

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED

-

.

SECURITY CLASSIFICATION OF THIS PAGE

-	REPORT DOCUM	MENTATION F	PAGE		
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1 b. RESTRICTIVE MARKINGS			
2. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	/availability of	REPORT	
2b. DECLASSIFICATION /DOWNGRADING SCHEDU	LE	APPROVED F DISTRIBUTIO	OR PUBLIC I	RELEASE; IMITED.	
4 performing organization report numbe DTNSRDC-86/014	R(S)	5. MONITORING (ORGANIZATION F	REPORT NUMBE <mark>R(</mark> S	5)
6a.NAME OF PERFORMING ORGANIZATION6b OFFICE SYMBOLDavid W.Taylor Naval Ship(If applicable)R&DCenterCode 1522		7a. NAME OF MONITORING ORGANIZATION David W. Taylor Naval Ship R&D Center Code 1504			
6c ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City,	State, and ZIP	Code)	
Bethesda, Maryland 20084-5000		Bethesda,	Maryland	20084-5000	
Max NAME OF FUNDING/SPONSORING ORGANIZATION Naval Sea Systems Command	Bb. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT	Dentification N	UMBER
8c ADDRESS (City, State, and ZIP Code)	SEA UJIZ4	10 SOURCE OF	FUNDING NUMBER	s	
Washington, D.C. 20360		PROGRAM	PROJECT		WORK UNIT
		61153N	SR02301	SR0230101	DN505001
1 1 TITLE (Include Security Classification)		011950	5802501	5K0250101	1000001
PARTIALLY CAVITATING FLOWS ABC	OUT FOILS				
12 PERSONAL AUTHOR(S) Heu, C.C.					
1 3a. TYPE OF REPORT13b TIME COVERED14. DATE OF REPORT (Year, Month, Day)15. PAGE COUNTFinalFROMTO1986, March43					
16 SUPPLEMENTARY NOTATION					
17 COSATI CODES	18 SUBJECT TERMS (Con	tinue on reverse in	f necessary and	identify by bloc	k number)
FIELD GROUP SUB-GROUP	Partially ca	avitating flo	ws, foils+	cavity len	gth,
20 04	cavity volu	me			
19 ABSTRACT (Contrnue on reverse if necessary and Identify by block number)					
A practical approach for predicting partially cavitating flow characteristics of foil sections is presented. The method takes into account indirectly the viscous flow effects and the interaction between the fully wetted and perturbed cavitating flows. The partially cavitating flow characteristics are found to be sensitive to variations in the angle of attack, camber, thickness, and the thickness distribution. Some comparisons between the calculated and measured cavity lengths are made, and the results are generally in good agreement. Further developments needed in the future are also discussed.					
20 DISTRIBUTION /AVAILABILITY OF ABSTRACT		21 ABSTRACT SEC UNCLASSIF	CURITY CLASSIFIC	ATION	
22a NAME OF RESPONSIBLE INDIVIDUAL		22b TELEPHONE (II	nclude Area Cod	e) 22c OFFICE SY	MBOL
C.C. Hsu (202) 227-1611			Code 1	.522	
DD FORM 14/3, 84 MAR 83 A	bsolete	SECURITY	CLASSIFICATION (of This Pa <u>ge</u>	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS

LIST OF FIGURES	iii
NOTATION	v
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
OUTLINE OF TULIN-HSU THEORY	3
SOME PRACTICAL APPLICATIONS	б
DISCUSSION	8
CONCLUSIONS AND RECOMMENDATIONS*	10
REFERENCES	11

.

.

•

LIST OF FIGURES

1	-	Schematics of Partially Cavitating Flow and Boundary Value Problems	13
2	-	Boundary Value Problems in Transformed T-Plane	14
3	-	Effect of Angle of Attack on Cavity Length for NACA 66-006 Section	15
4	-	Effect of Angle of Attack on Cavity Volume for NACA 66-006 Section	16
5	_	Effect of Camber on Cavity Length for NACA 66-006 Section	17
۰6	-	Effect of Camber on Cavity Volume for NACA 66-006 Section	18
7	-	Effect of Thickness on Cavity Length for Series NACA 66 Sections, $\alpha = 4^{\circ}$	19
8		Effect of Thickness on Cavity Volume for Series NACA 66 Sections, $\alpha = 4^{\circ}$	20
9	-	Effect of Thickness Distribution on Cavity Length, α = 4° . ***********************************	21
10	-	Effect of Thickness Distribution on Cavity Volume, α = 4 ^o	22
11	-	Comparison with Experimental Data of Kermeen for NACA 4412 Section	23
12	-	Comparison with Experimental Data of Kermeen for NACA 661-012 Section	24

			Page
13	 Comparison w Joukowsky Se 	th Experimental Data of Shen and Peterson for 10.5%	25
14	- Comparison w 64A006 Secti	th Experimental Data of McCullough and Gault for NACA n	26
15	- Comparison w NACA 16 Sect	th Linear Numerical Analysis for	27
16	 Effect of Fu NACA 66-006 	ly Wetted Flow Lift Curve Slope on Cavity Length for Section, $\alpha = 4^0$	28
17	 Interaction Length for N 	Effect of Fully Wetted and Cavitating Flows on Cavity ACA 66-006 Section, $\alpha = 4^{\circ}$	29
18	 Effect of Ca Section, α = 	ity Detachment Position on Cavity Length for NACA 66-006	30
19	<pre> • Effect of Ca Section, a = </pre>	ty Closure Condition on Cavity Length for NACA 66-006	31

NOTATION

a	Parameter related to NACA camber mean line				
al	Parameter related to cavity length				
b l	Parameter related to cavity detachment point				
C _{La,m}	Measured fully wetted flow lift slope				
c	Chord length				
c _o , cl	Constants in formula for complex potential				
cli	Design lift coefficient				
D	Total drag				
DO	Drag due to fully wetted flow				
D ₁	Drag due to cavitation				
Im	Denotes imaginary part of				
L	Total lift				
LO	Lift due to fully wetted flow				
	Lift due to cavitation				
٤	Cavity length				
٩ ₀	Local flow speed due to fully wetted flow				
41	Local flow speed due to cavitation				
٩c	Cavity speed				
۹ ₀ *	Fully wetted velocity at the position of minimum pressure				
Re	Denotes real part of				

U	Free Stream speed
u, v	Velocity component in x, y coordinates
v	Cavity volume
x,y	Horizontal and vertical ordinates in physical plane
×d	Chordwise position of cavity detachment
× _m	Chordwise position of fully wetted pressure minimum
Z	Complex variable, x + iy
a	Angle of attack
δ	Cavity wake thickness
ζ	Complex variable, $\xi + i\eta$
ξ , η	Horizontal and vertical ordinates in transformed G-plane
θο	Local fully wetted flow angle
θ1	Local flow angle due to cavitation
ρ	Fluid density
σ	Cavitation number
Г	Circulation
^r ideal	Ideal-flow circulation
ф	Total scalar potential
ф _о	Scalar potential due to fully wetted flow
φ ₁	Scalar potential due to cavitation

 Ψ Complex potential, $\phi + i\psi$

- ψ Stream function
- Y' Complex velocity

- $\Psi_0^{\,\prime}$ Complex velocity due to fully wetted flow
- Ψ_1^{\prime} Complex velocity due to cavitation
- ω Hodograph variable, ln Ψ'
- $\boldsymbol{\omega}_{0}$. Hodograph variable, $\ln\,\boldsymbol{\Psi}_{0}^{\prime}$ due to fully wetted flow
- ω_{l} Hodograph variable, $ln \ \Psi_{l}^{\prime}$ due to cavitation

~ -

ABSTRACT

A practical approach for predicting partially cavitating flow characteristics of foil sections is presented. The method takes into account indirectly the viscous flow effects and the interaction between the fully wetted and perturbed cavitating flows. The partially cavitating flow characteristics are found to be sensitive to variations in the angle of attack, camber, thickness, and the thickness distribution. Some comparisons between the calculated and measured cavity lengths are made, and the results are generally in good agreement. Further developments needed in the future are also discussed.

ADMINISTRATIVE INFORMATION

The work reported herein was supported by the General Hydromechanics Research Program under Task Area SR0230101 and Work Unit 1522-025.

INTRODUCTION

There is concern with avoiding problems and reducing the likelihood of propeller-induced hull vibration, noise, and blade erosion on Navy ships. The unsteady surface pressure excitation and local flow instability responsible for these problems are associated with blade sheet cavity geometry and cavity dynamics. Reliable computational tools for the analysis of propeller blade sheet cavitation would be useful for assessments of given propeller/wake/hull arrangements and for guidance of new propeller geometries intended to keep blade cavitation and excitation levels under some control.

Realistic estimates of hull surface pressure excitation produced by unsteady 'cavity volume variation depend on accurate definition of cavity geometry. Tulin and $Hsu^{1,2*}$ have observed, for instance, that predictions of partially cavitating flows about a lifting surface are very much influenced by the surface velocity distributions calculated for fully wetted flows about the foil sections and by the conditions used for the cavity closure. Linearized theories for lifting foils all predict an infinite suction-pressure peak at the foil leading edge, with an inverse square root singular behavior. This propagates difficulties into the analysis of the cavity flow over the foil, especially for the cavity geometry. Linear cavity flow theories show inaccurate cavity predictions for

^{*}References are listed on page 11.

the location of the sheet cavity leading edge, the sensitivity of the cavity extent and cavity thickness to changes in the foil thickness, and foil angle of attack. It has also been $shown^2$ that details of the cavity-closure condition can affect the overall hysteresis-like behavior of unsteady leading edge cavitation.

Examples of linearized analysis of two-dimensional, partially cavitating flows about lifting foils and some applications of the results to three-' dimensional propeller blade problems are found in References 3 through 9. Generally, the results of the complete propeller analysis schemes are fairly good in that the principle features of the steady and unsteady blade cavitation and propeller performance are at least represented in the predictions.

There are, however, persistent difficulties with the cavitating flow aspects of the available calculation schemes, leading to a degree of unreliability in the predictions. As an example, consider the Massachusetts Institute of Technology unsteady cavitating propeller analysis program **developed** by **Lee**,⁶ and known by the acronym PUF-3. When applied to high speed ships (~30 knots) the usual prediction for blade cavitation from this computation scheme typically shows excessive cavity length over the outer blade region, compared with observations.

Recently, a nonlinear numerical method for the analysis of two-dimensional, partially cavitating lifting foils has been developed by **Uhlman**¹⁰ based on the distribution of line-vortex elements on the boundaries of the foil and cavity. This important work has been useful in (a) illustrating the differences in trends between the linear and nonlinear predictions for crucial cavity flow features, and (b) showing qualitative agreement with the existing results of Tulin and Hsu. Unfortunately, the **method** requires very large computation time and cost, involving large numbers of boundary elements and many iterations to arrive at very slowly converging solutions. It does not appear that such a large computational effort can be tolerated at the present time inside a large-scale **three**dimensional calculation scheme for an entire propeller.

An important building block for the eventual realistic analysis of complete propeller blade flow is a reliable yet (fast running) efficient computer program for the prediction of partial chord length cavitation and the hydrodynamic loads developed on two-dimensional foil sections operating in high speed steady and unsteady inflow conditions. The present work describes results' for an approach that holds great promise for both accuracy and calculation speed.

With the fully wetted flow assumed known, a partially cavitating flow theory was developed by Tulin and Hsu.¹ This theory offers the following advantages: (a) it deals with the effect of leading edge radius; (b) it can be applied as a two-dimensional perturbation to a known three-dimensional flow. Some salient features of Tulin-Hsu theory are outlined.

In the original treatment of Tulin and Hsu, the cavity is assumed to be detached from the leading edge, and the circulation of the fully wetted flow is taken to be the ideal-flow value. Roth of these assumptions are not generally realized in practice. The theory of Tulin-Hsu is modified here to account for some of the real flow effects, and is used to predict the cavitation performance of various NACA (National Advisory Committee for Aeronautics) sections. Some comparisons between the calculated and measured cavity lengths are made, and the results are found to be generally in good agreement. Further developments needed in the future are also discussed.

OUTLINE OF TULTN-HSU THEORY

Consider two-dimensional **inviscid** flows with small regions of cavitation and define:

$$\Psi = (\phi/U) + i(\psi/U) \text{ (the complex potential)}$$
(1)

$$d\Psi/dz = \Psi' = \Psi'\Psi'_1 = (U/U) - i(V/U) \quad (\text{the complex velocity}) \quad (2)$$

$$\Psi_0 = q_0 e^{-i\theta_0} \quad (\text{no cavitation}) \tag{3}$$

$$\Psi'_1 = qle^{-i\theta_1} \tag{4}$$

represents the effect of cavitation, so that

$$\Psi'_1 = 1$$
 (5)

if no cavitation occurs. The flow in the physical and complex potential plane is shown in Figure 1. The problem, as posed, utilizes the single spiral vortex model for cavity termination.

For the solution, it is useful to define the function:

$$\omega = \omega_0 + \omega_1 = \ln q_0 - i\theta_0 + \ln q_1 - i\theta_1$$
 (6)

The ω_0 , representing the contribution from the fully-wetted flow, is assumed to be known. The problem is then reduced to that of finding ω_1 with the boundary conditions:

$$\operatorname{Re}(\omega_{1}) = \ln q_{1} = \ln (q_{c}/q_{0}) \qquad \phi_{B} < \phi < \phi_{D}$$
(7)

where $q_c = \sqrt{1+\sigma}$ (σ = cavitation number) and

$$\operatorname{Im}(\omega_{1}) = \mathbf{0} \qquad \begin{cases} \phi_{A}^{<\phi<\phi_{B}} & \psi = \mathbf{0} + \\ \phi_{D}^{<\phi<\phi_{E}} & \psi = \mathbf{0} - \\ \phi_{A}^{<\phi<\phi_{E}} & \psi = \mathbf{0} - \end{cases}$$
(8)

The conditions at infinity are:

$$\operatorname{Re}(\omega_1) = \mathbf{0}$$
(9)

$$Im(\omega_1) = 0 \tag{10}$$

The approximate cavity closure condition is:

$$\operatorname{Im} \oint \omega_1 d\Psi = (D_1 / \rho U^2) = \delta_c$$
 (11)

where D_1 is the cavity drag.

The problem as formulated may be greatly simplified with the aid of t? conformal transformation:

$$\zeta = -ia_1 \sqrt{\frac{(\Psi/\phi_E)}{(\Psi/\phi_E)-1}} = \xi + i\eta$$
 (12)

or

$$\Psi/\phi_{\rm E} = \zeta^2 / (\zeta^2 + a_1^2) \tag{13}$$

where

$$a_1 = \sqrt{(\phi_E/\phi_D) - 1} \tag{14}$$

which maps the complex potential plane onto the C-half plane as shown in Figure 2.

The associated boundary conditions, conditions at infinity, and the closure condition are given respectively by:

$$\operatorname{Re}(\omega_{1}) = \ln(q_{c}/q_{0}) - 1 < \xi < -b_{1}$$
 (15)

$$Im(\omega_1) = 0 -\infty < \xi < -1$$
 (16)

$$\operatorname{Re}\left(\omega_{1}(-\operatorname{ia}_{1})\right) = 0 \tag{17}$$

$$\operatorname{Im}\left(\omega_{1}(-\operatorname{ia}_{1})\right) = 0 \tag{18}$$

$$\operatorname{Im} \int \omega_1 (d\Psi/d\zeta) d\zeta = (D_1/\rho U^2) = \delta_c$$
(19)

The appropriate solution of the mixed boundary value problem is then given by:

$$\omega_{1} = -\frac{\sqrt{\zeta+b_{1}}}{\zeta\sqrt{\zeta+1}} \left\{ \frac{i}{\pi} \int_{-1}^{-b_{1}} \frac{\overline{\zeta}\sqrt{\zeta+1} \left[\ln\sqrt{1+\sigma} - \ln q_{0} \right]}{\sqrt{\overline{\zeta+b_{1}}} (\zeta-\overline{\zeta})} d\overline{\zeta+c_{0}+c_{1}} \zeta \right\}$$
(20)

The value of al is assumed specified, which is equivalent in specifying the cavity length. The constants c_0 , cl, and σ are determined from Equations (17), (18), and (19). Note that D_1 in Equation (19) is not known <u>a priori</u>; a satisfactory solution can, however, be obtained in two or three iterations.

For a first approximation, the lift and drag due to cavitation may be expressed as:

$$L_{1} + DI = -\rho U^{2} \int \omega_{1} (d\Psi/d\zeta) d\zeta$$
 (21)

and the cavity volume is given by:

$$\overline{V} = -\mathrm{Im} \int \omega_1 \Psi(d\Psi/d\zeta) d\zeta$$
 (22)

SOME PRACTICAL APPLICATIONS

The cavitating flow perturbation w_1 , as seen in Equation (20), depends only upon the local fully wetted velocity distribution, q_0 , and cavity detachment point. In the original treatment of Tulin and Hsu, the cavity is assumed to detach from the leading edge ($b_1 = 0$), and the fully wetted velocity distribution is assumed to be determined by perfect fluid theory; such assumptions may not be realized in practice.

The velocity distribution is generally modified by the viscous boundary layer and wake. The effect of viscous wake on the circulation defect, according to Spence and Beasley,¹¹ may be approximated by:

$$\Gamma = (\text{LIFT}/\rho U) = \Gamma_{\text{ideal}} \left[1 - 0.214 V (D/0.5 \rho U^2 c) \right]$$
 (23)

ł

where $D = Do + D_1 =$ total drag and c = chord length. The boundary layer effect on circulation depends on shapes and transition positions of foils and is quite cumbersome to estimate. In the present application, measured lift-curve slopes will be used for estimating fully wetted velocity distributions. For a first approximation, Equation (23) is also utilized to account for some of the interactions **between** the fully wetted and the perturbed cavitating flows.'

Cavitation inception at high speeds generally occurs at the position of minimum pressure. In the present approach, the cavity is assumed to detach at the point where the fully wetted pressure is minimum. The exact location of detachment is, of course, also dependent on fluid properties, ambient flow conditions, and transition positions. Such influences can be substantial in laboratory studies when test Reynolds numbers are low.

In the following, the partially cavitating flow characteristics of various NACA sections are analyzed. For such sections, ideal-flow values of the fully wetted velocity distributions are tabulated in Appendices I and II of Reference 12. In the first iteration, the value of D_1 is taken to be zero. For the subsequent iterations, the value of D_1 is approximated by:

$$D_{1} = L_{0} \alpha \left[1 - \left(\sigma / q_{0}^{*2} \right) \right]$$
(24)

where L_0 = fully wetted lift, q_0^* = fully wetted velocity at the position of minimum pressure, and α = angle of attack. Wind tunnel measured values of lift curve slope at chord Reynolds number = 6 x 10^6 (presented in Figure 57 of Reference 12) are used to correct the ideal fully wetted velocity distributions. Although the calculated results can only be applied strictly to the cases in which the chord Reynolds numbers are close to 6 x 10^6 ; such results are believed to be approximately valid for higher Reynolds numbers (up to about 10^8); the correction due to the variation of Reynolds number in the ranges of $10^7 \sim 10^8$ is probably not significant. Extensive numerical calculations have been made; however, only selective results of salient interest are presented here.

In Figures 3 and 4, the variations of cavity length and volume with angles of attack and cavitation numbers for NACA 66-006 section are shown. The length and volume of the cavity, for a given α/σ , generally increase with increasing angle of attack. The cavity length and cavity volume for cambered NACA

66-006 with a = 1.0 meanline, and $\alpha = 40$ are given in Figures 5 and 6. The effect of increasing design camber is to increase the length and volume of the cavity. Some of the partially cavitating flow characteristics for NACA 66-006, NACA 66-008, NACA 66-010, and NACA 66_1-012 sections are shown in Figures 7 and 8. The length and volume of the cavity, in general, decrease rapidly with increasing foil thickness. The partially cavitating flow characteristics **are** also found to depend on thickness distributions. Shown in Figures 9 and 10 are some calculated results for NACA 66-006, NACA 63-006, and NACA 0006 sections with $\alpha = 4^{\circ}$. The NACA 0006 section, which has leading edge radius = 0.004c produces smaller cavity lengths and cavity volumes than those produced by the NACA 63-006 and NACA 66-006 sections for α/σ <0.05; but for o/o >0.05, the NACA 0006 section produces larger cavity lengths and cavity volumes than those of NACA 63-006 and NACA 66-006 sections. The leading edge radii of NACA 63-006 and NACA 66-006 sections. The leading edge radii of NACA 63-006 and NACA 66-006 sections. The leading edge radii of NACA 63-006 and NACA 66-006 sections. The leading edge radii of NACA 63-006 and NACA 66-006 sections.

Some comparisons between the calculated and the measured cavity lengths are shown in Figures 11 through 14. The foils for which systematic experimental observations are available include: NACA 4412 (Kermeen),¹³ NACA 661-012 (Kermeen),¹⁴ 10.5% Joukowsky section (Shen and Peterson),¹⁵ NACA 64A006 (McCullough and Gault).¹⁶ In analyzing NACA 4412, NACA 661-012, and NACA 64A006 sections, measured lift curve slopes for the fully wetted flow are used for the first iteration. For the Joukowsky section, the value of 2^{π} for lift-curve slope is used for the calculations. The data of McCullough and Gault are wind tunnel measurements for leading edge separation, the cavitation numbers and cavity lengths are inferred from pressure coefficient measurements (from Figure 3 of Reference 16). The agreement between theory and measurements is in general good. The results lend credence to both the present theoretical development and method of calculation.

DISCUSSION

The partially **cavitating** flow characteristics of hydrofoil sections are found to be sensitive to variations of angle of attack, camber, thickness and thickness distribution.

Foil section thickness has an important **influence.** For a given α/σ , the cavity extent (length) generally decreases with increasing thickness ratio,

as seen in Figure 7. The effect of thickness distribution and leading edge radius is somewhat more complicated. In Figure 9, with a comparison at the same thickness ratio, the NACA 00xx sections (with larger leading edge radius than NACA 6-series sections) produce shorter cavities for small values of $\alpha/\sigma < 0.05$. For larger values of α/σ , NACA 6-series sections generally produce the shorter cavities. About the same trend holds for the sectional **cavity** volume. Thus, depending on the operating ranges of α/σ , the choice of **foil** section for the least amount of partial cavitation can vary considerably.

The theory presented herein takes into account the proper pressure distribution at the leading edge of the noncavitating foil flow. It: is substantially different from that in the linearized theories. Some comparisons between results of the present calculations and results of linear theory are displayed in Figure 15 for NACA 16-series sections. In these calculations, the **value** of 2π is used for the lift curve slope. It is seen that the linear theory provides substantial misrepresentation of the effect of section thickness on **cavity** extent. Linear theory predicts an increase in cavity length with increasing thickness ratio, contrary to the correct trend predicted by the present analysis.

By using measured values of lift-curve slope for fully wetted flow, the present results also take into account indirectly some of the viscous flow effects. Example variations of computed cavity lengths associated with changes in lift curve slopes for NACA 66-006 section are given in Figure 16, and are seen to be substantial. Lift reduction due to viscosity depends on foil trailing edge angles and may not be small, especially for chord Reynolds number $\langle 10^6$. In these cases, the viscous-flow effects on the partially cavitating flow characteristics can become very important.

The present theory also accounts for some of the reduction in circulation due to the effect of cavity wake. This is accomplished by using Equations (23) and (24). The interaction effect involves a reduction of foil lift that is caused by the flow retardation associated with the cavity drag. It can be substantial if the cavity drag is large. In Figure 17, the magnitude of this influence is indicated as the variation of cavity length for the NACA 66-006 section with and without the interaction effect included.

Flow characteristics of partially cavitating foils vary also with the positions of cavity detachment and cavity closure conditions. Variations of

cavity length with different detachment points are given, for example, in Figure 18 for the NACA 66-006 section at a = 4° incidence. This compares the results for detachment at the leading edge (xd = 0) with those using the minimum pressure point ($x_d = x_m$) for fully wetted flow. In the present example the value of x_m (\approx 0.00026) is quite small. Values of x_m are much larger for thicker sections with smaller angles of attack, and the effect of cavity detachment positions on the partially cavitating flows can be substantial. In Figure 19, the predicted cavity length variations due to different closure conditions for NACA 66-006 section are displayed, and are shown to be significant. Since the cavity closure condition may vary rapidly in unsteady flows, it can have a very important effect on time-varying properties of partially cavitating flows.

CONCLUSIONS AND RECOMMENDATIONS

The present approach permits an efficient and fast-running solution to the partially cavitating flow problem to be carried out in terms of a known fully wetted flow velocity distribution. This analysis can be readily **applied** to unsteady flows if the time rate of change is not too rapid. The perturbed cavitating flow can thus be analyzed at any given time based upon the instantaneous values of angle of attack. A similar approach may also be applied to unsteady three-dimensional flows if the fully wetted flow does not vary too rapidly in the **spanwise** direction.

Further work should be carried out along several lines to exploit the present successful analysis of partially cavitating realistic-foil sections. (1) The steady results should be extended to include unsteady inflow variations of arbitrary frequency in order to cover cases of rapid-time variability. (2) With the **two**-dimensional analysis **complete** for steady and unsteady cases, the results should be applied to make a comprehensive study on the influence of section shape on performance features of partially cavitating foils. New **foil** s'hapes will be generated that have certain desirable features for use as propeller blade sections. Examples of sought-after properties might include: the best **lift-to**-drag performance for given cavity length and/or volume; the least cavity length and volume for given foil lift; and the least inherent unstable cavity behavior under typical unsteady conditions. (3) The present nonlinear sectional flow analysis approach should be incorporated into a global lifting-surface analysis scheme for unsteady propeller performance.

REFERENCES

1. Tulin, M.P. and C.C. Hsu, "The Theory of Leading **Cavitation** on Lifting Surfaces with Thickness," Proceedings of Symposium on Hydrodynamics of Ship and Offshore Propulsion Systems, Oslo, Norway (1977).

2. Tulin, M.P. and C.C. Hsu, "New Applications of **Cavity** Flow Theory," 13th Symposium on Naval Hydrodynamics, Tokyo, Japan (1980).

3. Acosta, A.J., "A Note on Partial Cavitation of Flat Plate Hydrofoil," California Institute of Technology Hydrodynamics Laboratory **Report** No. E-19.9 (1955).

4. Geurst, J.A., "Linearized Theory for Partially Cavitated Hydrofoils," International Shipbuilding Progress, Vol. 6, No. 60 (1959).

5. Noordzij, L., "Pressure Field Induced by a **Cavitating** Propeller," International Shipbuilding Progress, Vol. 23, No. 260 (1976).

6. Lee, C.S., "Prediction of the Transient Cavitation on Marine Propellers by Numerical Lifting-Surface Theory," 13th Symposium on Naval Hydrodynamics, Tokyo, Japan (1980).

7. Hoshino, T., "Estimation of Unsteady Cavitation on Propeller Blades as a Base for Predicting Propeller-Induced Pressure Fluctuations," Journal of the Society of Naval Architects of Japan, Vol. 148 (1980).

8. Isshiki, H. and M. Murakami, "On a Theoretical Treatment of Unsteady Cavitation (3rd Report)," Transactions of West-Japan Society of Naval Architects No. 64 (1982).

9. Van Houten, R.J., "The Numerical Prediction of Unsteady Sheet Cavitation on High Aspect Ratio Hydrofoils," 14th Symposium on Naval Hydrodynamics, Ann Arbor (1982).

10. Uhlman, J.S., "The Surface Singularity Method Applied to Partially Cavitating Hydrofoils," Ph.D. Thesis, Massachusetts **Institute** of Technology, Department of Ocean Engineering (1983).

11. **Spence,** D.A. and J.A. Beasley, "The Calculation of **Lift** Slopes, Allowing for Boundary Layer, with Applications to the RAE 101 and 104 Aerofoils," Aeronautical **Reserch** Council Reports and Memoranda No. 3137 (1958).

12. Abbott, I.H. and A.E. Von Doenhoff, "Theory of Wing Sections," Dover Publications, Inc., New York (1958).

13. Kermeen, R.W., "Water Tunnel Tests of NACA 4412 and **Walchner** Profile 7 Hydrofoils in Noncavitating and Cavitating Flows," California Institute of Technology Engineering Report No. 47-5 (1956).

14. Kermeen, R.W., "Water Tunnel Tests of NACA 66_1-012 Hydrofoils in Noncavitating and Cavitating Flows," California Institute of 'Technology Engineering Report No. 47-7 (1956).

15. Shen, Y.T. and F.B. Peterson, "Unsteady Cavitation on an Oscillating Hydrofoil," 12th Symposium on Naval Hydrodynamics, Washington, D.C. (1978).

16. McCullough, G.B. and D.E. Gault, "Boundary-Layer and Stalling Characteristics of the NACA 648006 Airfoil Section," National Advisory Council for Aeronautics Technical Note No. 1923 (1949).

Figure 1 - Schematics 'of Partially Cavitating Flow and Boundary Value Problems

Figure 2 - Boundary Value Problems in Transformed ζ -Plane

Figure 3 - Effect of Angle of Attack on Cavity Length for NACA 66-006 Section

Figure 4 - Effect of Angle of Attack on Cavity Volume for NACA 66-006 Section

Figure 5 - Effect of Camber on Cavity Length for NACA 66-006 Section

Figure 6 - Effect of Camber on Cavity Volume for NACA 66-006 Section

Figure 7 - Effect of Thickness on Cavity Length for Series NACA 66 Sections, α = 4"

Figure 8 - Effect of Thickness on Cavity Volume for Series NACA 66 Sections, $\alpha \ = \ 4"$

Figure 9 - Effect of Thickness Distribution on Cavity Length, α = 4"

Figure 10 - Effect of Thickness Distribution on Cavity Volume, a = 4"

Figure 11 - Comparison with Experimental Data of Kermeen for NACA 4412 Section

Figure 12 - Comparison with Experimental Data of Kermeen for NACA 661-012 Section

Figure 13 - Comparison with Experimental Data of Shen and Peterson for 10.5% Joukowsky Section

Figure 14 - Comparison with Experimental Data of McCullough and Gault for NACA 64A006 Section

Figure 15 - Comparison with Linear Numerical Analysis for NACA 16 Sections, α = 4"

Figure 16 - Effect of Fully Wetted Flow Lift Curve Slope on Cavity Length for NACA 66-006 Section, α = 4°

Figure 17 - Interaction Effect of Fully Wetted and Cavitating Flows on Cavity Length for NACA 66-006 Section, α = 4°

Figure 18 - Effect of Cavity Detachment Position on Cavity Length for NACA 66-006 Section, α = 4"

Figure 19 - Effect of Cavity Closure Condition on Cavity Length for NACA 66-006 Section, α = 4"

~ . ٠ -

INITIAL DISTRIBUTION

Copies

.

Copies

1	ARMY CHIEF OF RES 6 DIV	NAVSEA (Continued)
1	ARMY ENGR R&D LAB	1 SEA 56X5 1 SEA 56X5
3	CHONR 1 Code 438 1 Lib 1 Lee	1 SEA 56XP 1 PMS-378 1 PMS-380 1 PMS-381 1 PMS-383 1 PMS-389
4	ONR BOSTON	1 PMS-391
4	ONR CHICAGO	1 PMS-393
4	ONR LONDON, ENGLAND	1 PMS-393 1 PMS-397 1 PMS-399 1 DMS-400
Ţ	NRL	1 SEA Tech Rep Bath, England
2	USNA 1 Lib 1 Johnson	2 DET NORFOLD (Sec 6660) 2 MMA 1 Lib
1	NAVPGSCOL Lib	1 Maritime Res Cen
1	NROTC & NAVADMINU, MIT	1 FAC 032C
1	NADC	1 MILITARY SEALIFT COMMAND (M-4EX)
5	NOSC	1 NAVSHIPYD/PTSMH
	1 1311 L1D 1 6005	1 NAVSHIPYD/PHILA
	1 2501/Hoyt	1 NAVSHIPYD/NORVA
	l Nelson	1 NAVSHIPYD/CHASN
1	NWC	1 NAVSHIPYD/LBEACH
37		
57	NAVSEA 3 SEA 05H	1 NAVSHIPYD/MARE
51	NAVSEA 3 SEA 05H 5 SEA 05R 1 SEA 55 5 SEA 555	1 NAVSHIPYD/MARE 1 NAVSHIPYD/PUGET
51	NAVSEA 3 SEA 05H 5 SEA 05R 1 SEA 555 1 SEA 55D 1 SEA 55N 2 SEA 55N	1 NAVSHIPYD/MARE 1 NAVSHIPYD/PUGET 1 NAVSHIPYD/PEARL
51	NAVSEA 3 SEA 05H 5 SEA 05R 1 SEA 555 1 SEA 55D 1 SEA 55D 3 SEA 55W 1 SEA 56D 1 SEA 56D	1 NAVSHIPYD/MARE 1 NAVSHIPYD/PUGET 1 NAVSHIPYD/PEARL 12 DTIC

Copies

1	US COAST GUARD (G-ENE-4A)	1	CORNELL U/Sears
1	LC/SCI & TECH DIV	1	FLORIDA ATLANTIC U OE Lib
7	MARAD 1 DIV SHIP DES 1 COORD RES 1 Shubert 1 Daghnaw	3	HARVARD U 1 McKay Lib 1 Birkoff 1 Carrier
	1 Hammer	2	U HAWAII/Bretschneider
	l Lasky 1 Siebold	1	U ILLINOIS/Robertson
2	NASA STIF 1 DIR RES	3	U IOWA 1 IHR/Kennedy 1 IHR/Landweber
1	NSF ENGR DIV Lib		1 IHR/Stern
1	DOT Lib	2	Johns Hopkins U 1 Phillips
1	U BRIDGEPORT/URAM		1 Inst Coop Res
2	U CAL BERKELEY/DEPT NAME	1	U KANSAS CIV ENGR Lib
	1 Webster	1	KANSAS ST U ENGR EXP/Lib
1	U CAL SAN DIEGO/Ellis	1	LEHIGH U FRITZ ENGR LAB Lib
2	UC SCRIPPS	1	LONG ISLAND U
	1 Silverman	3	U MICHIGAN/DEPT NAME
1	U MARYLAND/GLENN MARTIN INST		1 Parsons 1 Vorus
1	U MISSISSIPPI/DEPT OF M.E.	5	MIT
4	CIT 1 AERO Lib 1 Acosta 1 Plesset 1 wu	-	1 BARKER ENGR Lib 2 OCEAN ENGR/Kerwin 1 OCEAN ENGR/Leehey 1 OCEAN ENGR/Newman
1	CATHOLIC U	3	1 Killen 1 Song
1	COLORADO STATE U/Albertson		1 Wetzel
1	U CONNECTICUT/Scottron		

Copies

•

Copies

2	STATE U MARITIME COLL S II ARI, Lib	1	TEXAS U ARL Lib
	1 ENGR DEPT 1 INST MATH SCI	1	UTAH STATE U/Jeppson
1	NOTRE DAME ENGR Lib	2	WEBB INST 1 Ward 1 Hadler
5	PENN STATE U ARL 1 Lib	1	WHOI OCEAN ENGR DEPT
	1 Henderson 1 Gearhart	1	WPI ALDEN HYDR LAB Lib
	l Parkin 1 Thompson	1	ASME/RES COMM INFO
1	PRINCETON U/Mellor	1	ASNE
1	RENSSELAER/DEPT MATH	1	SNAME
1	ST JOHNS U	1	AERO JET-GENERAL/Beckwith
1	VIRGINIA TECH/KAPLAN	1	ALLIS CHALMERS, YORK, PA
3	SWRI 1 addited Mech peview	1	AVCO LYCOMING
	1 Abramson 1 Burnside	1	BAKER MANUFACTURING
		2	BATH IRON WORKS CORP
1	BOEING ADV AMR SYS DIV		1 Hansen 1 FFG7 PROJECT OFFICE
3	BOLT BERANEK AND NEWMAN 1 Brown	1	BETHLEHEM STEEL SPARROWS POINT
	1 Jackson 1 Greeley	3	BIRD-JOHNSON CO
1	BREWER ENGR LAB		1 Case 1 Ridley
	CAMBRIDGE ACOUS/Junder		1 NORLON
		2	DOUGLAS AIRCRAFT
1	CALSPAN, INC/Ritter		1 TECHNICAL Lib 1 Smith
1	STANDFORD U/Ashley		
1	פייזאחד∩סה סדפ זאפיי ז¦א	1	EXXON RES DIV/Lib
1	CITI ISUI CES INSI DI	1	FRIEDE & GOLDMAN/Michel
3	SIT DAVIDSON LAB 1 Lib 1 Breslin 1 Tsakonas		

\sim		
(10	DOIOD	
LL	NTEP	
	T	

Copies

۰.

.

2	GEN DYN CONVAIR	1	PROPULSION DYNAMICS, TNC
	YOM-MAKTINE OCTENCED	1	PROPULSION SYSTEMS, INC
3	GIBBS & COX 1 TECH Lib 1 Olson	1	SCIENCE APPLICATIONS INTERNATIONAL CORP/Salvesen
	I CAPT Nelson	1	GEORGE G. SHARP
1	GRUMMAN AEROSPACE/Carl	1	SPERRY SYS MGMT Lib/Shapior
1	TRACOR/HYDRONAUTICS/Lib	1	SUN SHIPBLDG/Lib
1	INGALLS SHIPBUILDING	- 0	
ļ	INST FOR DEFENSE ANAL	2	1 Chapkis 1 Furuya
1	ITEK VIDYA	1	UA HAMILTON STANDARD/Cornell
1	LIPS DURAN/Kress		
1	LITTLETON R & ENG CORP/Reed		CENTER DISTRIBUTION
1	LITTON INDUSTRIES	Copies	Code Name
1	LOCKHEED/Waid	1	0120
1	MARITECH, INC/Vassilopoulis	1	11
1	HYDRODYNAMICS RESEARCH ASSOCIATES, INC/Cox	1	1102.1 Nakonechny
1	NATIONAL STEEL & SHIDRIILDING	1 1	15 W.B. Morgan 1504 V. J. Monacella
1		1	1506 Hawkins
1	NEWPORT NEWS SHIPBUILDING L1D	1	1508 Boswell
1	NIELSEN ENGR/Spangler	1	1509 Powell
1	NKF Associates/Noonan	1	150 Lin
1	NAR SPACE/Ujihara	1	192 111
	-	1	1521 Day
2	ORI, INC	1	1521 Karafiath
	1 Bullock	1	1521 Hurwitz
	1 Amato		
		1	1522 Dobay
		1	1522 Remmers
		1	1522 Wilson
		2 0	1522 Hsu

CENTER DISTRIBUTION

Copi es	Code	Name
1	154	McCarthy
1	1542	Huang
1	1542	Shen
1	1543	Jeffers
1	1543	Wisler
1	1544	Caster
1	1544	Reed
1	1544	Fuhs
1	1544	Jessup
1	1544	Kim
1	1544	Lin
1	156	Cieslowski
1	1561	Feldman
1	1561	O'Dea
1	1562	Moran
1	1563	Milne
1	1564	COX
1	172	Krenzke
1	1720. 6	Rockwell
Ι	19	Sevik
1	19	Strasberg
1	1903	Chertock
1	1905	Blake
1	1942	Archibald
1	1942	Mathews
1	1962	Zaloumis
1	1962	Noonan
1	1962	Kilcullen
1	2814	Czyryca
10	5211.1	Reports Distribution
1	522.1	TIC (C)
1	522.2	TIC (A)

•

**

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORWAL SERIES, CONTAIN INFORMATION OF PERMANENT THECH-NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPE'RS INTENDED FOR IN-TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE BY CASE BASIS.

1.1