task 3802,

- (TMB Problem No. 526-076).

INTRODUCTION

If it is assumed that cavitation will first occur on a body when the
local pressure, falls to the vapor pressure of the surrdunding liquid, a

' knowledge of the minimum pressure is sufficient to predict the onset of

cavitation or to design cavitation-free foils. Although the basic assump-
tion that cavitation occurs at vapor pressure is not verified experimentally}’
at least for the low Reynolds numbers (~4106) encountered in laboratory

tests, predictions are generally conservative and agreement between experi-
mental results and theoretical predictions lmproves wi&g increasing Reynolds p

e

¥*
number.l - Hence, there is some hope that the minimum pressure will be \///

* References are listed on page 12.



; adequate for predicting surface cavitation at the higher Reynolds numbers i
encountered in full-scale applications.* .;

This report presents two-dimensional mi nimum pressure envelopes for
. three foils. The method of computing the pressure distribution is explained
é in Reference 1 and consists of calculating the potential flow pressure with
? an empirical correction for viscosity; the potential theory’is modified to
allow -for arbitrary lift at a given angle of incidence, land the required
1lift is determined from estimstes of the angle of zero lift and lift-curve

slope.

DESCRIPTION OF FOILS

Three profiles commonly in uee for propeller blade sections were
chosen for the present study. These profiles are the NACA 66 (TMB modi-
fied) thickness distribution with the NACA & = 0.8 camberline, the BuShips -
Type I, and the BuShips Type II sections. ' :

: The besic NACA 66 (TMB modified) section is the NACA 66-006,2 :
v thickened3 ngwwiﬂure (a parabola is ' .
fitted from the position of meximum thickness to a finite trailing edge |
offset). Ordinates of the thickness distribution vary linearly with maxi-

mur thickness ratio. When the pressure distribution on the NACA 66-006

was calculated using the computed program of Reference 1, a sharp suction
peak was discovered near the leading edge (see Figure l) Ir fhe ordinates
are plotted at the anguler stations & = arc cos (2x-1) insteed of the
usual X, a slight hump appears at the leading edge (Figure 2) which causes
the pressure peak. A similar, though smaller, pressure peak on the NACA

* Full-scale cavitation usuaelly occurs at considerably higher cavitation
numbers than predicted from either theory or model tests. The differences
. are attributed to menmufacturing tolerancesv, inaccurate modeling. of inflow'.
velocities, a.nd/t;ar scale effect. Naturally the above conjecture applies -

to accurately constructed folls with smooth, fair surfaces 6pera.ting.in a -

steady uniform stream.
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65A006 was noted in Reference 4 and also in Reference 1. (The hump is
thought to be the result of inaccuracies in the numerical method used

for the design of the NACA 6 Series foils.l) The nose hump on the 66
section was faired out by trial and error to give a smooth pressure curve.
Ordinates for the final foil, modified nose and tail, are tabulated in
Table 1 as well as values for the NACA a = 0.8 camberliné.e The calculated
nonviscous pressure distribution on this modified thickness distribution at
zero incidence 1s shown in Figure 3 for a foil of 10-percent thickness.

For this sectlion, the ordinates of cembered foils are obtained by laying
off the thickness perpendicular to the camberline at the corresponding
station. _

The BuShips Type I* section5 is a modified NACA 16 section2 with
parabolic-arc camber (NACA 65 meanlinea). The thickness distribution is
the same as the "16" up to mid-chord; from the mid-chord to the trailing
edge a parabola is fitted (the:trailing edge is thinner than the "16").

The BuShips Type II¥* section6 is the NACA 16 thickness form2 and the para-
bolic-arc camber. Section ordinates are obtained by adding and subtracting
the thickness ordinate from the camberline ordinate (i.e., thickness is

added perpendicular to the nose-tail line). Thickness and camberline ordinates
are tabulated in Table 2 for the BuShips foils. A=n equation for the NACA '
16 thickness form which permits analytic determination of the ordinates can

be found in Reference 1.%* Calculated nonviscous pressure distributions on
the basic thickness forms of lO-percent thickness are shown in Figure L.

In Table 3 offsets for the threé foils are tabulated at conventional
stations.

-

* In practice, both the Type I and Type II sections have a modification near
5,6

the trailing edge for strength purposes. However, this modificaiion
depends upon the partiéular design and cennot be handled in general. The

simplest case of no modification is considered in this report.

** Several other equations for the NACA 16 sections are available; for
example, see NACA Technical Note 1546 and ARC C.P. No. 68.




The minimum pressure envelopes of this report supersede the previously

computed values_7 for the two BuShips folls. The minimum pressures in that
report were calculated using a compﬁter program which did not determine
pressures at enough points near the nose to ensure obtaining the minimum
value. The computer program developed in Reference 1 corrects thié

deficiency.

CALCULATION OF MINIMUM PRESSURE ENVELOPES

The pressure distribution about each cambered foil was calculated1
for various angles of attack between -5 and +6 degrees. For symmetrical
foils, the pressure distribution was calculated for various angles from O
to 8 degrees. At each angle of attaék; the minimum of the computed pres-
sures was selected. The enclosed figures are plots of -CP , the neéatiye

of the minimum pressure coefficlent versus o< , the anglemin

of incidence

measured from a line Jjolning the camberline endpoints. ' .
The calculation of the pressure distribution depends upon specifying

‘a 1ift coefficient CL for a given angle of ihcidence. When the experimentai

/ 1ift is used, good agreement with measured pressure distributions is

obtained.l The experimental 1ift can be determined from a lift-curve slope
arnd angle of zero lift:

cL=21'rv((o¢-..-go)- [1]
. €

dCL

d o4

‘where 'V? is the lift-curve slope coefficient, /277 , and

o 15 the experimental angle of zero lifg;
o z
e

Ana.L;ysis2 of experimental deta obtained at a relatively large Reynolds
number (6 x 106) shows that \ﬂ\ and o ere independent of each other
within the limits of experimental scatterf that Y] depends upon the thicke
ness distribution, and that CX.O is approximately a constant fraction of

the nonviscous thin-wing value. €




Since the lift-curve slope increases with increasing Reynolds nurnber,8 v’
%)
=

a value of YZ near unity is reasonable at the high Reynolds number (~10
at which these folls are expected to operate. Also, it is reasonable to
expect that the large trailing edge thickness of the modified 66 form would
cause ﬂ to be lower for that foil than for the other two foils. Since the
trailing edge of the BuShips Type II section (NACA 16) is similar to the
NACA 4-digit series, the slope coefficient Yl was taken as (1 - 0.61°7 ) \\
2=
i.e., decreasing linearly with the thickness ratio ¥ , which is approximately

the value for the NACA 4-digit series at a Reynolds number of 6 x 10 . In
the absence of specific test _data, the BuShips Type I section was assumed to
behave as the Type II section. For the modified 66 foil, 7 was estimated
to be (1-083’\"2, which is slightly lower than the slope coefficient for
the BuShips foils.

The actual angle of zero lift = for the NACA a = 0.8 camberline

T I T --—.—.

is 1. 05 times the thin-wing ve.lue2 € of zero lift, or

| v
&, =1.05 (-1.95 f) = -2.05 £ nrabioma' _
and for the parabolic-arc camberline the angle of zero 1lift is about 0.93,2
times the thin-wing value or _ < \
o =093 (-2f)=-1.87f . )
° -~ . .
e z _ ]
where <X o is in radians and f is the maximum camber ratio.
e :
When these guantitites are substituted into the equation for 1lift, \\
the expressions become . : v v S ., )&..-," : ,.‘IL o
for the 66 foils:‘ o C_L. =27 (1 - oy83'1') (1: 202 .f) i ey
. ] o i Il [2] 2 )
for the BuShips foils: Cr, = 27 (1 - 0.61T) (% + 1.8 £) ' ’

wvhere o is in redians. _
For convenience, the lift coefficient formulas are printed on the respective

figures of minimum pressure envelopes for & in degrees.

* This investigator knows of only one test of the a = 0.8 camberline: that

given on page 200 of Reference 9, in which the faired value of ox o is

approximately 1.02 t 0.07 iimes the thin-wing value. The above € value
of 1.05 is thus quite reasonable.
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The minimum pressure envelopes obtained by specifying the above 1lift
coefficients are plotted-in Figures 5 through 11 for the modified 66 form and
in Figures 12 through 18 for the BuShips forms. These curves are presented

Pmin

change in minimum pressure. Also, in design work, the expected variation

as -C versus & ; for small changes in \Y? and =, there is little
e

in angle of attack can often be predicted so that once a particular foil is
selected, the extreme incidence can be used in the figures to check the
suitability of the foil from a cavitation standpoint.
The significance of the shape of the -CP - o curves is that in the
' min
region roughly parallel to the & axis, the minimum pressure occurs near mid-

chord, ard when the curve is roughly parallel to the -CP - axis the minipum
min
pressure is near the nose of the section. For the section with the a = 0.8

'meanline, the displacement of the curves on the o« scale 1is roughly related

to the ideal angle of attack (the angle for which thin-wing theory predicts a

stagnation point at the leading edge of the camberline). ,
Although the data are not given in this report, it was found that

adding and subtracting the thickness from the camber, rather than gpplying

the thickness perpendicular to the camber, resulted in higher -CP values
min

and shifted the envelope slightly toward the higher <X 's. These effects

are negligible for all but the highest thickness and camber ratios. Spe-

cifically there is_a negligible difference in the envelopes for thickness

ratios less tha~. 0.1 or camber ratios less than 0.02.

DESIGN  CHARTS

The figures may be used 1n two ways: first,-and-simpler, they may be
used to predict cavitation on existing foils of the type considered, and
second, they may be used to select foils which will not cavitate when
operating over a specified range of angles.

In the first case, the camber, thickness, angle of attack, and operat-
ing cavitation number ¢ are known. From the foil geometry and the angle




of attack, a minimum pressure coefficient is obtained from the minimum
pressure envelopes given in this report. Cavitation is assumed not to occur

when o is greater then -CP , and cavitation is assumed to occur when o
min
is less than -CP
min
To help in the foil selection from a cavitation standpoint, design
charts (Figures 19, 20, and 21) were prepared graphically from the minimum

pressure envelopes. The charts are based on the "optimum" foil, which is

defined as the foll allowing the greatest total angle change without occur-

rence of cavitation for a given o. For symmetrical foils (Figures 5 and 12)’.

the "optimum" is clearly the profile for which the minimum pressure envelope

changes from rising almost vertically from the -CP scale to going roughly
. min
parallel to it at the given -CP 5 1.e., the "optimum" is the foil whose
min -
minimum pressure envelope touches the envelope* of the minimum pressure

envelopes at the desired -C or g. For symmetrical foils, the permissible

Pm:Ln

range of operating angles is twice the incidence ordinate of the envelope

of the envelopes at the given -C or o (see Figures 5 and 12).

Pmin

For cambered foils, there are two different envelopes to the minimum

pressure envelopes, one for the upper surface and one for the lower surface.

e,

 Since the one for the upper surface of the foil occurs at higher -CP'
2 min
} values than does the one for the lower surface, it is used to determine the

i) optdmum foil. The width of the bucket is then that of the envelope at the

\‘given -C, . Note that if o (or -Cp
ik min win

\?operating range of angles, then it would be better to use the original curves

) is expected to vary over the

{
! and not the design charts.

* The envelope of the minimum pressure envlopes can be expressed analyticalky.
as —%%%r = O where q is the velocity on the foil, and the expression is
evaluated at the point of meximum velocity. Such an evaluation becomes too

cumbersome for anything but very simple expressions for the velocity, and

hence the envelope of envelopes was obtained grephically for the foils in
this report.
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The first of the charts (Figure 19) gives the "optimum" geometry of the
66 foils and the BuShips Type II section (since it is superior to the Type I). ‘
In addition, Figure 19 gives the width of the minimum pressure envelope in

/
_(\degrees for the "optimum" foil. For a specific type of section, given -Cp
' min
{or o and given engle variatiop, there is a unique combination of camber 7
i Ay .

{ ratio and thickness ratio for an "optimum" section.

The other design charts (Figures 20 and 21) give the operating incidence
and lift coefficient for an "aptimum" foil. Two different average operating
conditons are considered: midpoint and 2:1 ratio. For midpoint operation,
the foil will experience angle-of-sttack varistions of equal magnitude in
the positive and negative dlrections about the operating incidence. For
the 2:1 ratio, the foil will experience twice the positive variation as the .
negative {positive in the nose-up direction).*

) In the design of cavitation-free foils, a design CL is set, a minimum
thickness from strength considerations is obtained, and a minimm operation
g is calculated.**-_In scme cases & variation in the opérating engle of

attack is known or can be estimated. It is now necessafy to find a camber

ratio, thickness fatio; and an average operating angle of attack such that

the design CL 1s met, the thickness is not less than the strength considera-

‘tions permit, and such that -CP
min
of attack variations. Actually, for the nonsteady problem, the nonsteady

is less than o over the range of angle

minimum pressures should be computed. This investigator knows of no "simple”
method of doing this and hence the "quasi-steady"” approach outlined above
is suggested. | _

For situations when tpe angle-of-attack variation is not known or not
critical, the follcﬁing procedure is fecommended: With the minimum thick-

ness and known ¢ (i.e., -C ), enter Figure 19 to obtain a camber ratiot

Pmin

Then enter Figure 20 or 21 with a selected type of angle variation to obtain

an operating incidence and CL‘ In general, this CL will not be the same as

* A 2:1 angle variation is considered typical of propeller-bladé sections.

** In certain cases, o may vary, as in a nonuniform flow, and the minimum - -
pressure envelopes - not the design charts - should be used.

8 | i
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that required. Elther the thickness may be increased or the chord

lengthened - or both - and the process repeated until the required CL
is obtained for an "optimum" foil.

If the angle-of-attack variation is known and critical, then the
known variation and known o uniquely determine 1 and f from Figure 19.
Figures 20 and 21 will give an operating incidence and CL'for the foil.
Here too, it may be necessary to change the chordlength to carry the
necessar& load, remembering that the thickness and camber ratio are fixed.
In propeller design, the fixed coefficient is the 1lift coefficient mul-
tiplied by the chord-diameter ratio. Once CL 1s read, the chordlength is
determined. If this section is close but does not quite make the strength
requirements, a Judicious rereading of the charts is suggested since some
latitude is permitted in the readirgs. For large disagreements, designing
fof a smaller ‘angle veriation is suggested since experiments seem to indi-
cate that the cavitation inception curve is wider than the minimum pressure
envelope.l .

The above procedures are not rigid, of course, and are offered onlj_
as alguide. It is quite possible that other design approaches will be
used. In some instances perhaps the camber, g, and incidence are fixed.
In this case, Figure 19 will give an optimum thickness for the fixed o and
also the permissible angle varilation. Figure 20 or 21 will give the mid-
point of the envelope. The endpoint incidences of the envelope width would
be the midpoint plus or minus one-half the width. These endpoints permit
a check that the operating incidence is within their limits.

To iliustrate and extend the remarks made in the previous paragraphs,

-a specific design problem will be presented. The problem is to determine
18 foil shepe and incidence for a given CL for the two types of folils con-

sidered in this section (i.e., 66 and Type II) and such thet the minimum

pressure envelopeds_wweegp_al_distances on both sides of

(was taken to be 0. 3 ‘and o (or -CP } was taken to be 0.6.
=z min ' ' '




For the 66 foll, Figures 19 and 20 are entered with ¢ and CL’

respectively, and a common thickness and camber ratio found. This gives a

W

khickness ratio of 0.126, a camber ratio of 0.0225, and an operating
incidence of 0.41 degrees. The second part of Figure 19 gives a total

:.permissible angle variation of 3.9 degrees:

Similarly For the BuShips Type II foil, Figures 19 and 21 show an
optimum foil with a thickness ratio of 0.119, a camber ratio of 0.0245,
and an incidence of 0.34 degrees. From Figure 19, the total width of the
envelope is seen to be 3.7 degrees. ' -

The minimum pressure envelopes for these folls have been computed
independently and are plotted in Figure 22. These curves are plots of
f CPmin versus CL to emphasize that each foil was selected to give the
same CL' These curves reinforce the above paragraphs in that they show
the NACA 66 (modified) form to be superior to the BuShips Type II since

ts minimum pressure envelope permits a greatér margin for angle changes
before cavitation occurs. (The angle variation is the difference in lift .
coefficients divided by the lift-curve slope.) _

In foil selection from a cavitatibn standpoint, several points are

worth keeping in mind: First, for constant angle of attack in the favor-

able operating range (the nearly vertical line on the figures for which

-Cp is low), the value of -Cy increases with both /¥ and f. Second,

min min
the extent, with respect to o( , of the favorable range increases with
increasing T and also with increasing f. Third, in this fatorable range,

—CP increases more repidly with f than with angle of attack for equal

min .
changes in CL' Fourth, the thin-wing ideal angle of attack may be of limited
use when designing cavitation-free foils to meet a given variation in angle
of attack.* Fifth, often it will not be possible to avoid cavitation for a

given o and asngle-of-attack variation.

* The use of_the ideal angle of attack as the design incidence is based on
the assumption that minimum drag occurs at this incidence. Unfortunately,

experimental results2 show this is only approximately true. Small depart-
ures from the "ideal" such as recommended here are still within .the region

of low drag.
’ 10 d




SUMMARY AND CONCLUSIONS

Minimm pressure envelopes are presented in graphic form for three
foils: the NACA 66 (TMB modified nose and tail) with the NACA & = 0.8
camberline, the BuShips Type I section and the BuShips Type II section.
Without camber, the NACA 66 (modified) form has a greater extent of

P values) than do the BuShips
min

foils. Cambered foils selected for the same operating conditions also

favorable operating renge (i.e., lower -C

show the 66 foil to be slightly superior to the BuShips foils. Over the
entire range of thickness and camber ratios, the BuShips Type I has &

higher -C, than does the Type II.
min

The theoretical calculations show that in the favorable operating
range, increasing the thickness or camber ratio increases the value of

-C but the extent of the favorable operating range, with respect to 6‘,

P
min
is increased. In the favorable operating range, the calculations also show
that -C increases faster with camber ratio than with angle of attack
min

for equal changes 1In 1ift coefficient.

Design charts, which give the "optimum" camber and thickness ratios
for e given angle-of-attack variation or lift coefficient, and cavitation-
number.are presented for the NACA 66 (modified) section and for the BuShips
Type 1T section. ' ‘ '
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TABLE 1

Section Geomelry, NACA 66 {Mod) and a = .8 Camber

[ 66 (Mod) a..8 Cambert ' }:‘"
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1
1 x Yq/7 Yot ‘_:Tc_ 1
r
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Section Geometry, BuShips Foils
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TABLE 3

Foll Geometry at Conventional Stations

o " 2o,
V/ .
NACA 66 (Mod) & a=.8 Camber BuShips Folils
Station Thicl:mess Can_'Iber Camber Type | Type 11 Camber
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v dYe ) .
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Figure 20 - Design Incidence and Lift Coefficient for Optimum Foils, NACA 66 (TMB Modified
Nose and Tail) Sections with NACA a = 0.8 Camber
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Figure 22 - Comparison of Foils Designed for an Average Lift Coefficient of 0.3 and Cavitation Number of 0.6
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Figure 21 - Design Incidence and Lift Coefficients for Optimum Foils, BuShips Type II Sections
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