يسترسون المسب ا

. 4

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

1.1

REPORT DOCUMENTATION REPORT NUMBER DTNSRDC/SPD-0840-01 TITLE (and Subhile) PROGRAM PHPMOPT, PLANNING HULL FEA MODEL, USER'S MANUAL	2. GOVT ACCESSION NO.	READ INSTRUCTIONS BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER 5. TYPE OF REPORT & PERIOD COVERED	
DTNSRDC/SPD-0840-01		3. RECIPIENT'S CATALOG NUMBER	
PROGRAM PHPMOPT, PLANNING HULL FEA	STRULTY	5. TYPE OF REPORT & PERIOD COVERED	
PROGRAM PHPMOPT, PLANNING HULL FEA	STBILITY	5. TYPE OF REPORT & PERIOD COVERED	
PROGRAM PHPMOPT, PLANNING HULL FEA	STRUCTY		
MODEL, USER'S MANUAL			
		Final	
		5. PERFORMING ORG. REPORT NUMBER	
AUTHOR()		8. CONTRACT OR GRANT NUMBER()	
E. Nadine Hubble			
· ·			
. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
David W. Taylor Naval Ship R&D Cen	ter	0.530	
Bethesda, MD 20084		O&MN	
1. CONTROLLING OFFICE NAME AND ADDRESS		Work Unit 1-1524-718 12. REPORT DATE December 1978,	
Naval Sea Systems Command (PMS 300		Revised January 1981	
Washington, D.C. 20362	,	13. NUMBER OF PAGES	
		190	
4. MONITORING AGENCY NAME & ADDRESS(If differen	nt from Controlling Office)	15. SECURITY CLASS. (of this report)	
Naval Sea Systems Command, Detachm	ent Norfolk	UNCLASSIFIED	
J.S. Naval Station		15. DECLASSIFICATION/DOWNGRADING	
Norfolk, VA 23511		154. DECLASSIFICATION/DOWNGRADING SCHEDULE	
5. DISTRIBUTION STATEMENT (of this Report)		I	
7. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, 11 different from	m Report)	
8. SUPPLEMENTARY NOTES			
 KEY WORDS (Continue on reverse eide if necessary and 	nd identify by block number)		
laning Craft, Feasibility Model			
D. ABSTRACT (Continue on reverse elde if necessary and Documentation of a computer program of planing hulls is presented. The combatant craft but may also be app full-load displacement up to 1500	m for performing e mathematical mo plied to other ty tons and speed-di	odel is oriented to ypes of planing ships with isplacement coefficient $F_n \nabla$	
up to 4. Options are available for steel or glass reinforced plastic without auxiliary engines of either	, diesel or gas t	urbine prime movers with or	

.

5

. 7 ~

.

3

ship components, including loads, are estimated. Hull size may either be fixed or optimized to meet design payload requirements.

UNCLASSIFIED

TABLE OF CONTENTS

Page	
ABSTRACT	
ADMINISTRATIVE INFORMATION	
INTRODUCTION	
GENERAL DESCRIPTION OF MODEL	
HULL GEOMETRY	
STRUCTURES	
RESISTANCE	
THRUST	
PROPULSION	
OTHER SYSTEMS	
LOADS	
OPTIMIZATION	
FINAL HULL	
REFERENCES	
APPENDIX A - DOCUMENTATION OF SUBPROGRAMS	
FLOW CHART	
PROGRAM PHFMOPT - EXECUTIVE ROUTINE	
SUBROUTINE READIN - INPUT	
SUBROUTINE PRTOUT - OUTPUT	
SUBROUTINE PARENT - PARENT FORM NONDIMENSIONALIZED 59	
SUBROUTINE NEWHUL - HYDROSTATICS OF NEW HULL 61	
SUBROUTINE NEWVOL - ENCLOSED VOLUME OF NEW HULL 63	
SUBROUTINE CREWSS - CREW AND SUPERSTRUCTURE SIZE 65	
SUBROUTINE STRUCT(1) - STRUCTURES OF ALUMINUM OR STEEL 67	
SUBROUTINE STRUCT(2) - STRUCTURES OF GLASS REINFORCED	
PLASTIC	
SUBROUTINE STRUCT(3) - STRUCTURES FOR LANDING CRAFT 87	
SUBROUTINE POWER - PROPULSION SYSTEM	
SUBROUTINE ELECPL - ELECTRIC PLANT	
SUBROUTINE COMCON - COMMUNICATION AND CONTROL 104	
SUBROUTINE AUXIL - AUXILIARY SYSTEMS 105	
SUBROUTINE OUTFIT - OUTFIT AND FURNISHINGS 109	
SUBROUTINE LOADS - FUEL, CREW, WATER, PROVISIONS 113	

		Page
SUBROUTINE TOTALS	- GROUP 1-6 TOTALS, USEFUL LOAD, PAYLOAD.	115
SUBROUTINE COSTS	- COST ESTIMATES	123
SUBROUTINE PHRES	- RESISTANCE ESTIMATE, SERIES 62-65	1.25
SUBROUTINE SAVIT	- RESISTANCE ESTIMATE, SAVITSKY	131
SUBROUTINE PRCOEF	- PROPULSION COEFFICIENT WITH PROPELLERS.	135
SUBROUTINE OWKTQ	- PROPELLER OPEN-WATER CHARACTERISTICS	137
SUBROUTINE CAVKTQ	- PROPELLER CHARACTERISTICS IN	
	CAVITATION REGIME	139
FUNCTION TQMAX	- MAXIMUM THRUST OR TORQUE COEFFICIENTS .	143
SUBROUTINE PRINTP	- PROPELLER PERFORMANCE INTERPOLATION	145
SUBROUTINE PROPS	- POWERING REQUIREMENTS WITH PROPELLERS .	149
SUBROUTINE WJETS	- POWERING REQUIREMENTS WITH WATERJETS	153
SUBROUTINE DISCOT	- DOUBLE INTERPOLATION	159
FUNCTION MINP	٦	161
FUNCTION YINTE	SINGLE INTERPOLATION ROUTINES	162
FUNCTION YINTX	J	163
FUNCTION SIMPUN	- NUMERICAL INTEGRATION	165
FUNCTION CIDSF	- SCHOENHERR FRICTIONAL RESISTANCE	165
APPENDIX B - SAMPLE INP	UT AND OUTPUT	169

LIST OF FIGURES

	1 -	• Geometry of Computer Model for Planing Hull	9
2	2 -	General Arrangement of Typical Planing Hull	10
	3 -	General Arrangement of Typical Landing Craft	10
ź	4 -	Weight of Stiffened Plating as a Function of Design Load	11
-	5 -	Weight of Stiffened Plating for Hull Sides	12
e	5 -	Hull Framing System Weights	12
7	7 –	Propulsion Plant Foundation Weights	13
8	3 -	Auxiliary and Other Equipment Foundation Weights	13
	, <u> </u>	Mean Values of Resistance/Weight Ratio from Series 62 and 65 Data	14
10) -	Mean Values of Wetted Area Coefficients from Series 62 and 65 Data	15

LIST OF TABLES

		Resistance/Weight Ratio	
	for 100,000-1b	Planing Craft	128
		Wetted Area Coefficient $S/\nabla^{2/3}$	
2 -	Mean Values of	Wetted Area Coefficient S/V	1.00
	for Planing Hu	lls	129

a station in a

NOTATION

ĀG	Longitudinal distance of center of gravity forward of transom (also referred to as LCG)
A _T	Open area of waterjet pump inlet
AJ	Jet area of waterjet pump
Ap	Projected planing bottom area
^A p Ap/ ∇ ^{2/3}	Loading coefficient
BM	Height of metacenter above center of buoyancy
B _{PA}	Average breadth over chines
B _{PX}	Maximum breadth over chines
BSCI	U.S. Navy weight identification system; Bureau of Ships Consolidated Index of Drawings, Materials and Services related to Construction and Conversion of Ships, February 1965
CG	Center of gravity
CODOG	Combination of diesel or gas turbine propulsion; gas turbine prime movers designed for maximum speed and auxiliary diesels designed for cruise speed
COGOG	Combination of gas turbine prime movers for maximum speed or auxiliary gas turbines for cruise speed
С _Д	Beam loading coefficient = $\Delta/.(\rho g B_{PX}^3) = \nabla/B_{PX}^3$
D	Propeller diameter or waterjet impeller diameter
EAR	Propeller expanded area ratio
F _{n⊽}	Speed-displacement coefficient = $V/(g\nabla^{1/3})^{1/2}$ Also referred to as volume Froude number
g	Acceleration of gravity
GM	Metacentric height; height of metacenter above CG
GRP	Glass reinforced plastic, i.e., fiberglass
н _h	Hull depth at midships; baseline to main deck
^H 1/3	Significant wave height
IHR	Inlet head recovery of waterjet pump
KB	Height from baseline to center of buoyancy
KG	Height from baseline to center of gravity of ship (also referred to as VCG)
κ _T /J ²	Propeller thrust loading

Ĵ,

	 Mathematical Activity of the second seco
L/B	Hull length/beam ratio = L_p/B_{PX}
LP	Projected chine length
L _{OA}	Overall length of ship
$L_p/\nabla^{1/3}$	Slenderness ratio
N	Rotational speed; RPM
NPSH	Net positive suction head of waterjet pump
OPC	Overall performance coefficient = P_{E_b}/P_D
P/D	Propeller pitch ratio
P _A	Atmospheric pressure
Pc	Total brake power required at cruise speed
Pd	Total brake power required at design speed
PD	Total power delivered at propellers or waterjets
P _E	Effective power
Р _Е Ъ	Effective power of bare hull
P _H	Static water pressure on rotating axis of propeller or waterjet pump
p _V	Vapor pressure
Q	Torque on propeller shaft
Ŷ	Mass flow of waterjet pump = $A_J V_J = A_I V_I$
Q _c	Propeller torque load coefficient
R	Resistance
R/W	Resistance/weight ratio
s/⊽ ^{2/3}	Wetted area coefficient
Ss	Suction specific speed of waterjet pump
SFC	Specific fuel consumption
Т	Thrust
T	Draft at midships; baseline to waterline
V _c	Cruise (range) ship speed
v _d	Design (maximum) ship speed
vı	Average flow velocity into waterjet pump inlet
۷ _J	Jet velocity of pump at operating ship speed = V_{JB} + ΔV_J

ب ۵۰. ج

•

V _{JB}	Jet velocity of pump at bollard condition, i.e., zero ship speed
V _S	Operating ship speed
W	Total weight of ship = displacement
Wl	Weight of hull structures, BSCI Group 1
W ₂	Weight of propulsion system, BSCI Group 2
w ₃	Weight of electric plant, BSCI Group 3
W ₄	Weight of nonmilitary communication and control, BSCI Group 4
^W 5	Weight of auxiliary systems, BSCI Group 5
W ₆	Weight of outfit and furnishings, BSCI Group 6
W _{CE}	Weight of crew and effects, provisions, and water
WF	Weight of fuel
w _p	Weight of payload
w _P /∇ _P	Payload density
X	Distance forward of transom
Υ _C	Half-breadth at chine
Ч _К	Half-breadth at keel
Y _S	Half-breadth at main deck
z _c	Height of chine above baseline
z _K	Height of keel above baseline
Z _S '	Height of main deck above baseline
1-t	Thrust deduction factor
<u>1</u> -w	Wake factor
β	Deadrise angle of hull bottom from horizontal
γ	Angle of hull sides from vertical
Ymat	Density of structural material
Δ	Ship displacement = ρg⊽
Δ_{LT}	Full-load displacement in long tons
Δ / ∇_{h}	Vehicle density
ΔVJ	Increase in jet velocity due to inlet head recovery

ABSTRACT

Documentation of a computer program for performing design feasibility studies of planing hulls is presented. The mathematical model is oriented to combatant craft but may also be applied to other types of planing ships with full-load displacement up to 1500 tons and speed-displacement coefficient F_{n7} up to 4. Options are available for structural materials of aluminum or steel or glass reinforced plastic, diesel or gas turbine prime movers with or without auxiliary engines of either type, and propellers on inclined stafts or waterjet pumps. Weight, volume, and vertical center of gravity for the major ship components, including loads, are estimated. Hull size may either be fixed or optimized to meet design payload requirements.

ADMINISTRATIVE INFORMATION

Modifications for the current program were authorized and funded by the Naval Sea Systems Command, Detachment Norfolk (NAVSEADET Norfolk) Project Order 00016. The work was performed at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) under Work Unit 1-1524-718. INTRODUCTION

A computer program labeled PHFMOPT has been developed at DTNSRDC and utilized in numerous design feasibility studies by NAVSEADET Norfolk for combatant craft projects such as the Special Warfare Craft, Medium SWCM and Landing Craft LCM-9. The computer software has been revised and updated numerous times to keep abreast of the project requirements and state-ofthe-art. This report provides a general description of the present mathematical model together with documentation for each module of the computer program in Appendix A. This program is operable on the Control Data Corporation 6000 Computers at DTNSRDC and has also been recently installed at the CDC Cybernet Center in Recleville, mic operating under NOS. Sample input and output are shown in Appendix B.

The planing hull feasibility model PHFMOPT is applicable for a wide range of planing-hull prototypes with slenderness ratio $L_P/\nabla^{1/3}$ from 4 to 10, speed-displacement coefficient $F_{n\nabla}$ from 0.5 to 4.0, and displacement from 50 to 1500 tons. A comparison of the model with an actual patrol craft and an example of a design study utilizing the model has been presented in Reference 1.

A complete listing of references is given on page 17.

ŕ	Shaft angle from baseline
η _a	Appendage drag factor
η _D	Propulsive coefficient = P_E/P_D
n _O	Propeller efficiency
v	Viscosity of water
ρ	Water density
σ	Propeller cavitation number based on advance velocity
σ	Standard deviation
^o limit	Stress limit of structural material
σ _{TIP}	Waterjet impeller tip velocity cavitation number
^σ 0.7R	Cavitation number based on resultant water velocity at 0.7 radius of propeller
τ	Thrust load coefficient for propeller or waterjet
∇	Displaced volume
∇	Hull volume up to main deck
∇ _P	Volume of payload inside of hull and superstructure
V ss	Volume inside superstructure
⊽ _T	Total volume = $\nabla_h + \nabla_{ss}$

GENERAL DESCRIPTION OF MODEL

Computer program PHFMOPT estimates the weight, volume, and vertical center of gravity VCG of major components for the empty ship plus the fuel load, crew, and provisions. Then, either (1) the resultant weight, volume, and VCG of the payload is computed for a hull of fixed size, or (2) the hull depth H_h , maximum chine beam B_{PX} , and/or displacement Δ_{LT} are optimized to meet design payload requirements for a ship of fixed length L_p . Computations may be made for several values of L_p to determine the optimum ship length.

Ship components for the U.S. Navy Bureau of Ships Consolidated Index BSCI Groups 1 through 6 are computed at the three-digit level. The data base for the model includes small patrol craft, hydrofoil craft, destroyers DD, and destroyer escorts DE so that planing ships up to 1500 tons can be evaluated. A multiplier (K-factor) is input for each three-digit BSCI group which may be used to modify or eliminate weights and volumes derived from the general equations presented in Appendix A. A K-factor is also applied to the total of each single-digit group, essentially adding a designer's margin.

Input to the program is read by Subroutine READIN and consists of 54 punched data cards which contain offsets for the parent hull form and design constants. Data from the cards are immediately printed for use in checking input errors. In addition, one card for each design condition, containing the length L_p and initial values of Δ_{LT} , B_{PX} , and H_h , is read by the executive routine PHFMOPT. A detailed description of the input and the printed output is presented in Appendix A. Output is controlled by Subroutine PRTOUT.

HULL GEOMETRY

The planing hull is represented by a hard-chine model as shown in Figure 1. Offsets input for the parent hull form are nondimensionalized in Subroutine PARENT. Offsets and hydrostatics for each new design condition of L_p , B_{PX} , and Δ_{LT} are computed by Subroutine NEWHUL. All parametric variations have the same deadrise as the parent, since the keel and chine offsets are proportioned by the average beam B_{PA} and B_{PX}/B_{PA} is held constant. The hull volume below the main deck ∇_h and the hull density

 Δ/∇ are computed by Subroutine NEWVOL for each change in H_h . Slope of the hull sides is maintained whenever deck height is changed.

The general arrangement of the transverse bulkheads, platforms, and fuel tanks employed by the planing hull model is shown in Figure 2. Nine bulkheads positioned as shown are used for planing hulls over 70 tons and should be sufficient for a two-compartment ship aft and a three-compartment ship forward for most configurations. The number of bulkheads is reduced for smaller craft based on existing designs. The general arrangement used for the landing craft model is shown in Figure 3. For this special case, additional input parameters are required to define the well deck and ramps. A maximum of 15 bulkheads may be input, and a spacing of about 6 ft between bulkheads is used under the well deck.

STRUCTURES

The hull structures (BSCI Group 1) are computed in Subroutine STRUCT. The structural design procedure takes into account sea loads and effects of changes in hull length, beam, and depth. The design methodology is based on References 2, 3, and 4 and explained in detail in Reference 1. Structures of either aluminum, steel, or glass reinforced plastic GRP may be computed. Two interchangeable Subroutines STRUCT are available, one for aluminum or steel hulls, the other for single skin or sandwich plate GRP hulls. Curves of structural weight data used by the math model are shown in Figures 4, 5, 6, 7, and 8.

A third Subroutine STRUCT is available for landing craft of aluminum or steel which accounts for the increased load on the well deck and ramps and changes in the internal arrangement.

RESISTANCE

Bare-hull resistance for the feasibility model is estimated from DTNSRDC Series 62 and 65 hard-chine planing hull data published in Reference 5. Mean values of resistance/weight ratio R/W as a function of $L_p/\nabla^{1/3}$ and $F_{n\nabla}$ were computed from the 21 models of the two series with the longitudinal center of gravity LCG position ranging from 1/3 to 1/2 L_p forward of the transom. Mean values of wetted area coefficient $S/\nabla^{2/3}$ were obtained for the same data. Faired curves of the mean R/W for a

100,000-1b planing craft and mean $S/\nabla^{2/3}$ are presented in Figures 9 and 10. Data from the faired curves have been incorporated in Subroutine PHRES (see Tables 1 and 2) so that the mean R/W can be interpolated for $L_p/\nabla^{1/3}$ from 4 to 10 at $F_{n\nabla}$ from 0 to 4 and scaled to the required ship size. Standard deviation σ of the base data from the mean values was also computed and faired as a function of $F_{n\nabla}$. A multiplier SDF may be used with σ to raise or lower the mean R/W data when attempting to match existing resistance data for a particular hull form.

Predicted R/W = Mean R/W - (SDF x σ)

Resistance of the appendaged hull is estimated by applying an appendage drag factor n_a to the bare-hull resistance. The factor n_a developed by Blount and Fox, Reference 6, is applied only to hulls with propellers on inclined shafts. No increase in resistance is assumed for hulls fitted with waterjets.

Added resistance in rough water R is predicted from an empirical equation given in Reference 7 which was developed by a regression of planing hull rough-water experimental data.

$$R_{aw}/\Delta = 1.3 (H_{1/3}/B_{PX})^{0.5} F_{n\nabla} (L_p/\nabla^{1/3})^{-2.5}$$

THRUST

The feasibility model has the option for either propellers on inclined shafts or waterjet pumps. Thrust deduction (1-t) used for the propellers is 0.92 from Blount and Fox, Reference 6. Thrust deduction assumed for waterjets is 0.95. Total thrust requirement $T = R_t/(1-t)$ where R_t is total resistance.

Subroutine PROPS is utilized to estimate the powering requirements for the ship at design and cruise speed when propellers are employed. If not input, the number of propellers is selected based on maximum power of prime movers available. Subroutine PROPS also determines propeller diameter if not specified, selecting the smallest propeller capable of producing the required thrust at both design and cruise speeds, based on an input constant for $\tau_c/\sigma_{0.7R}$. A value of $\tau_c/\sigma_{0.7R} \approx 0.6$ corresponds to the 10 percent back cavitation criteria for Gawn-Burrill type propellers.

General equations for specific weight, rotational speed, and specific fuel consumption SFC have been developed for high speed diesels and second generation gas turbines. Data from the general equations may be modified by input constants to match a particular series of engines, or fixed weights and SFC's may be input to the program. Gear weights may be fixed or derived from a general equation developed by Mandel at Massachusetts Institute of Technology with appropriate constants for either single reduction or planetary gears. Propeller and waterjet weights are primarily a function of their size. Subsidiary propulsion system weights are given as a function of the total power of the prime movers.

Volumes required for the engine room, combustion air supply, and uptakes may be fixed inputs or obtained from the general equations based on existing diesel and gas turbine systems.

OTHER SYSTEMS

The electric plant (BSCI Group 3) components are computed in Subroutine ELECPL. The electric power requirementin kilowatts may be an input or computed as a function of the ship displacement.

The nonelectronic navigation equipment and interior communication system are established in Subroutine COMCON. The remainder of communication and control (BSCI Group 4) is considered part of the payload.

Auxiliary systems (BSCI Group 5) and the outfit and furnishings (BSCI Group 6) are computed in Subroutines AUXIL and OUTFIT. The general equations were primarily derived from DD and DE data. However, changes were made for aluminum components in lieu of steel, using 2/3 the weight of steel where equal stress is required and 1/2 the weight of steel where size is maintained.

LOADS

The fuel requirement is established in Subroutine POWER based on the SFC and range at either cruise speed or design speed, whichever dominates. A five percent margin is added for fuel which cannot be utilized. An additional five percent margin is added to the volume of the fuel tanks

Propeller open-water characteristics are derived as a function of pitch ratio P/D, expanded area ratio EAR, and number of blades Z from polynomials developed from the Wageningen B-Screw Series of airfoil section propellers, Reference 8, or recent modifications of these polynomials for flat face, segmental section propellers such as the Gawn-Burrill Series, Reference 9. Propeller characteristics in the cavitation regime are derived from maximum thrust and torque load coefficient τ_c and Q_c developed as functions of cavitation numbers at the propeller 0.7 radius $\sigma_{0.7R}$ in Reference 10.

Subroutine WJETS is used to estimate the power requirements with waterjet pumps. Waterjets of fixed size may be input, or the waterjets may be designed within the program using the approach given by Denny in Reference 11. The design pumps are assumed to operate at maximum input power and maximum rpm at the ship's design speed. A ratio of bollard jet velocity $V_{\rm JB}$ to ship speed $V_{\rm S}$ about 2 will result in optimum propulsive efficiency; see Figure 3 of Reference 11. However at low design speeds, e.g., 20 knots, a value of $V_{\rm JB}/V_{\rm S} > 2$ may be required in order to keep the size of the waterjet within reasonable bounds.

PROPULSION

Once the power estimates are made for design and cruise speeds, the propulsion (BSCI Group 2) components are calculated in Subroutine POWER. The following propulsion systems are available in the computer model:

- (1) diesel prime movers,
- (2) gas turbine prime movers,
- (3) CODOG system -- gas turbine prime movers with auxiliary diesels,
- (4) COGOG system -- gas turbine prime movers with auxiliary gas turbines.

There is always one prime mover for each propeller or waterjet. The prime movers are designed to operate at maximum power at the ship's design speed; the auxiliary engines operate at their maximum power at cruise speed.

The auxiliary engines may utilize the same propellers as the prime movers, or separate propellers may be specified.

to allow for expansion. The fuel tanks are generally an integral part of the hull structure, but an option is available for separate fuel tanks when required.

The ship's complement may either be input or calculated in Subroutine CREWSS based on accommodations of numerous small and intermediate-sized warships. The crew concerned with the military payload is included in the total complement and not treated as part of the military payload. Weights and volumes of the crew and their effects based on U.S. Navy standard allowances, as well as personnel stores and potable water for the specified accommodations and days at sea, are computed in Subroutine LOADS.

The components of BSCI Groups 1 through 6 are combined and specified margins added in Subroutine TOTALS to obtain the empty ship weight, volume, and VCG. The difference between the full-load displacement and the empty ship weight is termed the useful load, which includes the fuel, crew and provisions, and the payload. The payload consists of the armament (BSCI Group 7), the military portion of communication and control (Group 4), ammunition, and any special loads required for the ship's mission, such as the tanks carried by a landing craft. The computer model does not separate the various components of the payload.

OPTIMIZATION

Unless the hull size is fixed, the executive routine PHFMOPT iterates until the design payload specifications are met, or until a default condition occurs. The ship displacement is increased or decreased until the resultant payload weight W_p is equal to the input value for design payload. The beam of the hull is varied until the specified VCG of the design payload is obtained, maintaining the input metacentric height \overline{GM} . The hull depth is raised or lowered to obtain the design payload volume ∇_p (payload density = W_p/∇_p). A flow chart of the optimization process is presented in Appendix A.

Possible default conditions are as follows:

(1) $L_{p}/\nabla^{1/3}$ less than 4 or greater than 10,

(2) $F_{n\nabla}$ greater than 4,

(3) Δ_{LT} , B_{PX} , or H_h not converging after 10 iterations for each variable. A default may occur if the initial values of Δ_{LT} , B_{PX} , and H_h are not close to the optimums. Therefore, the program user may be wise to begin a new design with several fixed hull sizes to aid in the selection of initial values for the optimization process.

FINAL HULL

Weights, VCG's, and volumes for the final (or fixed) hull form are printed from Subroutine PRTOUT at the BSCI 3-digit level. Also output are offsets and hydrostatics for the final hull, speed-power predictions for a range of speeds, and some vertical acceleration predictions in various sea states based on empirical equations in Reference 12. A sample printout is shown in Appendix B.

Figure 1 - Geometry of Computer Model for Planing Hull

Figure 2 - General Arrangement of Typical Planing Hull

Figure 4 - Weight of Stiffened Plating as Function of Design Load

Figure 5 - Weight of Stiffened Plating for Hull Sides

Figure 6 - Hull Framing System Weights

Figure 7 - Propulsion Plant Foundation Weights

Figure 8 - Auxiliary and Other Equipment Foundation Weights

Figure 9 - Mean Values of Resistance/Weight Ratio from Series 62 and 65 Data

Figure 10 - Mean Values of Wetted Area Coefficient from Series 62 and 65 Data

15

~

REFERENCES

 Hadler, J.B., et al., "Planing Hull Feasibility Model - Its Role in Improving Patrol Craft Design," The Royal Institution of Naval Architects, International Symposium on Small Fast Warships and Security Vessels, London (Mar 1978)

2. Heller, S.R. and M.H. Jasper, "On the Structural Design of Planing Craft," Trans. RINA, Vol. 102 (1961)

3. Allen, R.G. and R.R. Jones, "Consideration of the Structural Design of High Performance Marine Vehicles," paper presented to New York Metropolitan Section, SNAME (Jan 1977)

4. Heller, S.R. and D.J. Clark, "The Outlook for Lighter Structures in High Performance Marine Vehicles," Marine Technology, Vol. 11, No. 4 (Oct 1974)

5. Hubble, E.N., "Resistance of Hard-Chine, Stepless Planing Craft with Systematic Variation of Hull Form, Longitudinal Center of Gravity, and Loading," NSRDC Report 4307 (Apr 1974)

6. Blount, D.L. and D.L. Fox, "Small Craft Power Predictions," Marine Technology, Vol. 13, No. 1 (Jan 1976)

7. Hoggard, M. M., "Examining Added Drag of Planing Craft Operating in a Seaway," Paper presented to Hampton Road Section, SNAME (Nov 1979).

8. Oosterveld, M.W.C. and P. Van Oossanen, "Further Computer Analyzed Data of the Wageningen B-Screw Series," International Shipbuilding Progress Vol. 22 (Jul 1975).

9. Gawn, R.W.L. and L.C. Burrill, "Effect of Cavitation on the Performance of a Series of 16 Inch Model Propellers," Trans. INA, Vol. 99 (1957).

10. Blount, D.L. and D.L. Fox, "Design Considerations for Propellers in a Cavitating Environment," Marine Technology, Vol. 15, No. 2 (Apr 1978).

11. Denny, S.B. and A.R. Feller, "Waterjet Propulsor Performance Prediction in Planing Craft Applications," DTNSRDC Report SPD-0905-01 (Aug 1979).

12. Hoggard, M. M. and M. P. Jones, "Examining Pitch, Heave, and Accelerations of Planing Craft Operating in a Seaway," Paper presented at High-Speed Surface Craft Exhibition and Conference, Brighton (Jun 1980).

APPENDIX A

DOCUMENTATION OF SUBPROGRAMS

FLOW CHART OF EXECUTIVE ROUTINE PHFMOPT

...

NAME:	PROGRAM	PHFMOPT
PURPOSE:	model. volume, major sh payload timized, ment as	e routine for planing hull feasibility If hull size is fixed, estimate weight, and vertical center of gravity VCG of ip components and determine the resultant availability. If hull size is to be op- vary hull depth, beam, and/or displace- specified until the design payload re- ts are met.
SUBPROGRAMS CALLED:	STRUCT,	PARENT, NEWHUL, CREWSS, POWER, NEWVOL, LOADS, ELECPL, COMCON, AUXIL, OUTFIT, YINTE, COSTS, PRTOUT
INPUT:		ON blocks and Čard Set 29 outine READIN
IOPT	Control	for optimization of displacement $\Delta_{\rm LT}$,
	maximum	beam B_{PX} , and/or hull depth H_h , from Card 6
PL	L _P	<pre>= projected chine length of ship in ft, from Card 29</pre>
DTONS	[∆] lt _o	<pre>= initial value of displacement in long tons,* from Card 29</pre>
BPX	^B PX _o	= initial value of maximum chine beam in ft, from Card 29
HDM	H _{ho}	= initial value of hull depth at midships in ft, from Card 29
WPDES	W _P '	design payload weight in tons, from input Card 9
VPDES	∇ _P '	<pre>= design payload volume in ft³, from input Card 9</pre>
ZPDES	z _p '	= VCG of design payload in ft above main deck at midships, from Card 9
DELDT	d∆ _{LT}	= increment of displacement in tons, from Card 28
DELBX	dB _{PX}	= increment of B_{PX} in ft, from Card 28
DELHD	dH _h	= increment of H_h in ft, from Card 28
BXMIN	B _{min}	= minimum value of B _{PX} in ft, from Card 28
BXMAX	B _{max}	= maximum value of B _{PX} in ft, from Card 28

*Weights in long tons will generally be referred to simply as "tons" in this report. 1 ton = 1 long ton = 2240 lb = 0.9842 metric tons

,,

H min = minimum value of H_{h} in ft, from Card 28 HDMIN H_{max} HDMAX = maximum value of H_b in ft, from Card 28 OUTPUT: Via COMMON blocks = design payload weight in 1b = 2240 (W_p^{\dagger} in tons) $(W_p)_D$ WPLBS $(W_p/\nabla_p)_D$ = design payload density in $1b/ft^3 = 2240W_p/\nabla_p$ PLDEN = design payload VCC in ft above main deck ZPDES $(Z_{p})_{D}$ = input Z_p L Index for outer DO LOOP L=1.NDT J Index for middle DO LOOP J=1.NBX Index for inner DO LOOP I=1.NVD Ι NDT Number of displacements calculated in outer loop If IOPT < 3, then NDT = 1, and final $\Delta_{LT} = \Delta_{LT}$ Otherwise, NDT = 3, and $\Delta_{\rm LT}$ is optimized NBX Number of beams calculated in middle loop If IOPT < 2 then NBX = 1, and final $B_{PX} = B_{PX}$ or IOPT = 4 If $B_{PX} \leq B_{min}$, then NBX = 1, and final $B_{PX} = B_{min}$ If $B_{PX} \ge B_{max}$, then NBX = 1, and final $B_{PX} = B_{max}$ Otherwise, NBX = 3, and B_{PX} is optimized Number of hull depths calculated in inner loop NVD If IOPT < 1 then NVD = 1, and final $H_h = H_h$ or IOPT > 3 If $H_h \leq H_{min}$, then NVD = 1, and final $H_h = H_{min}$ If $H_h \ge H_{max}$, then NVD = 1, and final $H_h = H_{max}$ Otherwise, NVD = 3, and H_h is optimized DT(L) = displacement of current hull Δ_{I.T} If NDT = 1, then $\Delta_{LT} = \Delta_{LT}$ If NDT = 3, then $\Delta_{LT} = \Delta_{LT} - d\Delta_{LT}$, Δ_{LT} , ${}^{\Delta}_{\text{LT}}{}^{+d\Delta}_{\text{LT}}$ = maximum chine beam of current hull BX(J) B_{PX} If NBX = 1, then $B_{PX} = B_{PX}$ or B_{min} or B_{max} If NBX = 3, then $B_{PX} = B_{PX} - dB_{PX}$, B_{PX} , ^B_{PX} +d^B_{PX}

PROGRAM PHFMOPT

PROGRAM PHFMOPT

HD(I)	H_h = hull depth at midships of current hull If NVD = 1, then H_h = H_h or H_m or H_m
	If NVD = 3, then $H_h = H_h + dH_h$, H_h , $H_h - dH_h$
PDEN(I)	$W_{\rm P}/V_{\rm P}$ = payload density of current hull
ZPL(J)	Z _P = VCG of payload for current hull
WPD(L)	W _P = weight of payload for current hull
HDM	$H_h = final hull depth in ft$
	If NVD = 3, interpolate from the array of W_p / ∇_p
	versus H_h to obtain a new H_h which approximates o
	the required $(W_{P}/\nabla_{P})_{D}$. Iterate until the new
	H_{h} agrees with the old H_{h} within one percent.
PDENS	$W_{\rm P}/\nabla_{\rm P}$ = payload density of final hull
BPX	B_{PX} = final maximum chine beam in ft
	If NBX = 3, interpolate from the array of Z_p versus
	B_{PX} to obtain a new B_{PX} which approximates the
	required $(Z_p)_D$. Iterate until the new B_{PX_p} agrees
	with the old B _{PX} within one percent.
DTONS	Δ_{LT} = final displacement in tons
	If NDT = 3, interpolate from the array of W_{p}
	versus Δ_{LT} to obtain a new Δ_{LT} which approximates
	the required $(W_P)_D$. Iterate until the new Δ_{LT}
	agrees with the old Δ_{LT} within one percent. O
	A maximum of 10 iterations is set on each loop.
	If the initial values of Δ_{LT} , B_{PX} , and/or H_{h}
	are too far from the design requirements, con- vergence may be unattainable with this optimiza- tion procedure. Therefore, it is well to run a matrix of fixed hulls (IOPT=0) first to aid in the selection of appropriate initial values.
	See Subroutine PRTOUT for complete output from final hull.

.

NAME :	SUBROUTINE READIN		
PURPOSE:	Read input data from punched cards, an input. Store data in COMMON blocks for routines.	nd echo or use	the by other
CALLING SEQUENCE:	CALL READIN		·
SUBPROGRAMS CALLED:	owktą, Cavktą		
DATA REQUIRED:	Via Punched Cards	Card	Columns
PARENT	Identification for hull design	1	1-50
PL	Projected chine length L_p of parent form	2	1-8
BPX	Maximum chine beam B _{PX} of parent form		9-16
DZS	Δz_{S} of parent form, see Figure 1		17-24
NN	Total number of sections input \leq 27	3	3-4
N	Index of section at $X/L_p = 1.0$		7-8
М	Index of section at $X/L_p = 0.5$		11-12
M40	Index of section at $X/L_p = 0.6$		15-16
M25	Index of section at $X/L_p = 0.75$		19-20
NTB	Number of transverse bulkheads \leq 15	4	3-4
MTB (1)	Indexes of Sections at which trans-		.7-8
MTB (2)	verse bulkheads are located, from transom to bow. Value of NTB must		11-12
: }	be 9 and values of MTB must be 1, 4,		•
	6, 9, 12, 15, 18, 21, 26 for con- ventional planing hulls, but may be		•
MTB (NTB)	varied for landing craft		•
XLP (I)	Nondimensional longitudinal location of section X/L _P	5(I)	1-8
YC (I)	Half-breadth at chine Y _C		9-16
YS (I)	Half-breadth at main deck Y _S		17-24
ZK (I)	Height of keel above baseline Z _K		25-32
ZC (I)	Height of chine above baseline Z _C		33-40
ZS (I)	Height of main deck $Z_{S}' - \Delta Z_{S} = Z_{S}$		41-48
YK (I)	Half-breadth at keel Y _K		49-56

Format for Card 1 is (5 A 10).

Format for Cards 3, 4, and 6 is (20 I 4).

Format for all other cards is (10 F 8.2).

Data read from each card is immediately echoed, i.e., printed on output page, for use in tracing errors.

6

4

Card Columns

Card Set 5 contains NN cards, one for each section, in order from transom to bow.

For conventional planing hulls, value of NN must be 27 and sections required are $X/L_p = 0$, 0.025, 0.05,

0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 1.0, and L₀₄/L_P

Values of N, M, M40, M25 are 26, 13, 15, 18. Sections for landing craft are not restricted.

Dimensions of offsets on Card Set 5 must be consistent with values on Card 2. The parent form is nondimensionalized before geometric variations are made.

The planing hull form is <u>approximated</u> by straight line segments as shown in Figure 1. The general arrangements used for conventional planing hulls and landing craft are shown in Figures 2 and 3, respectively.

IMAT

Control for hull structural material IMAT = 1 for aluminum hull IMAT = 2 for steel hull IMAT = 3 for GRP single skin hull, with single skin bulkheads* IMAT = 4 for GRP single skin hull, with sandwich plate bulkheads*

IMAT = 5 for GRP sandwich plate hull
 with sandwich plate bulkheads*

GRP is glass reinforced plastic, i.e., fiberglass.

.

		Card	Columns
Control f	or optimization of displacement	6	8
∆, maximu	m beam B_{PX} , and hull depth H_{h} ;		
length L_p	is fixed in each case.		
IOPT = 0	if Λ , $B_{\gamma\chi}$, and II_h are fixed.		
IOPT = 1	if Λ and B_{PX} are fixed but		
	H _h is varied to meet required		
	payload density W_p/∇_p .		
IOPT = 2	if Δ is fixed but		
	B_{PX} is varied to meet required		
	VCG of payload Z _p and		
	H_{h} is varied to meet W_{p}/∇_{p} .		
IOPT = 3	if Δ is varied to meet		
	required payload weight W_p		
	and B_{pX} and H_h are varied		
	to meet Z_p and W_p/∇_p .		
	if B_{px} and H_{h} are fixed but		
	Δ is varied to meet W_{p} .		
IOPT = 5	if H _h is fixed but		
	Δ is varied to meet W_p and		
	B_{pX} is varied to meet Z_{p} .		
Control f	or printed output	6	: 0
	for minimum output, major	6	i2
	weight groups only. 2 pages - for each hull		
IPRT = 1	for complete 5-page output		
	per hull, including BSCI 3-digit level of weight and		
	hull offsets		
Control f	or type of engines	6	16
	for diesel prime movers for gas turbine prime movers		
	for CODOG System, gas		
	turbine prime movers with auxiliary diesels		
IPM = 4	for COGOG System, gas tur-		
	bine prime movers with auxiliary gas turbines		
	aunitiaty gas culuilles		

IOPT

IPRT

IPM

)

		Card	Columns
	IPROP	Control for type of thrusters 6 IPROP = 1 for segmental section props (Gawn-Burrill type)	20
		IPROP = 2 for Newton-Rader type props	
		(Data is questionable - use with IPROP = 3 for airfoil section propellers	inution)
		(Wageningen B-Screw type) IPROP = 4 for B-Screw type, assuming ne Ca IPROP = 5 for Waterjets Control for two of waterjets	vitation
	ILC	Control for type of vehicle 6 ILC = 0 for conventional planing hull ILC = 1 for landing craft with well	24
		Structural calculations for conventional planing hulls or landing craft are performed by interchangeable subroutines labeled STRUC Program users must ensure that the appropria routine is loaded consistent with values of ILC and IMAT.	CT.
	IFT	Control for fuel tanks 6 IFT = 0 if fuel tanks are an integral part of the hull structure IFT = 1 for separate fuel tanks	28
	IFRM	Control for framing of GRP hulls 6 IFRM = 1 for transverse framing	32
	THULL	IFRM = 2 for langitudinal framing	36
	XLWELL	Control For number of hulls & THULL=1 for menohall; Thull=2 Length of well deck in ft for Catana 6A	3 6 1-8
	XLBOWR	Length of bow ramp in ft	9-16
	BWELL	Breadth of well deck in ft	17-24
	BBOWR	Breadth of bow ramp in ft	25-32
	BAFTR	Breadth of aft (drive-through) ramp in ft	33-40
	ZWELL	Height of well deck above baseline in ft	41-48
	ZAFTR	Height of aft ramp above baseline in ft	49-56
		See arrangement of landing craft in Figure 3	
sert	* * * * *	Omit Card 6A when ILC = $0 $ * * * * *	
Fitule 2	VDES	Design (maximum) speed V _d in knots 7	1-8
6c, 6D -> Ii+ulc=2 - Poge 32b	DRANGE	Range at V_d in nautical miles	9-16
		Not required if cruise range is dominant or if fuel weight is input	
	H13D	Significant wave height at V_d in ft	17-24
	VCRS	Cruise speed V in knots $\leq V_d$	25-32
	CRANGE	Range at V in nautical miles Not required if fuel weight is input 32 a	33-40

Additional laports for CATAMARAN' (IHULL=2)

Card Columns

* * * * Omit Carls 6B, 6C, and aD when IHULL = 1 +++-

Card Column

SDF Standard deviation factor for resis- tance prediction, if KW not input. Program uses R/W derived from Series 62 and 65. If SDF=0.0, the mean R/W curves are used, if SDF=1.645, the min- imum curves are used. SDF can be varied to approximate the bare hull resistance for a particular hull form. DCF Correlation allowance C _A , generally 0. ST=64 57-64 * RWF(1) Bare hull resistance-weight ratio R/W at design speed 73-80 * RWF(2) Bare hull R/W at cruise speed 73-80 SPEED(1) Array of 10 speeds, or less, in knots 8 SPEED(2) at which power data and accelerations are to be computed 9 WPDES Design payload weight W _P in long tons 9 VPDES Design payload volume V _P in ft ³ 9-16 ZPDES VCG of design payload in ft above main deck at midships, positive up 17-24 GM Required metacentric height GM in feet 25-33 CGACC 1/10 highest acceleration criterion at 33-40 33-40 * wFUGL Wumber of enlisted personnel 9-16 * CPO Number of days for provisions 33-40 * OFF Number of days for provisions 33-40 * wFWIN Minimum unit weight of stiffened 11 * CREW Number of fo		нізс	Significant wave height at V in ft Must be some as H13D C	Card 7	Column 41-48
 RWF(1) Bare hull resistance-weight ratio R/W 65-72 at design speed RWF(2) Bare hull R/W at cruise speed 73-80 SPEED(1) Array of 10 speeds, or less, in knots 8 1-8 SPEED(2) at which power data and accelerations are to be computed WPDES Design payload weight W'p in long tons 9 1-8 VPDES Design payload volume V'p in ft³ 9-16 ZPDES VCG of design payload in ft above main deck at midships, positive up CM Required metacentric height GM in feet 25-32 CGACC 1/10 highest acceleration criterion at 33-40 W Fuel W Fuel W Guight of Fuel in Tons 10 1-8 CCREW Number of enlisted personnel 9-16 CFF Number of officers DAYS Number of days for provisions 33-40 WSFMIN Minimum unit weight of stiffened 11 1-8 plating in 1b/ft² WSFMIN = 4.0 for medium range aluminum WSFMIN = 2.5 for single skin GRP WSLOPE Slope of stiffened plating curves as function of load WSLOPE = 0.100 for steel 		SDF	Standard deviation factor for resis- tance prediction, if R/W not input. Program uses R/W derived from Series 62 and 65. If SDF=0.0, the mean R/W curves are used; if SDF=1.645, the min imum curves are used. SDF can be vari to approximate the bare hull resistanc	.ed	49 - 56
*RWF(2)at design speed Bare hull R/W at cruise speed73-80SPEED(1)Array of 10 speeds, or less, in knots at which power data and accelerations are to be computed81-8WPDESDesign payload weight W'p in long tons PUES91-8WPDESDesign payload volume V'p in ft³9-16ZPDESVCC of design payload in ft above main deck at midships, positive up17-24CMRequired metacentric height CM in feet UFUEL25-32CGACC1/10 highest acceleration criterion at the CG in g's; generally 1.0 or 1.5 g UFUEL33-40*ACCTotal accommodations = CREW + CPO + OFF10*CPONumber of enlisted personnel9-16*OFFNumber of days for provisions WSFMIN33-40WSTMINMinimum unit weight of stiffened WSFMIN = 3.25 for single skin GRP WSFMIN = 2.5 for sandwich plate GRP9-16WSLOPESlope of stiffened plating curves as function of load WSLOPE = 0.140 for sandwich plate GRP9-16		DCF	Correlation allowance $C_A^{}$, generally 0	•	57 - 64
SPEED(1) SPEED(2)Array of 10 speeds, or less, in knots at which power data and accelerations are to be computed1-8WPDES VPDESDesign payload weight W' in long tons Design payload volume V' in ft39-16ZPDESVCC of design payload in ft above main deck at midships, positive up17-24CMRequired metacentric height GM in feet CGACC25-32CGACC1/10 highest acceleration criterion at the CG in g's; generally 1.0 or 1.5 g33-40* $\omega \in \omega = \omega + cFP + OFF$ 10*CREWNumber of enlisted personnel9-16*CPONumber of CPO's17-24*OFFNumber of officers25-32DAYSNumber of florers25-32DAYSNumber of stiffened11NSFMIN4.0 for medium range aluminum WSFMIN = 3.25 for single skin GRP WSLOPE9-16wSLOPESlope of stiffened plating curves as function of load WSLOPE = 0.192 for single skin GRP WSLOPE = 0.192 for single skin GRP WSLOPE = 0.192 for single skin GRP	*		at design speed		65 - 72
SPEED(2) at which power data and accelerations are to be computed WPDES Design payload weight Wp in long tons 9 1-8 VPDES Design payload volume Vp in ft ³ 9-16 ZPDES VCC of design payload in ft above main deck at midships, positive up 17-24 CM Required metacentric height GM in feet 25-32 CGACC 1/10 highest acceleration criterion at 33-40 * WFLEL the CG in g's; generally 1.0 or 1.5 g * ACC Total accommodations 10 * CREW Number of enlisted personnel 9-16 * CPO Number of CPO's 17-24 * OFF Number of fifters 25-32 DAYS Number of fifters 33-40 WSFMIN Minimum unit weight of stiffened 11 * DAYS Number of fifters 25-32 DAYS Number of fifters 25-32 WSFMIN Minimum unit weight of stiffened 11 * MSFMIN Minimum unit weight of stiffened 11 * CREW Number of cPO's 33-40 * MSFMIN Minimum unit weight of stiffened 11 * OFF Stor medium r	*	RWF(2)	Bare hull R/W at cruise speed		73-80
VPDESDesign payload volume ∇_p^{+} in ft ³ 9-16ZPDESVCG of design payload in ft above main deck at midships, positive up17-24CMRequired metacentric height \overline{CM} in feet25-32CGACC1/10 highest acceleration criterion at the CG in g's; generally 1.0 or 1.5 g33-40* $\omega F \omega \in L$ the CG in g's; generally 1.0 or 1.5 g10* ACCTotal accommodations = CREW + CPO + OFF101-8* CPONumber of enlisted personnel9-16* OFFNumber of CPO's17-24* OFFNumber of days for provisions33-40WSFMINMinimum unit weight of stiffened111 -8plating in 1b/ft ² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steelWSLOPESlope of stiffened plating curves as function of load WSLOPE = 0.120 for steel WSLOPE = 0.120 for steel WSLOPE = 0.140 for sandwich plate GRP		SPEED(2)	at which power data and accelerations	8	1 - 8
VPDESDesign payload volume ∇_{p}^{*} in ft ³ 9-16ZPDESVCG of design payload in ft above main deck at midships, positive up17-24GMRequired metacentric height GM in feet25-32CGACC1/10 highest acceleration criterion at the CG in g's; generally 1.0 or 1.5 g W 244 to f field in Tons = CREW + CPO + OFF10* ACCTotal accommodations = CREW + CPO + OFF10* CPONumber of enlisted personnel9-16* CPONumber of CPO's17-24* OFFNumber of officers25-32DAYSNumber of days for provisions33-40WSFMINMinimum unit weight of stiffened11NEFMIN3.25 for single skin CRP WSFMIN = 2.5 for sandwich plate CRPWSLOPESlope of stiffened plating curves as function of load WSLOPE = 0.20 for steel WSLOPE = 0.140 for sandwich plate GRP		WPDES	Design payload weight W_p' in long tons	9	1-8
deck at midships, positive upIn the construction of the const		VPDES	Design payload volume ∇_{P} in ft ³	•.	9-16
CGACC1/10 highest acceleration criterion at the CG in g's; generally 1.0 or 1.5 g33-40* wFuELWerget of freed in Tons Total accommodations101-8* ACCTotal accommodations101-8= CREWNumber of enlisted personnel9-16* CPONumber of CPO's17-24* OFFNumber of days for provisions33-40WSFMINMinimum unit weight of stiffened11101-8plating in 1b/ft²WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 2.5 for sandwich plate GRPWSLOPESlope of stiffened plating curves as function of load WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP		ZPDES			17-24
 * WFWEL * ACC * ACC * CREW * CPO * Number of enlisted personnel * CPO * Number of CPO's * OFF * OFF Number of days for provisions * 33-40 WSFMIN Winimum unit weight of stiffened * 11 * Plating in 1b/ft² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 2.5 for single skin GRP WSLOPE Slope of stiffened plating curves * generation of load WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP 		GM	Required metacentric height $\overline{\text{GM}}$ in feet		25-32
 CREW Number of enlisted personnel 9-16 CPO Number of CPO's 17-24 OFF Number of officers 25-32 DAYS Number of days for provisions 33-40 WSFMIN Minimum unit weight of stiffened 11 1-8 plating in 1b/ft² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 3.25 for single skin GRP WSLOPE Slope of stiffened plating curves 9-16 as function of load WSLOPE = 0.066667 for aluminum WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP 		WFUEL	the CG in g's; generally 1.0 or 1.5 g Weight of Fuel in Tons Total accommodations	10	33-40 1-8
 * CPO Number of CPO's * OFF DAYS Number of days for provisions WSFMIN Minimum unit weight of stiffened 11 1-8 plating in 1b/ft² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 3.25 for single skin GRP WSFMIN = 2.5 for sandwich plate GRP WSLOPE Slope of stiffened plating curves 9-16 as function of load WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP 	4	CDEL			0.04
 * OFF Number of officers 25-32 DAYS Number of days for provisions 33-40 WSFMIN Minimum unit weight of stiffened 11 1-8 plating in 1b/ft² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 3.25 for single skin GRP WSEMIN = 2.5 for sandwich plate GRP WSLOPE Slope of stiffened plating curves 9-16 as function of load WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP 					
DAYS Number of days for provisions 33-40 WSFMIN Minimum unit weight of stiffened 11 1-8 plating in 1b/ft ² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 3.25 for single skin GRP WSFMIN = 2.5 for sandwich plate GRP Slope of stiffened plating curves 9-16 as function of load WSLOPE Slope = 0.066667 for aluminum WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP					
WSFMIN Minimum unit weight of stiffened 11 1-8 plating in 1b/ft ² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 3.25 for single skin GRP WSFMIN = 2.5 for sandwich plate GRP WSLOPE Slope of stiffened plating curves 9-16 as function of load WSLOPE = 0.066667 for aluminum WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP	⊼				
<pre>plating in lb/ft² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 3.25 for single skin GRP WSFMIN = 2.5 for sandwich plate GRP WSLOPE Slope of stiffened plating curves 9-16 as function of load WSLOPE = 0.066667 for aluminum WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP</pre>					
as function of load WSLOPE = 0.066667 for aluminum WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP WSLOPE = 0.140 for sandwich plate GRP		WƏFMIN	<pre>plating in lb/ft² WSFMIN = 4.0 for medium range aluminum WSFMIN = 7.0 for steel WSFMIN = 3.25 for single skin GRP</pre>	11	1-8
T	*	WSLOPE	as function of load WSLOPE = 0.066667 for aluminum WSLOPE = 0.20 for steel WSLOPE = 0.192 for single skin GRP		9-16

* Parameters preceded by an asterisk will be calculated by program if blank spaces are left on input card.

		and the second		•
			Card	Columns
	DMAT	Density of structural material in lb/ft ³	11	17-34
		DMAT = 166 for aluminum DMAT = 492 for steel DMAT = 103 for GRP		
	STRESS	Stress limit in 1b/in. ² STRESS = 18000 psi for aluminum STRESS = 30000 psi for steel STRESS = 8000 psi for GRP	11	25-32
*	FVOLSS	Volume of superstructure in ft 3	$\boldsymbol{\theta}$	33-40
*	FKW	Power of electric plant in KW	, U	41-48
	PEMAX	Maximum power of each prime mover P e ma	11 x	49-56
	REMAX	Maximum rpm of prime movers N e max	+1	57-64
	PAMAX	Maximum power of each auxiliary engine	ie II'	65-72
	RAMAX	Maximum rpm of anxiliary engines	11	73-80
*	PROPNO	Number of propellers or waterjets = number of prime movers	12	1-8
*	PROPDI	Diameter D of propeller or waterjet impeller in inches	12	9-16
	PD	Propeller pitch-diameter ratio P/D	12	17-24
	EAR	Propeller expanded area ratio EAR		25-32
	Z	Number of blades per propeller		33-40
	TCDES	Value of $\tau_c / \sigma_{0.7R}$ for sizing prop:		41-48
		$\tau_c/\sigma_{0.7R} \approx 0.6$ corresponds to Gawn-Burri 10% back cavitation crite	11 ria;	•
		value not required if D is input		
	AUXNO	Number of auxiliary engines, if any	12	49-56
		Da Diancter ¹ in inches of propeller used with auxiliary engine. 2/D, EAR, Z assumed same as main j		57-64
		IF auxiliary engine uses same propeller as prime mover, input D	a ^{= 0,0}	

~~

34 a

SUBROUT

Card 12A contains input for Card Coll. waterjets only; the design point means maximum input horsepower of pump at design speed of ship × AJET Area of jet (A_{j}) in ft² XKI Bollard jet velocity/ship speed (K₁) at the design point; 12A 1-8 $K_1 \approx 2.0$ for peak propulsive XK2 efficiency Constant (K2) for inlet head recovery (IHR); K₂ = 1.0 for maximum IHR; $K_2 = 0.0$ for no IHR 12A 17-24 XK3 Constant (K_3) for cavitation criteria where $\tau_c \geq \sigma_{TIP} + 0.14 K_3$ 12A indicates cavitation; $K_3 = 0.0$ for 25-32 axial flow; $K_3 \approx 1.0$ for mixed flow DHD Diameter of impeller hub $(D_h)/$ impeller diameter (D); typical value of $D_h/D = 0.5$ 12A 33-40 TLC Thrust load coefficient (τ_c) at the design point; not used when A_J is input STP 12A 41-48 Impeller tip velocity cavitation number (o_{TIP}) at design point; generally σ_{TIP} ≈ 0.06 12A 49-56 Note: If $\sigma_{\text{TIP}} = 0.06$ and $K_3 = 1.0$ then $\tau_{c} \leq \sigma_{TIP} + 0.14 K_{3} = 0.20$ to avoid cavitation * * * * * Omit Card 12A if IPROP \$5 **** *Parameters preceded by an asterisk will be calculated by program if blank spaces are left on input card.

1

1

34 Ь

	·····	Card	Columns
FM1	Multiplier for specific weight of prime movers	13	1-8
FM2	Multiplier for specific weight of auxiliary engines	13	9-16
FM3	Multiplier for specific fuel con- sumption SFC of prime movers	ß	17-24
FM4	Multiplier for SFC of auxiliary engines	13	25-32
FM5	Multiplier for rpm of prime movers	13	33-40
FM6	Multiplier for rpm of auxiliary engines	13	41-48
	General equations for engines are multiplied by above constants. Use values of 1.0 unless a particular series of engines are required. The general equations may be bypassed wit inputs on Card 15.	:h	
GEARC	Constant in gear weight equation GEARC = 16000 for single reduction gears GEARC = 9500 for planetary gears	14	1-8
GEARK	Gear tooth K-factor, generally use 200	14	9-16
GEARE	Exponent in gear weight equation GEARE = 0.9 for single reduction gears GEARE = 1.0 for planetary gears	14	17-24
GRENG	Gear ratio mg for prime mover		
GRAUX	bear ratio my for auxiliary engines	14	33-40

1

≭

★

*Parameters preceded by an asterisk will be calculated by program if blank spaces are left on input card.

Card Columns

*	FWE	Weight in 1b for each prime mover 15	1-8
*	FWG	Weight in lb of gears for each prime mover	9-16
*	FWEA	Weight in lb of each auxiliary engine	17-24
*	FWGA	Weight in lb of gears for each auxiliary engine	25-32
*	FVOLE	Volume in ft ³ of engine room for prime movers	33-40
*	FVOLE2	Volume in ft ³ of inlets and ex- hausts for prime movers	41-48
*	FVOLEA	Volume in ft ³ of room for auxiliary engines	49-56
*	FVOLA2	Volume in ft ³ of inlets and ex- hausts for auxiliary engines	57-64
×	FSFCD	SFC in lb/hp/hr of each prime mover at its full power	65-72
*	FSFCC	SFC in lb/hp/hr of each auxiliary engine at its full power	73-80
		Weights and volumes for each BSCI 3-digit group and each load derived from the general equations are multiplied by appropriate K con- stants on Cards 16 through 25. Con- stants are generally 1.0, except for special cases. For items not to be included, the constant should be set to 0.	
		A multiplier of 1.15 for the total of a major (single-digit) group in- dicates a 15 percent margin which is added to the weight only, not to the volume.	

^{*}Parameters preceded by an asterisk will be calculated by program if blank spaces are left on input card.

SUBROUTINE READIN

			Card	Columns
XL(1)	ĸ	Multiplier for useful load; K _U must be 1.0	16	1-8
XL(2)	К _F	Multiplier for fuel		9-16
XL(3)	K _{L1}	Multiplier for crew and effects		17-24
XL(4)	K L6	Multiplier for personnel stores		25-32
XL(5)	K _{L12}	Multiplier for potable water		33-40
XL(6)	ĸp	Multiplier for payload; K _P must be 1.0		41-48
X1(1)	ĸ	Multiplier for total hull structure	17	1-8
X1(2)	^К 100А	Multiplier for hull bottom		9-16
X1(3)	^K 100B	Multiplier for hull sides		17-24
X1(4)	к ₁₀₁	Multiplier for framing		25-32
X1(5)	к _{103А}	Multiplier for upper platforms		33-40
X1(6)	^К 103В	Multiplier for lower platforms		41-48
X1(7)	К ₁₀₇	Multiplier for main deck		49-56
X1(8)	К _{114А}	Multiplier for transverse bulkheads		57-64
X1(9)	к <u>1</u> 14В	Multiplier for longitudinal bulkheads		65-72
X1(10)	к ₁₁₁	Multiplier for superstructure		73-80
X1(11)	К ₁₁₂	Multiplier for propulsion plant foundations	18	1-8
X1(12)	к ₁₁₃	Multiplier for other foundations		9-16
X1(13)	K att	Multiplier for attachments		17-24
X2(1)	к2	Multiplier for total propulsion	19	1-8
X2(2)		Multiplier for propulsion units		9-16
X2(3)		Multiplier for shafting, bearings, propellers		17-24
X2(4)		Multiplíer for combustion air supply, uptakes		25-32

			Card	Columns
X2(5)	^К 206	Multiplier for propulsion control equipment		33-40
X2(6)	к ₂₀₈	Multiplier for circulating and cooling water system		41-48
X2(7)	^K 210	Multiplier for fuel oil ser- vice system		49-56
X2(8)	к ₂₁₁	Multiplier for lubricating oil system		57-64
X2(9)	К ₂₅₀ , 251	Multiplier for repair parts, and operating fluids		65-72
X3(1)	к3	Multiplier for total electric plant	20	1-8
X3(2)	^K 300	Multiplier for electric power generation		9-16
X3(3)	^к 301	Multiplier for power distribu- tion switchboard		17-24
X3(4)	к ₃₀₂	Multiplier for power distribu- tion system cables		25-32
X3(5)	к ₃₀₃	Multiplier for lighting system		33-40
X4(1)	к ₄	Multiplier for total non- military communication and control	21	1-8
X4(2)	^К 400	Multiplier for nonelectronic navigation equipment		9-16
X4(3)	^K 401	Multiplier for interior com- munication system		17-24
X5(1)	К5	Multiplier for total auxiliary system	22	1-8
X5(2)	к ₅₀₀ , 502	Multiplier for heating, air conditioning		9-16
X5(3)	^K 501	Multiplier for ventilation system		17-24
X5(4)	к ₅₀₃	Multiplier for refrigerating spaces		25-32
X5(5)	к ₅₀₅	Multiplier for plumbing installations		33-40

Card Columns

X5(6)	^K 506	Multiplier for firemain, flushing, sprinkling	41-48
X5(7)	^K 507	Multiplier for fire extin- guishing system	49–56
X5(8)	^к 508	Multiplier for drainage and ballast	57-64
X5(9)	^к 509	Multiplier for fresh water system	65-72
X5(10)	^К 510	Multiplier for scuppers and deck drains	73-80
X5(11)	к ₅₁₁	Multiplier for fuel and diesel . oil filling	23 1-8
X5(12)	^K 513	Multiplier for compressed air system	9-16
X5(13)	^K 517	Multiplier for distilling plant	17-24
X5(14)	к ₅₁₈	Multiplier for steering systems	25-32
X5(15)	^K 519	Multiplier for rudders	33-40
X5(16)	^K 520	Multiplier for mooring, anchor, deck machinery	41-48
X5(17)	к ₅₂₁	Multiplier for stores handling	49-56
X5(18)	^к 528	Multiplier for replenishment at sea	57–64
X5(19)	^K 550	Multiplier for repair parts	65-72
X5(20)	^K 551	Multiplier for operating fluids	73-80
X6(1)	^к 6	Multiplier for total outfit 2 and furnishing	24 1-8
X6(2)	к ₆₀₀	Multiplier for hull fittings	9-16
X6(3)	^K 601	Multiplier for boats, stowages, handling	17-24
X6(4)	^K 602	Multiplier for rigging and canvas	25-32
X6(5)	^K 603	Multiplier for ladders and grating	33-40

			Card	Columns
X6(6)	^к 604	Multiplier for nonstructural bulkheads		41-48
X6(7)	к ₆₀₅	Multiplier for painting		49-56
X6(8)	к ₆₀₆	Multiplier for deck covering		57-64
X6(9)	к ₆₀₇	Multiplier for hull insulation		65-72
X6(10)	к ₆₀₈	Multiplier for storerooms, stowage, lockers		73-80
X6(11)	к ₆₀₉	Multiplier for equipment for utility spaces	25	1-8
X6(12)	^К 610	Multiplier for workshops		9-16
X6(13)	^K 611	Multiplier for galley, pantry, commissary		.17-24
X6(14)	K ₆₁₂	Multiplier for living spaces		25-32
X6(15)	к ₆₁₃	Multiplier for offices, con- trol center		33-40
X6(16)	к ₆₁₄	Multiplier for medical-dental spaces		41-48
CKN(1)	CKN(l alumi	factor for hull structures) = 2.191 for conventional num hull) = 1.000 for conventional hull	26	1-8
CKN(2)	CKN(2) Progra equat:	factor for propulsion) = 1.000 for most cases am makes adjustment to general ions in case of diesel prime s and/or waterjets		9-16
CKN(3)		factor for electric plant) = 2.036 for most cases		17-24
CKN(4)	contro	factor for communication and ol) = 1.000 for most cases		25-32
CKN(5)	Cost f CKN(5)	factor for auxiliary systems) = 1.528 for most cases		33-40
CKN(6)	furnis	factor for outfit and shing) = 1.000 for most cases		41-48
CKN(7)		actor for payload = 1.000 for most cases		49-56

۰.

			Card	Columns
	OPHRS	Operating hours per month	27	1-8
	OPYRS	Total vehicle operating years, @ 15		9-16
	XUNITS	Number of vehicles to be built		17-24
	TIMED	Portion of time operating at maximum speed		25-32
	TIMEC	Portion of time operating at cruise speed		33-40
	FUELR	Cost of fuel per ton in dollars		41-48
		Note: TIMED + TIMEC = 1.0		
	DELDT	Increment of displacement in tons for optimization routine if IOPT = 3	28	1-8
	DELBX	Increment of max beam B _{PX} in ft for		9-16
		optimization routine if IOPT > 1		
	DELHD	Increment of hull depth H _b in ft for		17-24
		optimization routine if IOPT > 0		
	BXMIN	Minimum value of B_{PX} in ft		25-32
		If not restricted, make $BXMIN = 0$		
	BXMAX	Maximum value of B _{PX} in ft		33-40
		If not restricted, make BXMAX very large		
	HDMIN	Minimum value of H_{h} in ft		41-48
		If not restricted, make HDMIN = 0		
	HDMAX	Maximum value of H_{h} in ft		49-56
		If not restricted, make HDMAX very large		
	PL	Ship projected chine length L _p in ft	29	1-8
	DTONS	Initial value of displacement Δ_{LT} in long tons		9-16
	BPX	Initial value of beam $B_{PX}^{}$ in ft		17-24
	HDM	Initial value of hull depth H _h in ft		25-32
*	A1=RWF(1)	Bare hull R/W at design speed		33-40
*	A2=RWF(2)	Bare hull R/W at cruise speed		41-48
*	A3=FVOLSS	Volume of superstructure in ft ³		49-56
	Card Set 29 is act	cually read by the main routine PHFMOPT	, but	is include

1 A

and a second s

SUBROUTINE READIN

-

Card Set 29 is actually read by the main routine PHFMOPT, but is included here for convenience. One card is read for each hull variation desired. Blank card is inserted at end to terminate program.

* Optional parameters to supersede corresponding values on Cards 7 and 11,

CONSTANTS:	Set by DATA statements
RHO	Water density ρ in lb × sec ² /ft ⁴ ρ = 1.9905 for sea water at 59 F
VIS	Kinematic viscosity of water v in ft 2 /sec
	$v = 1.2817 \times 10^{-5}$ for sea water at 59 F
GA	Acceleration of gravity g in ft/sec^2 g = 32.174 at 45 deg north latitude
RHO2	ρ/2
RG	Density in $1b/ft^3 = \rho g$
TON	Pounds per ton = 2240
DPR	Multiplier to convert degrees to radians = 57.29578
RPD	Multiplier to convert radians to degrees = 0.01745329
ZERO	0.0
HALF	1./2.
TWO	2.0
FOUR	4.0 .
EIGHT	8.0
TWELVE	12.0
THIRD	1./3.
THIRD2	2./3.
NL	6 = dimension of arrays for loads
Nl	14 = dimension of arrays for structures, Group 1
N2	10 = dimension of arrays for propulsion, Group 2
N3	6 = dimension of arrays for electric plant, Group 3
N4	<pre>4 = dimension of arrays for communication and control, Group 4</pre>
N5	<pre>21 = dimension of arrays for auxiliary systems, Group 5</pre>
N6	<pre>17 = dimension of arrays for outfit and furnishings, Group 6</pre>
	First item in each array is total for the group. Last item in each array, except loads, is the margin. Intermediate Items are BSCI 3-digit groupings.

-

L0 Array of numerical identification for loads L1 L2 L3 L4 L5 L6 Arrays of numerical identification for items in Groups 1, 2, 3, 4, 5, 6 respectively, corresponding to BSCI codes in most cases. The margins are arbitrarily appended with 99.

	NAME :	SUBROUTINE PRTOUT	
	PURPOSE:	Print out weights, volumes, VCG's and tinent data for fixed-size hull (IOP) timized hull (IOPT>0)	l other per- C=O) or op-
	CALLING SEQUENCE:	CALL PRTOUT	
	SUBPROGRAMS CALLED:	PRCOEF, PHRES, SAVIT, PRINTP, SIMPUN,	YINTX
	INPUT:	Via COMMON blocks	
		Data for ship of length L _P from Progr	am PHFMOPT
		If hull depth, beam, and/or displacem optimized (IOPT>0), only the results hull is printed.	ent has been
	OUTPUT:	Via 132-Column printed pages	
	PAGE 1 🗲 Minimum Prin	cout is Pages 1 and 2)	Subroutines where defined
	1. DTONS	Δ _{LT} = ship displacement in long tons	PHFMOPT
κ.	PTITLE	Identification for propeller series or waterjets	READIN
	TPARENT	Identification for hull design	READIN
	2. SLR	$L_p/\nabla^{1/3}$ = slenderness ratio	NEWHUL
	RLB	$L/B = length-beam ratio L_P/B_{PX}$	NEWHUL
	APV	$A_p / \nabla^{2/3}$ = loading coefficient	NEWHUL
	PL	L _p = ship projected chine length in ft	PHFMOPT
	BPX	B _{PX} = maximum chine beam in ft	PHFMOPT
	BPA	B_{PA} = average chine beam in ft	NEWHUL
	HM	T = draft at midships in ft	NEWHUL
	HT	T _t = draft at transom in ft	NEWHUL
	DIN	Diameter of propeller in inches, or diameter of waterjet impeller, inches	PROPS WJETS
	The following are prin	ted for propellers:	
	PD	<pre>P/D = propeller pitch ratio</pre>	READIN
	EAR Z NPR	EAR = expanded area ratio Z = number of blades n = number of propellers	READIN トモオレバ READIN
	EE	ε = shaft angle in degrees	PROPS
	SHL	L = shaft length in ft	PROPS
-	0114		

. .

IF auxiliary engines utilize separate propellers, the drameter, etc. 45 is printed on a separate line.

25

Subroutines where defined

The	following a	are printed for	waterjets:	where define
	AJET	AJ	= area of jet in ft ²	II THESE
	XK1	κ _l	<pre>= bollard jet velocity/ship speed at design point</pre>	WJETS READIN
	XK2	к2	<pre>= constant for inlet head recovery</pre>	READIN
	XK3	к _з	= constant for τ vs σ cavitation criteria	READIN
	DHD	D _h /D	<pre>= diameter of impeller hub/ diameter of impeller</pre>	READIN
•	TLC	τ _c	<pre>= thrust load coefficient at design point</pre>	READIN
Print	stip the for citi	^o TIP _d	= impeller tip velocity cavitation number at design point	READIN
	IOPT	Control	parameter for optimization	
3. I	DLBS	Δ	= ship displacement in lb	READIN
Ε	DAYS	Dāys fo	r provisions	NEWHUL
С	DFF		of officers	READIN
С	PO		of CPO's	READIN or CREWSS
C	REW		of enlisted men	READIN or CREWSS
A	сс		commodations	READIN or CREWSS
GN	1	GM		READIN or CREWSS
КM	1	KM	= metacentric height in ft	READIN
			<pre>= baseline to metacenter in ft</pre>	NEWHUL
KG	;	KG	= net VCG of ship in ft = $\overline{KM} - \overline{GM}$	NEWHUL
XC			<pre>= longitudinal center of gravity forward of transom / ship length</pre>	NEWHUL
VOI	LH	∇ _h	= hull volume, up to main deck, in ft ³	NEWVOL

•

.

ı.

. ...

		Subroutines where defined
VOLSS	<pre></pre>	CREWSS
NTB	n = number of transverse tb bulkheads	STRUCT
IFRM	IFRM = 1 or 2 for transversely or longitudinally framed GRP hull	READIN
4. MAT	Structural material:	READIN
	Aluminum IMAT = 1	
	Steel IMAT = 2	
	GRP(A-A) IMAT = 3	
	GRP(A-B) IMAT = 4	
	GRP(B-B) IMAT = 5	
	A indicates single skin GRP	
	B indicates sandwich plate GRP	
	lst letter refers to the hull	
	2nd letter refers to the bulkheads	
WSFMIN	S = minimum unit weight of min plating in lb/ft ²	READIN
WSLOPE	S _p = slope of unit weight curve, Figure 4	READIN
DMAT	γ_{mat} = density of structural material in $1b/ft^3$	READIN
STRESS	σ_{limit} = stress limit of material in 1b/in. ²	READIN
CLOAD	C_{Δ} = beam' loading coefficient = $\Delta/(\rho g B_{PX}^{3}) = \nabla/B_{PX}^{3}$	PRTOUT
IHULL	n Huils = number of hulls	READIN
XLOH	Loa = length overall in ft	
BOA	BOA = beam overall in Ft	
XLCS	Les = length of Bes = breadth catamarm Hes = height Cross-structure	
BC.S	Bcs = breadth catamarm	
1+CS°	Hes = height) cross-structure	

•

11.05

Subroutines where defined

					-
5a.	VKT(1)	V d	=	design speed in Knots lingut on Cond 7)	READIN
	FNV(1)	F _{n∇}	=	speed-displacement coefficient	POWER
	SIG(1)	σ	=	propeller cavitation number	PROPS
				or waterjet cavitation no. based on inlet velocity	WJETS
	H13(1)	^H 1/3	=	significant wave height in ft specified for design speed	POWER
	RWB(1)	(R/W),	=	resistance-weight ratio of bare hull	POWER
	RWA(1)	(R/W) a	=	resistance-weight ratio of appendaged hull	POWER
	RWW(1)	(R/W) _w	=	resistance-weight ratio of appendaged hull in seaway at wave height H _{1/3}	POWER
The f	following are print	ed for pr	op	-1 -	
	TWF(1)	1-w	=	thrust wake factor	POWER
			=	torque wake factor	
	TDF(1)	1-t	=	thrust deduction factor	POWER
	THLD(1)	κ _T /J ²	=	thrust loading coefficient	POWER
	TJ(1)	J	=	propeller advance coefficient	PRINTP
	EP(1)	η _O	2	propeller efficiency	PRINTP
	PC(1)	n _D	=	propulsive coefficient	PROPS
The f	ollowing are print	ed for wa	te	rjets:	
	TWF(1)	1-w	=	wake factor = 1.0	POWER
	TDF(1)	1-t	=	thrust deduction factor	POWER
	XJ(1)	J	=	effective advance coefficient	WJETS

Notes: The letter C printed to the right of K_T/J^2 indicates that the Gawn-Burrill 10% back cavitation criteria is exceeded. A star * printed to the right of K_T/J^2 indicates thrust limit due to cavitation. A star * printed to the right of η_0 indicates that the propeller is operating at a J greater than maximum efficiency.

				whe	ibroutines ere defined
	QC(1)	Q	=	mass flow in gal/min x 10^{-3}	WJETS
	SS(1)	Ss		suction specific speed x 10^{-3}	WJETS
	TCD	τ _{max} -τ	-	(maximum thrust load coeff- icient at cavitation point) - (actual thrust load coefficient cagative value indicates cavita	WJETS ; tion
The	following are prin	ted for e	eit	propellers or waterjets:	
	PCO(1)	OPC	=	c all performance coefficient	POWER
	THRUST(1)	Т	=	thrust requirement in 1b	POWER
	TORQUE(1)	Q	÷	torgue in shafts	POWER
	5 °M(1)	N	-	of propellers or ets in rpm	PROPS or WJETS
	EHP(1)	P _E	 .,	alfactive power	POWER
	DHP(1)	₽,		total pow deliver, at propellers (waterjets	PROPS or WJETS
	BHP(1)	F _B	=	total brake pc	DULED
5b,	VKT(2)	v _c	(cruise speak in knots	EADIN
		in same	ord	tains parameters for cruise spe er as line 5a for design speed. printed if cruise speed same as	
6a.	SPEED(I)	V _K	=	spand in knots	READIN
6b.		Lines 6a lines 5	, 6 for	b, etc. contain same parameters array of speeds input on Card a	as 8,
7a.	VMAX	V max	=	maximum speed in knots	PRTOUT
		Line 7aco for speed	ont. d a	ains same parameters as lines 5 ttainable at maximum power of pr	& 6 Sime movers
76.	VMAXA	Vauy =	:	approximate speed in Knots attainable with auxiliary en	PRTCUT
		Line 76	5 0	contains sume parameters	as
		lines 5	+ 6	For could operating on	
		anxitia	ry	engines only.	

.

0				Subroutines where defined
8a.			prime movers	PRTOUT
	VDES	Vmax	= maximum speed in Knot	5 READIN
	PRN	n pr	= number of prime movers	POWER
	PE	P e	<pre>= maximum horsepower of each prime mover</pre>	POWER
	RE	. ^N e	<pre>= speed of prime movers in rpm</pre>	POWER
	SFCD	SFCd	<pre>= specific fuel comsump- tion of prime movers at design speed in lb/hp/hr</pre>	POWER
	RANGED	Range ir speed on fuel loa	n nautical miles at design n prime movers with full ad	POWER
	SWE	SWe	<pre>= specific weight of prime movers in lb/hp</pre>	POWER
	WE	We	<pre>= weight of each prime mover in lb</pre>	POWER
•	GR	m g	<pre>= gear ratio for prime movers</pre>	POWER
	WG	Wg	<pre>= weight of gears for .ach prime mover in lb</pre>	POWER
	WPR	Wpr	= weight of each propeller or waterjet in lb	POWER
	WSH	Wsh	= weight of each propeller shaft in lb	POWER
	WB	₩ _b	<pre>= weight of couplings, bearings, etc. for each shaft in lb</pre>	POWER
01	GEARC GEARK GEARE		stants from input Card 14	READIN READIN READIN
8b.	VCRS	vc	= cruise speed in knots 🗶	READIN
	AUXNO	n aux	<pre>= number of auxiliary engines, if any</pre>	READIN

* IF auxiliary engines are used, the imput value of cruise speed is superso-led by speed attainable with auxiliary engines.

SUBROUTINE PRTOUT

				SUBROUTINE PRTOUT Subroutines where defined
	PEA	P a	<pre>= maximum horsepower of each auxiliary engine</pre>	POWER
	REA	N a	= speed of auxiliary engine in rpm	POWER
	SFCC	SFCc	<pre>= specific fuel consump- tion at cruise speed ir lb/hp/hr</pre>	POWER
	RANGEC		nautical miles at cruise th full fuel load	POWER
	SWA	SW	<pre>= specific weight of auxiliary engines in lb/hp</pre>	POWER
	WEA	Wa	<pre>= weight of each auxiliar engine in lb</pre>	y POWER
	GRA	^m g _a	= gear ratio for auxiliar engines	y POWER
	WGA	Wg _a	<pre>= weight of gears for eac auxiliary engine in lb</pre>	h POWER
			are no auxiliary engines, SFC, and Range are	
		printed	on line 8b and SFC and	
		Range _c a	pply to the prime movers	
		operatin	g at cruise speed	
9.	WPLBS	(W _P) _D	= design payload weight in lb	PHFMOPT
	VPDES	(∇ _P) _D	≈ design payload volume in ft ³	READIN
	ZPDES	(Z _P) _D	= design payload VCG	READIN
	PLDEN	$(W_P^{}/\nabla_P^{})_D^{}$	<pre>= design payload density in lb/ft³</pre>	PHFMOPT
10.	VDENS	∆/⊽ _h	<pre>= vehicle density in lb/ft³</pre>	NEWVOL

ì

\$

..

				2	OUTINE PRTOUT Subroutines nere defined
11.	PDENS	₩ _P /∇ _P	8	payload density in $1b/ft^3$; should agree with $(W_p/\nabla_p)_D$ within one percent if IOPT = 1, 2, or 3.	PHFMOPT
12a.	DLBS	Δ	=	displacement (total weight) in 1b	NEWHUL
	R(1)	W ₁ /W _T	1	Group 1 weight fraction	TOTALS
	R(2)	W_2/W_T	=	Group 2 weight fraction	TOTALS
	R(3)	W_3/W_T	=	Group 3 weight fraction	TOTALS
	R(4)	W ₄ /W _T	=	Group 4 weight fraction	TOTALS
	R(5)	W ₅ /W _T	=	Group 5 weight fraction	TOTALS
	R(6)	W ₆ /W _T	=	Group 6 weight fraction	TOTALS
	R(7)	W _E /W _T	=	Empty ship weight fraction	TOTALS
	R(8)	W _U /W _T	=	Useful load weight fraction	TOTALS
	R(9)	W _{CE} /W _T	=	Crew and provisions weight fraction	TOTALS
	R(10)	w _F /w _T	=	Fuel weight fraction	TOTALS
	R(11)	W _p /W _T	=	Payload weight fraction	TOTALS
13 a	HDM	H _h	=	hull depth at midships in ft	
	G(1)	z ₁	=	Group 1 VCG / hull depth	TOTALS
	G(2)	z ₂	=	Group 2 VCG / hull depth	TOTALS
	G(3)	z ₃	=	Group 3 VCG / hull depth	TOTALS
	G(4)	z ₄	=	Group 4 VCG / hull depth	TOTALS
	G(5)	2 ₅	=	Group 5 VCG / hull depth	TOTALS
	G(6)	^Z 6	#	Group 6 VCG / hull depth	TOTALS
	G(7)	z _E	=	Empty ship VCG / hull depth	TOTALS
	G(8)	z _u		Useful load VCG / hull depth	TOTALS
1	ine 126 91025	weights	5	in 16, corresponding to lin in tons.	e 12a.
- /	12c gives	weight	5	in tons.	
یم ا	ine 136 gives	VCL's	,	n At above baseline, corre	opending to line 13 e.
, i				50	je na se

4					
þ				S	UBROUTINE PRTOUT Subroutines where defined
3		G(9)	^Z CE	<pre>= Crew and provisions VCG / hull depth</pre>	TOTALS
3		G(10)	z _F	= Fuel VCG / hull depth	TOTALS
_		G(11)	z _P	= Payload VCG / hull depth	TOTALS
	14 a	VOLT	$\triangledown_{\mathbf{T}}$	<pre>= total volume, including superstructure, in ft³</pre>	NEWVOL
.]		S(1)	∇_1 / ∇_T	= Group 1 volume fraction	TOTALS
3		S(2)	$\nabla_2^{\prime} / \nabla_T^{\prime}$	= Group 2 volume fraction	TOTALS
1		S(3)	∇_3 / ∇_T	= Group 3 volume fraction	TOTALS
3		S(4)	$\nabla_4^{\prime} / \nabla_T^{\prime}$	= Group 4 volume fraction	TOTALS
1		S(5)	∇_{5} / ∇_{T}	= Group 5 volume fraction	TOTALS
		S(6)	$\nabla_{6}^{/\nabla}T$	= Group 6 volume fraction	TOTALS
		S(7)	$\nabla_{\rm E}^{\rm T}/\nabla_{\rm T}^{\rm T}$	= Empty ship volume fraction	TOTALS
		S(8)	∇ _U /∇ _T	= Useful load volume fraction	TOTALS
J)		S(9)	$\nabla_{CE}^{/\nabla}T$	= Crew and provisions volume fraction	TOTALS
1	<u>``</u>	S(10)	$\nabla_{\mathbf{F}}^{}/\nabla_{\mathbf{T}}^{}$	= Fuel volume fraction	TOTALS
1	PAGE 2	S(11)	⊽ _P /V _T	= Payload volume fraction	TOTALS
3	1.	C(1)	C ₁	= cost of Group 1	COSTS
		C(2)	c2	= cost of Group 2	COSTS
3		C(3)	с _з	= cost of Group 3	COSTS
		C(4)	с ₄	= cost of Group 4	COSTS
1		C(5)	с ₅	= cost of Group 5	COSTS
		C(6)	с ₆	= cost of Group 6	COSTS
-		C(7)	с ₇	= cost of empty ship	COSTS
1		C(8)	c ₈	= cost of payload	COSTS
	2.	C(9)	с ₉	= base cost of first ship	COSTS
1		C(10)	с ₁₀	= average cost per ship	COSTS
3		C(11)	c ₁₁	<pre>= life cost of personnel</pre>	COSTS

Constraints, A

Subroutines where defined

PAGE 5 - Hull Geometry

and the second se

,				
1.	TPARENT	Identif	ication for hull design	READIN
2.	DLBS	.Δ	= displacement in lb	NEWHUL
	DTONS	Δ_{LT}	= displacement in tons	PHFMOPT
	PL	L _P	= projected chine length in ft	PHFMOPT
	BPX	^B _{PX}	= maximum chine beam in ft	PHFMOPT
	HM	T	= draft at midships in ft	NEWHUL
	HDM	H _h	= hull depth at midships in ft	PHFMOPT
	DZS	Δzs	in ft (see Figure 1)	NEWVOL
	KB	KB	= vertical center of buoyancy above baseline in ft	NEWHUL
	ВМ	BM	= transverse metacenter above center of buoyancy in ft	NEWHUL
	KM	KM	= transverse metacenter above baseline in ft	NEWHUL
	GM	GM	= transverse metacentric height in ft	READIN
	KG	KG	= vertical center of gravity above baseline in ft	NEWHUL
	XL CG	ĀG	<pre>= longitudinal center of gravity forward of transom in ft</pre>	NEWHUL
3a.	XLP(1)	X/L _p	= longitudinal location of section, nondimensionalized	READIN
	XFT	X	<pre>= distance of section forward of transom in ft</pre>	PRTOUT
	ZS(1)	zs	= deck height in ft	NEWVOL
	ZC(1)	z _c	= chine height in ft	NEWHUL
	ZK(1)	z _K	= keel height in ft	NEWHUL
	YS(1)	Y _S	= half-breadth at deck in ft	NEWVOL
	YC(1)	Υ _C	= half-breadth at chine in ft	NEWHUL
	YK(1)	Y _K	= half-breadth at keel in ft	NEWHUL

]				SUBROUTINE PRTOUT Subroutine where defined
	C(12)	c ₁₂	= life cost of maintenan	ce COSTS
	C(13)	c ₁₃	= life cost of operation: except energy	s, COSTS
	C(14)	C ₁₄	<pre>= life cost of major support</pre>	COSTS
	C(15)	C ₁₅	= life cost of fuel	
	C(16)	c ₁₆	= total life cost	COSTS
	BETTOM OF PAGE	2		
3 .	Endurance o	with Prime	Movers at speeds input or Cond 8	PRTOUT
	PAGES 3 and 4 - BSC	CI 3-digit B	reakdown	
	Column 1		fication	BBCOUM
	Column 2	BSCI nu	umber	PRTOUT
	Column 3	Weight	fractions = weight / W_{T}	READIN
	Column 4		fractions = volume / ∇_{T}	PRTOUT
	Column 5		ull depth	PRTOUT
]	Column 6	Weight		TOTALS PRTOUT
	Column 7		in long tons	TOTAL
J	Column 8	Weight	in metric tons 047 (weight in long tons)	TOTALS PRTOUT
	Column 9	Volume		
	Column 10	Volume :	-	TOTALS
]			3168 (volume in ft ³)	PRTOUT
	Column 11	K-factor	from input Cards 16-25	READIN

SUBROUTINE PRTOUT

Subroutines where defined

	BETA(1)	β	= deadrise angle in degrees	PARENT
	AS(1)	A _S	= sectional area below deck in ft ²	NEWVOL
	VOLX	∇ _S	= volume from current section to transom in ft ³ $\nabla_{\rm S} = \int_{0}^{X} A_{\rm S} dX$	PRTOUT
ЗЪ.	XLP(2) etc.	One line sections	printed for each of NN in same order as line 3	

PAGE 4 - Additional Printout for Landing Craft Only

. Sugar

-				orare only	
	4a.	XLBOWR	L bow	= length of bow ramp in ft	READIN
		BBOWR	B _{bow}	<pre>= breadth of bow ramp in ft</pre>	READIN
Party.		ABOWR	Abr	= area of bow ramp in ft^2	STRUCT
	4Ъ.	XLWELL	L well	<pre>= length of well deck in ft</pre>	READIN
		BWELL	B well	<pre>= breadth of well deck in ft</pre>	READIN
		ZWELL	Z well	= height of well deck above baseline in ft	READIN
		AWELL	A _{bw}	= area of well deck in ft	STRUCT
	4c.	XLAFTR	Laft	<pre>= length of aft (drive- through) ramp in ft</pre>	STRUCT
		BAFTR	Baft	= breadth of aft ramp in ft	READIN
1		ZAFTR	Zaft	= height of aft ramp above baseline in ft	READIN
1		AAFTR	A _{ba}	= area of aft ramp in ft	STRUCT

Subroutines where defined

PAGE 5 - Accelerations

5.	SEA STATE	SS	= sea state number	PRTOUT
6.	H13-FT	^H 1/3	<pre>= significant wave height in ft corresponding to upper bound of sea state</pre>	PRTOUT
7a.	SPEED(1)	V _K	= speed in knots	READIN
	RW	R/W	= resistance-weight ratio from Savitsky equations	PRTOUT
	TRIM	τ	= trim angle in de g rees from Savitsky equations	PRTOUT
	CG ACC	^a CG	<pre>= average 1/10 highest vertical accelerations at center of gravity in g's</pre>	PRTOUT
	BOW ACC	^a BOW	<pre>= average 1/10 highest vertical accelerations at 90% L forward of transom in g's</pre>	PRTOUT
	FIXED TRIM	τ΄,	= fixed trim angle of 2.5 deg	PRTOUT
	CG ACC	^a cc	= accelerations at center of gravity when trim is 2.5 deg	PRTOUT
	BOW ACC	^a BOW	<pre>= bow accelerations when trim is 2.5 deg</pre>	PRTOUT
7ъ.	SPEED(2)			

7c.

.

One line printed for each input speed

Notes:

$$a_{CC} = 7.0 (H_{1/3}/B_{PX}) (1 + \tau/2)^{0.25} (L_{P}/B_{PX})^{-1.25} (F_{n\nabla})$$

$$a_{BOW} = 10.5 (H_{1/3}/B_{PX}) (1 + \tau/2)^{0.5} (L_{P}/B_{PX})^{-0.75} (F_{n\nabla})^{0.75}$$

,

SUBROUTINE PARENT

TANG(I)	tan γ	$= (Y_{S} - Y_{C}) / (Z_{S} - Z_{C})$
COSG(I)	cos γ	
BETA(I)	β	= deadrise angle in deg
TANB(I)	tan β	$= (Z_{C} - Z_{K}) / (Y_{C} - Y_{K})$
COSB(I)	cos ß	

1

ber here

Marine

NAME :	SUBROUTINE PARENT			
PURPOSE:	Nondimensionalize offsets of parent hull form			
CALLING SEQUENCE:	CALL PARENT			
SUBPROGRAM CALLED:	SIMPUN			
INPUT:	Via COMMON blocks			
PL				
	L _P = projected chine length of parent form, from input Card 2			
BPX	B _{PX} = maximum chine beam of parent form, from input Card 2			
NN	n = total number of sections, from input Card 3			
М	<pre>m = index of section at midships, from input Card 3</pre>			
OFFSETS	$Y_{K}^{}$, $Z_{K}^{}$, $Y_{C}^{}$, $Z_{C}^{}$, $Y_{S}^{}$, $Z_{S}^{}$ at each section X/L _p , from Card Set 5			
DZS	${}^{\Delta Z}{}_{\mbox{S}}$ of parent, constant at all sections, from input Card 2			
ZS(M)	Z_{S_m} = (hull depth - ΔZ_S) of parent at midships			
OUTPUT:	Via COMMON blocks			
AAP	A_{p} = projected planing bottom area of parent = $\int Y_{C} dX$			
BPA	B_{PA} = mean beam over chine of parent = A_p/L_p			
BPXBPA	(B_{PX}/B_{PA})			
DZSZSM	$\begin{pmatrix} \Delta z_{s}/z_{s_{m}} \end{pmatrix}$			
I	Index for DO LOOP I = 1, NN			
YCBPA(I)	(Y_{C}/B_{PA}) = nondimensional half-breadth at chine			
YKBPA(I)	$(Y_{K}^{\prime}/B_{PA}^{\prime})$ = nondimensional half-breadth at keel			
ZCBPA(I)	(Z_{C}/B_{PA}) = nondimensional height of chine from baseline			
ZKBPA(I)	(Z_{K}^{B}/B_{PA}) = nondimensional height of keel from baseline			
ZSZSM(I)	$\begin{pmatrix} Z_{S}/Z_{S_{m}} \end{pmatrix}$ = nondimensional deck height			
GAMA(I)	γ = angle of hull sides from vertical in deg			

Sec. 1

Sec. Sec.

in an an

NAME :	SUBROUTINE NEWHUL
PURPOSE:	Calculate offsets and hydrostatics for hull with new length, beam, and displacement from nondimen- sionalized parent form
CALLING SEQUENCE:	CALL NEWHUL
SUBPROGRAM CALLED:	SIMPUN, YINTX
INPUT:	Via COMMON blocks
PL	L _P = projected chine length of new hull in ft, from input Card 29
BPX	B _{PX} = maximum chine beam of new hull in ft, from PHFMOPT
DTONS	Δ _{LT} = displacement of new hull in long tons, from PHFMOPT
GM	GM = required metacentric height in ft, from Card 9
NN	n = total number of sections, from Card 3
Other	Nondimensional data from Subroutine PARENT
OUTPUT:	Via COMMON blocks
DLBS	$\Delta = displacement in 1b = \Delta_{LT} \times 2240$
VOL	∇ = displaced volume in ft ³ = Δ/ρ_g
RLB	L/B = length-beam ratio = L_p/B_{px}
SLR	$L_p/\nabla^{1/3}$ = slenderness ratio
BPA	$B_{PA} = average chine beam of new hull in ft= B_{PX}/(B_{PX}/B_{PA})$
ААР	<pre>A_p = projected planing bottom area of new hull in ft = B_{pA} × L_p</pre>
APV	$A_p / \nabla^{2/3}$ = loading coefficient of new hull
I	Index for DO LOOP I = 1, NN
YC(I)	Y_{C} = new half-breadth at chine in ft = $(Y_{C}/B_{PA}) \times B_{PA}$
YK(I)	Y_{K} = new half-breadth at keel in ft = $(Y_{K}/B_{PA}) \times B_{PA}$
ZC(I)	Z_{C} = new height at chine in ft = $(Z_{C}/B_{PA}) \times B_{PA}$
ZK(I)	Z_{K} = new height at keel in ft = $(Z_{K}/B_{PA}) \times B_{PA}$ All hulls have some deadrise angles β as parent
GKC(I)	G_{KC} = half-girth of hull bottom in ft, keel centerline to chine = Y_{K} + $(Y_{C}-Y_{K})/\cos \beta$

a subsection of the section of the s

8- 18-18

(and the second

a series of

Section 2

.

ī

		SUBROUTINE NEWHUL
ZW	^z w	= height of still waterline above baseline in ft
	waterl line f	m calculates displacements at six arbitrary ines, and interpolates to obtain the water- or the required displaced volume ∇. Only ines parallel to the baseline are considered.
AW(I)	A W	= total sectional area below waterline in ft
AWZ(I)	MZ	= moment of A_{W} about the baseline
	Each set tangle:	ection is divided into triangles and rec- s below the waterline to calculate A_W and M_7 .
AWX(I)	M_{χ}/L_{p}	= moment of A about the transom = $A_{TJ} \times (X/L_p)^W$
YW3(I)	ь3	= half-breadth at waterline, cubed = Y_W^3
VOLW		= check of displaced volume in $ft^3 = \int A_W dX$
XCG	LCG/L _P	$= \int (M_{\rm X}/L_{\rm P}) dX / \int A_{\rm W} dX$
XLCG	LCG	<pre>= distance of center of gravity forward of transom in ft</pre>
KB	KB	= vertical center of buoyancy VCB above baseline in ft = $\int M_Z dX / \int A_W dX$
ВМ	BM	<pre>= vertical distance from VCB to metacenter in ft</pre>
		$= 2/3 \int b^3 dX / \int A_W dX$
KM	KM	= height of metacenter above baseline in ft = $\overline{KB} + \overline{BM}$
KG	KG	= vertical center of gravity VCG above baseline in ft
		$=\overline{KM} - \overline{GM}$
HM	T	= draft at midships in ft = Z_W
НТ	Tt	= draft at transom in $ft = Z_W - Z_{K_1}$
HTM	τ _t /τ	-
CB	C _B	= block coefficient = $\nabla/(L_p B_{PX} T)$
VOLSM(K), ZSMZWL(K), (K=1,6)	deck he	f hull volumes calculated at six arbitrary ights " d in current program, see Subroutine NEWVOL
		· · · · · · · · · · · · · · · · · · ·

كسطيد فالقاف

and a second

and the second

NAME:	
	SUBROUTINE NEWVOL
PURPOSE:	Calculate enclosed volume and hull density for new hull depth
CALLING SEQUENCE:	CALL NEWVOL
INPUT:	Via COMMON blocks
HDM	H = new hull depth, keel to main deck at midships, in ft from PHFMOPT
Other	Keel and chine offsets for new hull from Subroutine NEWHUL
Other	Nondimensional deck offsets from Subroutine PARENT
Other	Superstructure dimensions from Subroutine CREWSS
OUTPUT:	Via COMMON blocks
ZS(M)	$Z_{S_{m}} = hull depth at midships - \Delta Z_{S} in ft$ = $H_{h} / [1 + (\Delta Z_{S} / Z_{S_{m}})]$
DZS	ΔZ_{S} of new hull in ft = $Z_{S} \times (\Delta Z_{S}/Z_{S})$
I	Index of DO LOOP I = 1, NN
ZS(I).	$Z_{S} = \text{deck height} - \Delta Z_{S} \text{ in ft} = (Z_{S}/Z_{S}) \times Z_{S}$
ZS(I)	$Z_{S}' = new deck height in ft - Z_{S} + \Delta Z_{S}$
YS(I)	Y_{S} = new half-breadth at deck in ft = Y_{C} + $(Z_{S}-Z_{C})$ tan γ
GCS(I)	$G_{CS} = \text{girth of one side, chine to deck, in ft}$ = $\Delta Z_{S} + (Z_{S} - Z_{C})/\cos \gamma$
	Sides maintain same slope γ as parent form.
AS(I)	A_{S} = total sectional area, keel to deck, in ft ²
ZM(I)	C_{S} = height of centroid of A_{S} above baseline in ft
	Each section is divided into triangles and rectangles to calculate A_S and C_S .
VOLH	∇_{h} = hull volume, up to main deck, in ft ³ = $\int A_{S} dX$
VOLSS	$\nabla = v_0 v_0 = 0$
VOLT	∇ = volume enclosed by superstructure in ft ³
	$\nabla_{\rm T}$ = total volume in ft ³ = $\nabla_{\rm h} + \nabla_{\rm ss}$
VDENS	$\Delta/\nabla_{\rm h}$ = vehicle density in 1b/ft ³

a second a

Sec. 12

S. 1993

.

10.03

Anna an

Sec. 15

dintra (

SUBROUTINE NEWVOL

ZSSFT	Z _{ss} '	= height of centroid of superstructure above deck in ft
	z _{ss} '	= 6.0 if H_{ss} = 8.0; Z_{ss}' = 9.0 if H_{ss} = 16.0
ZSS	Zss	<pre>= superstructure centroid above baseline / hull depth</pre>
		$= (H_{h} + Z_{ss})/H_{h}$
ARH	A _h	= area of profile up to main deck in ft \approx L _p × H _h
ARSS		<pre>= area of profile of superstructure in ft = L × H ss ss</pre>
ZPC	10	<pre>= height of profile centroid above baseline / hull depth</pre>
		$= (0.5 \text{ A}_{h} + \text{Z}_{ss} \text{ A}_{ss}) / (\text{A}_{h} + \text{A}_{ss})$
HMB	H mb	= height of machinery box, main engine room, in ft
		= H _h

With the second

Sec. 6 and

إنكمك

ł

Sec. 1

Sec. 1

Ĩ

Statistical States

NAME:	SUBROUTINE CREWSS
PURPOSE:	Define ship's complement if not specified on input cards Define superstructure dimensions
CALLING SEQUENCE:	CALL CREWSS
INPUT:	Via COMMON blocks
DTONS	Δ_{LT} = ship displacement in long tons, from PHFMOPT
PL .	$L_p = ship$ length in ft, from input Card 29
ACC	Total accommodationsoptional input on Card 10
CREW	Number of enlisted menoptional input on Card 10
CPO	Number of CPO'soptional input on Card 10
OFF	Number of officersoptional input on Card 10
FVOLSS	Volume of superstructure in ft ³ optional input on Card ll
OUTPUT:	Via COMMON blocks
W	W = total ship weight in long tons = Δ_{LT}
DMULT	$M_{\Delta} = \text{multiplier for items which vary with ship size}$ = [ln (W+90)-2.55]/4.92 for W < 2000 = 1.0 for W \geq 2000
NACCM	Number of personnel concerned with military payload NACCM = 0.052 W if $W \leq 100$
	NACCM = 0.012 W + 4 if $W > 100$
NACCS	Number of personnel for operation of ship = $0.035W + 4$
ACC	Total accommodations = NACCM + NACCS, rounded up unless ACC has been specified on Card 10
CREW	Number of enlisted men = $5/7 \times ACC$ unless CREW has been specified on Card 10
СРО	Number of CPO's = $1/7 \times ACC$ unless CREW has been specified on Card 10
OFF	Number of officers = $1/7 \times ACC$ unless CREW has been specified on Card 10
	Note: CPO and/or OFF can be set to 0 by input card if CREW is specified greater than 0. However, if CREW is set to 0 or blank space left on input card, then CREW, CPO, and OFF are calculated from above equations.

in the second second

al sub-

4

States -

The second

(and the second s

No. of Street, or

	SUBROUTINE CREWSS
VOLSS	∇_{ss} = volume enclosed by superstructure in ft ³
	If input value of FVOLSS > 0, then ∇ = FVOLSS Otherwise, ∇ = 70 × W × M
HSS	H = height of superstructure in ft = 8.0 initially
BSS	B_{ss} = breadth of superstructure in ft = B_{PA}
XLSS	$L_{ss} = \text{length of superstructure in ft} = \nabla / (H_{ss} \times B_{ss})$
	If L calculated is greater than 0.7 L_p , increase
	H by increment of 8 ft, and recalculate B and L ss
ARSS	A = profile area of superstructure in ft ²
	$=$ L \times H ss
VSSW	∇_{ss}/W

......

and the second

and the second

Sec. 2

1

1

and the second

N	AME:	SUBE	ROUTINE STRUCT (to be used when ILC=0 and IMAT<3)
Р	URPOSE:	Calc	culate weights, volumes, and VCG's of major actures, Group 1, for <u>conventional planing hull</u>
C	ALLING SEQUENCE:	CALL	STRUCT of aluminum or steel
I	NPUT:	Via	COMMON blocks
	IMAT	Cont Card IMAT IMAT	= 1 for aluminum
	WSFMIN	S min	<pre>= minimum unit weight of plating in lb/ft², from Card ll</pre>
	WSLOPE	Sp	Slope of unit weight curves for stiffened plating as function of design load, from Card 11
	STRESS	σlimi	t = Stress limit of material in lb/in. ² , from Card 11
	DMAT	γ_{mat}	<pre>= density of structural material in lb/ft³, from Card 11</pre>
	Other	Hull	geometry from Subroutines NEWHUL, NEWVOL, etc.
OU'	TPUT:	Via C	OMMON blocks
Α.	GENERAL EQUATION	S	
	PRES	Р	= design pressure on plating in lb/in. ²
		S	= unit weight of stiffened plating in lb/ft ²
*	UNITWT	S	<pre>= S + (P×S_P) for hull bottom, decks, and bulkheads Curves shown in Figure 4 for different materials</pre>
		S	= f(L _p) for hull sides
			Curves shown in Figure 5 for different materials
*	THICKN	t	= thickness of plating in inches = 12 S/ γ_{mat}
		D	= depth of plating web in ft
*	DEPTHA	D	= (S-1.45)/12 for aluminum
*	DEPTHS	D	= (3.0+0.1 P)/12 for steel
	DPMIN	D min	= minimum depth of plating web = 0.25 ft

]

J

فسنعدده

and the second se

لتسميك

distant of the

11.000

*UNITWT, THICKN, DEPTHA and DEPTHS are Statement Functions defined at beginning of Subroutine STRUCT.

÷

SUBROUTINE STRUCT

PLATFORM DECKS n_{pl} NPL = number of platform decks, excluding main deck = 0 if H_h is 10 ft or less n_{pl} = 1 if H_{h} is between 10 and 20 ft npl = 2 if H_h is 20 ft or greater ⁿpl H_{p1} = distance from lower, upper platforms to ZSP1 main deck ZSP2 = 8 or 16 ft - see location of platforms in Figure 2 = design pressure on platform in lb/in.² PRES P_{p1} $= 64 (H_{p1}+4)/144$ = unit weight of platform in 1b/ft², Figure 4 WSF S_{p1} = area of platform in ft^2 Ap1 APL1 Platforms extend length of hull, except APL2 engine room D_{pl} DPL1 = depth of platform web in ft use general equations for aluminum or steel DPL2 WPL1 W_{p1} = weight of platform in 1b WPL2 $= A_{p1} \times S_{p1}$ = volume of platform in ft^3 ⊽ pl VPL1 VPL2 $= A_{p1} \times D_{p1}$ = VCG of platform in ft ZPL1 Z_{p1} = $(Z_{s} \text{ at } X/L_{p}=0.75) - H_{p1}$ ZPL2 с. TRANSVERSE BULKHEADS = number of transverse bulkheads input = 9 NTB n_{tb} see location of transverse bulkheads in Figure 2 number will be reduced later if displacement is less than 70 tons J Index for DO LOOP J = 1, NTB H_{tb} ZKS = height of transverse bulkhead in ft = $(Z_{S}-Z_{K})$ at location of bulkhead ZF = height of fuel tank coincident with bulkhead Hft see location of fuel tanks in Figure 2 Ν = design acceleration in g's at bulkhead = 2.0, 4.0, 5.5 g's for aft, mid, forward fuel tanks

			SUBROUTINE STRUCT
	PRES	Ptb	= design pressure on bulkhead in 1b/in. ² = 64 (H _{tb} +4)/144 or
			 52 (H _{ft} N)/144 whichever is greater
	WSF	Stb	= unit weight of transverse bulkhead, Figure 4
	AS	A tb	= area of transverse bulkhead in $ft^2 = A_c$
		20	= total sectional area from Subroutine NEWVOL
	DTB	D _{tb}	= depth of bulkhead web in ft
	WTB(J)	W _t b	= weight of transverse bulkhead in 1b = $A_{tb} \times S_{tb}$
	VTB	∇ _{tb}	= volume of transverse bulkhead in ft ³ = $A_{tb} \times D_{tb}$
	ZTB(J)	Z _{tb}	= VCG of transverse bulkhead in $ft = C_{S}$
			= centroid of section from Subroutine NEWVOL
	WTBJ	ΣW _{tb}	<pre>= total weight of all transverse bulkheads in lb</pre>
	VTBT	Σ∇ _{tb}	= total volume of transverse bulkheads in ft 3
	ZTBT	Ī _{tb}	= net VCG of all transverse bulkheads in ft = $\Sigma (Z_{tb} \times W_{tb}) / \Sigma W_{tb}$
D.	LONGITUDINAL BUL	KHEADS	
	NLB	nlb	= number of longitudinal bulkheads
		n _{lb}	= 0 if hull depth is 10 ft or less
		n _{lb}	= 1 if midship chine beam is 20 ft or less
		nlb	= 2 if midship chine beam is between 20 and 30 ft
		n _{lb}	= 3 if midship chine beam is greater than 30 ft
		Longit: below (udinal bulkheads are equally spaced across h of hull; a single bulkhead is on centerline. Idinal bulkheads extend full length of hull the lower platform deck. Bulkheads not on line are watertight; centerline bulkhead is not lght.
	WSF	S _{lb}	<pre>= unit weight of non-centerline bulkheads in lb/ft² = unit weight of lower platform deck (same design pressure)</pre>

1

8. L. L.

is and

69

ł

			SUBROUTINE STRUCT
	WSFMIN	S _{lb}	= unit weight of centerline bulkhead in lb/ft ² = S (design pressure = 0, since not
			watertight)
	J	Index	for DO LOOP J = 1, NLB
	AREAP	А _{lb}	= area of longitudinal bulkhead in ft ²
	WLB(J)	W _{Lb}	= weight of longitudinal bulkhead in 1b = $A_{lb} \times S_{lb}$
	DLB	D _{lb}	= depth of longitudinal bulkhead web in ft
		∇ _{ℓb}	= volume of longitudinal bulkhead in ft^3 = $A_{lb} \times D_{lb}$
	ZLB(J)	z.	= VCG of longitudinal bulkhead in ft
	WLBT	ΣW _{Lb}	= total weight of all longitudinal bulkheads in lb
	VLBT	Σ∇ _{lb}	= total volume of all longitudinal bulkheads in ft ³
	ZLBT	Ζ _ℓ β	= net VCG of all longitudinal bulkheads in ft^3 = $\Sigma(W_{lb} \times Z_{lb}) / \Sigma W_{lb}$
E.	HULL BOTTOM - KEE	L ТО СН	INE
I	PRESHH	P _{hh}	= pressure due to hydrostatic head in lb/in. ² = $64 \left({}^{2}S_{m}^{+4} \right) / 144$
	GKC (M40)	с _ь 	= half-girth from keel to chine in ft at $X/L_p = 0.6$
		^N CG	= design acceleration at CG in $g's = 3.0$
	PRESF	Pbf	= design pressure on forward 40 percent of
			bottom in 1b/in. ²
			= 9 Δ (1+N _{CG})/(2G _b L _P)/144 or P _{bb} if greater
	PRESA	P. ba	= design pressure on aft 60 percent of bottom
		Ua	in lb/in. ² = $1/2 P_{bf}$ or P_{hh} whichever is greater
	WSF1F	s _{bf}	= unit weight of forward bottom plating in
			lb/ft ² , Figure 4
	WSF1A	S _{ba}	= unit weight of aft bottom plating in
			lb/ft ² , Figure 4
			<i>7</i>

No.

I

المشتقيل

Contraction of the

Sec. 1

a the second

Section of

of the second second

	ABOTTF	SUBROUTINE ST	TRUCT
-		$A_{\rm bf}$ = area of forward 40 percent of bottom in	ft ²
		$= 2 \int_{C_{\nu_c}}^{L} dX$	
		$= 2 \int_{0.6 L_p}^{L_p} G_{KC} dX$	
	ABOTTA	A_{ba} = area of aft 60 percent of bottom in ft ²	
		c ^{0.6 L} p	
		$= 2 \int_{0}^{0.6 L_{p}} G_{KC} dX$	
	WBOTT	$W_{\rm b}$ = weight of bottom plating in lb	
	VBOTT	$-(A_{hf}^{3}) + (A_{hf}^{3})$	
	ZBOTT	$\nabla_{\rm b}$ = volume of bottom plating in ft ³ = $W_{\rm b}/\gamma_{\rm mat}$ Z, = VCC of bottom plating in ft ³ = $W_{\rm b}/\gamma_{\rm mat}$	-
-		b too of bottom plating in ft	-
F.		HINE TO MAIN DECK	
	WSF2	S_{s} = unit weight of side plating in lb/ft^2 ,	
		Figure 5 Aluminum hull: $S_s = 2.4 \pm 0.022 L_p$, if $L_p \le 150$	_
		$S_{s} = 1.2 + 0.030 L_{p}, \text{ if } L_{p} > 150$ Starl h ll	tt c
		Steel hull: $S = 5.5 + 0.0188 L_p$, for all L_p	ĬĹ
		minimum value of S is S min	
	ASIDE	A_s = area of both sides in ft ² = 2 $\int_0^{L_P} G_{CS} dX$	
	WSIDE	W_{s} = weight of side plating in lb = A × S s	
	DSIDE	s = depth of side plating web in fr	
	VSIDE	∇ = volume of side plating in ft ³ = A × D ∇ = VC2 f · · · · · · · · · · · · · · · · · ·	
	ZSIDE	$Z_s = VCG \text{ of side plating in ft}$	
G.	MAIN DECK		
	PRES	P_d = design pressure on main deck in lb/in. ² = 64 × 4/144	
	WSF3	S _d = unit weight of main deck in lb/ft ² , Figure 4	
	ADECK	A_d = area of main deck in $ft^2 = 2 \int Y_S dX$	
	DDECK	D_{d} = depth of main deck web in ft	
	WDECK	W_{d} = weight of main deck in lb = $A_{d} \times S_{d}$	

1

]

the second

and the second

÷

,

			SUBROUTINE STRUCT
7	VDECK	⊽d	= volume of main deck in $ft^2 = A_d \times D_d$
	ZDECK	Zd	= VCG of main deck in ft
н.	STRESS CALCULATION	N AT MI	DSHIPS
	T1	t ₁	= thickness of bottom plating in inches = $12 \text{ S}_{ba}/\gamma_{mat}$
	Τ2	t ₂	= thickness of side plating in inches = 12 S _s /Y _{mat}
	Т3	t ₃	= thickness of main deck in inches = $12 S_d / \gamma_{mat}$
	Yl	l	<pre>= half length of bottom at midships in inches = 12 GKCm</pre>
	¥2	² 2	= half length of sides at midships in inches = 12 G _{CS}
	¥3	^l 3	= effective half length of deck at midships in inches=(2/3) (12 Y _s)
	Al	A ₁	= half area of bottom plating at midships in in. ² = $t_1 \ell_1$
	A2	^A 2	= half area of side plating at midships in in. ² = $t_2 l_2$
	A3	^А з	= half area of main deck at midships in in. ² = $t_3 l_3$
	21	z ₁	= VCG of A_1 in inches = 12 $\begin{bmatrix} Z_{K_m} + \frac{1}{2} \begin{pmatrix} Z_{C_m} - Z_{K_m} \end{pmatrix} \end{bmatrix}$
	Z2	z ₂	= VCG of A ₂ in inches = 12 $\left[Z_{C_m} + \frac{1}{2} \left(Z_{S_m} - Z_{C_m} \right) \right]$
	Z3	z ₃	= VCG of A_3 in inches = $12 \times Z_{S_m}$
	222	z ₂₂	= vertical height of sides in inches = $12 \left({}^{Z}S_{m} - {}^{Z}C_{m} \right)$
	ZNA	z _{na}	= height of neutral axis at midships above keel in inches = $(A_1Z_1 + A_2Z_2 + A_3Z_3) / (A_1 + A_2 + A_3)$

Contraction of the local distribution of the

The state of the second

Marked Sciences

Sec. A second

in the second second

and the second se

in the second

	ABOTTF	A _{bf}	SUBROUTINE STRUCT = area of forward 40 percent of bottom in ft^2 = $2 \int_{0.6 L_p}^{L_p} G_{KC} dX$
	ABOTTA	A _{ba}	= area of aft 60 percent of bottom in ft ² = 2 $\int_{0}^{0.6 L_{p}} G_{KC} dX$
	WBOTT	w _b	= weight of bottom plating in 1b = $(A_{bf} \times S_{bf}) + (A_{ba} \times S_{ba})$
	VBOTT	₽ _b	$\sim bf bf' (a_{ba}) = Volume of bottom planting f a$
	ZBOTT	Z _b	= volume of bottom plating in $ft^3 = W_b / \gamma_{mat}$ = VCG of bottom plating in ft
F.	HULL SIDES - CHI	U	
	WSF2	S s	
			<pre>= unit weight of side plating in lb/ft², Figure 5</pre>
		Alumin	num hull: $S_s = 2.4 \pm 0.022 L_p$, if $L_p \le 150$ ft
			$S_s = 1.2 + 0.030 L_p$, if $L_p > 150 ft$
		Steel	
			m value of S is S min
	ASIDE	A s	= area of both sides in $ft^2 = 2 \int_0^{L_P} G_{CS} dX$
	WSIDE	Ws	= weight of side plating in $lb = A \times S$
	DSIDE	Ds	= depth of side plating web in fr
	VSIDE	⊽_s	= volume of side plating in $ft^3 = A_s \times D_s$
	ZSIDE	Zs	= VCG of side plating in ft
G.	MAIN DECK		
	PRES	Pd	= design pressure on main deck in 1b/in. ² = 64 × 4/144
	WSF3	s _d	= unit weight of main deck in lb/ft ² , Figure 4
	ADECK	A d	= area of main deck in $ft^2 = 2 \int Y_S dX$
	DDECK	D _d	= depth of main deck web in ft
	WDECK	Wd	= weight of main deck in $lb = A_d \times S_d$

]

and the second

]

3

a finally

			SUBROUTINE STRUCT
7	VDECK	⊽ _d	= volume of main deck in $ft^2 = A_d \times D_d$
	ZDECK	z _d	= VCG of main deck in ft
н.	STRESS CALCULATIO	N AT MI	DSHIPS
	T1	^t 1	= thickness of bottom plating in inches = $12 S_{ba} / \gamma_{mat}$
	Τ2	t ₂	= thickness of side plating in inches = $12 \text{ S}_{s}/\gamma_{mat}$
	Т3	t ₃	= thickness of main deck in inches = $12 S_d / \gamma_{mat}$
	Yl	^l 1	= half length of bottom at midships in inches = 12 G _{KC_}
	¥2	^ℓ 2	= half length of sides at midships in inches = 12 G _{CS}
	¥3	l ₃	<pre>= effective half length of deck at midships in inches=(2/3) (12 Y_s)</pre>
	Al	A ₁	= half area of bottom plating at midships in in. ² = $t_1 \ l_1$
	A2	^A 2	= half area of side plating at midships in in. ² = $t_2 l_2$
	АЗ	^A 3	= half area of main deck at midships in
	21	z ₁	in. ² = $t_3 \ell_3$ = VCG of A ₁ in inches = 12 $\begin{bmatrix} Z_{K_m} + \frac{1}{2} \begin{pmatrix} Z_{C_m} - Z_{K_m} \end{bmatrix}$
	22	z ₂	= VCG of A ₂ in inches = 12 $\begin{bmatrix} Z_{C_m} + \frac{1}{2} \begin{pmatrix} Z_{S_m} - Z_{C_m} \end{pmatrix} \end{bmatrix}$
	23	z ₃	= VCG of A_3 in inches = $12 \times Z_{S_m}$
	222	z ₂₂	= vertical height of sides in inches = $12 \left({}^{Z}S_{m}^{-Z}C_{m} \right)$
	ZNA	z _{na}	= height of neutral axis at midships above keel in inches = $(A_1Z_1 + A_2Z_2 + A_3Z_3) / (A_1 + A_2 + A_3)$

Constant

Sector

متناقف يع

distant in

, in the second s

Marine

المعديد تعطا

SUBROUTINE STRUCT SI = sectional inertia in in.4 Im $= 2 (A_1 Z_1^2 + A_2 Z_2^2 + A_3 Z_3^2 + A_2 Z_{22}^2/12)$ $- (A_1 + A_2 + A_3) Z_{NA}^2$ SM = least section modulus in in.³ S = $1/Z_{NA}$ or $1/(H_h - Z_{NA})$ whichever is smaller NB = design bow acceleration in g's = 7.55 $^{\rm N}$ CG = design CG acceleration in g's = 3.0 TM = bending moment at midships in in.-1b М = 12 $L_{p} \Delta$ (128 N_{B} -178 N_{CG} -50)/1920 PSI = maximum stress in $1b/in.^2 = M_b/s_m^2$ σ_{max} If $\sigma_{\max} \leq \sigma_{\min}$, original plating thicknesses are OK If $\sigma_{max} > \sigma_{limit}$ and $Z_{NA} < 0.5 H_{h}$, increase t_{3} by 0.02 in. and recalculate o max If $\sigma_{max} > \sigma_{limit}$ and $Z_{NA} > 0.5 H_{h}$, increase t_{3} and t₁ by 0.02 in. and recalculate σ_{max} WSF1A S_{ba} = unit weight of aft bottom plating in $1b/ft^2$ = $t_1 \gamma_{mat}/12$ recalculated if t_1 is increased = unit weight of deck in lb/ft^2 = $t_3 \gamma_{mat}/12$ recalculated if t_3 is increased WSF3 S_d FRAMING - LONGITUDINAL AND TRANSVERSE WFRAM = total weight of framing in 1b, Figure 6 Wfr Aluminum hull: $W_{fr} = 0.70 \nabla_h$ $W_{fr} = 2.1 \nabla_h; \text{ if } \nabla_h \leq 3 \times 10^4$ Steel hull: $W_{fr} = 1.1 \nabla_{h} + 3 \times 10^{4};$ $3 \times 10^4 < \nabla_h \leq 1 \times 10^5$ $W_{fr} = 0.93 \nabla_{h} + 4.7 \times 10^{4};$ if $\nabla_{h} > 1 \times 10^{5}$ VFRAM $\nabla_{\rm fr}$ = volume of framing in ft³ Aluminum hull: $\nabla_{fr} = 0.06 W_{fr}$ Steel hull: $\nabla_{fr} = 0.03 W_{fr}$

開村派

22.0

I.

SUBROUTINE STRUCT

)	ZFRAM	Z _{fr}	= VCG of framing in ft = centroid of ∇_h
J.	SUMMARY OF STRUCT	URES- - G	roup l
	W1(2)	^W 100A	= weight of plating for hull bottom in tons = $W_{b}/2240$
	Z1(2)	^Z 100A	= VCG of bottom plating / hull depth = Z_{b}/H_{h}
	V1(2)	⊽ _{100A}	= volume of bottom plating in $ft^3 = \nabla_b$
	W1(3)	W _{100B}	= weight of plating for hull sides in tons = $W_s/2240$
	Z1(3)	^Z 100B	= VCG of side plating / hull depth = Z_s/H_h
	V1(3)	∇ _{100B}	= volume of side plating in $ft^3 = \nabla_s$
	W1(4)	W ₁₀₁	= weight of framing in tons = $W_{fr}/2240$
	Z1(4)	^z 101	= VCG of framing / hull depth = Z_{fr}/H_h
	V1(4)	⊽ ₁₀₁	= volume of framing in $ft^3 = \nabla_{fr}$
	W1(5)	W103A	<pre>= weight of upper platform in tons = W /2240 pl_2</pre>
	Z1(5)	z _{103A}	<pre>= VCG of upper platform / hull depth = Z_{pl2}/H_h</pre>
	V1(5)	∇ _{103A}	= volume of upper platform in $ft^3 = \nabla_{pl_2}$
	W1(6)	W _{103B}	<pre>= weight of lower platform in tons = W_{pl1}/2240</pre>
	Z1(6)	z _{103B}	= VCG of lower platform / hull depth = Z_{pl_1}/H_h
	V1(6)	∇ _{103B}	= volume of lower platform in $ft^3 = \nabla_{pl_1}$
	W1(7)	W ₁₀₇	= weight of main deck in tons = $W_d/2240$
	Z1(7)	z ₁₀₇	= VCG of main deck / hull depth = Z_d/H_h
	V1(7)	∇ ₁₀₇	= volume of main deck in $ft^3 = \nabla_d$
	NTB	n ' tb	= revised number of transverse bulkheads
			= 1, if $\Delta_{LT} \leq 10$
			= 3.663 $\ln (\Delta_{LT}/8.1)$, if 10 < Δ_{LT} < 70
		n't	= 9, if $\Delta_{LT} \ge 70$

ليستعنا

distant in

Sec. 1

Section 1

A COLUMN T

1.5.00 A

Name of Street, or other

10

1. S. 1. S.

	SUBROUTINE STRUCT
W1(8)	W_{114A} = weight of transverse bulkheads in tons = ΣW_{tb} $(n_{tb}'/9)/2240$
Z1(8)	$Z_{114A} = VCG$ of transverse bulkheads / hull depth = \overline{Z}_{tb}/H_{h}
V1(8)	$\nabla_{114A} = \text{volume of transverse bulkheads in ft}^{3}$ $= \Sigma \nabla_{tb} (n_{tb}^{9})$
W1(9)	$W_{114B} = Weight of longitudinal bulkheads in tons= \Sigma W_{lb}/2240$
Z1(9)	$Z_{114B} = VCG \text{ of longitudinal bulkheads / hull depth}$ = \overline{Z}_{lb}/H_h
V1(9)	$\nabla_{114B} = \text{volume of longitudinal bulkheads in ft}^3$ = $\Sigma \nabla_{lb}$

A Sector

1.814

in west

7

Subscripts are BSCI 3-digit code

The superstructure, foundations for propulsion and other equipment, and attachment are calculated in Subroutine TOTALS.

NAME:	SUBROUTINE STRUCT (to be used when ILC=0 and IMAT>2)
PURPOSE:	Calculate weights, volumes, and VCG's of major structures, Group 1, for <u>planing hulls of glass</u> reinforced plastic (GRP)
CALLING SEQUENCE:	CALL STRUCT
INPUT:	Via COMMON blocks
IMAT	Control for type of construction, from input Card 6 IMAT = 3 for GRP single skin, with single skin bulkheads IMAT = 4 for GRP single skin, with sandwich plate bulkheads IMAT = 5 for GRP sandwich plate, with sandwich
IFRM	plate bulkheads
IF KN	Control type of framing IFRM = 1 for transverse framing IFRM = 2 for longitudinal framing
WSFMIN	S _{min} = minimum unit weight of plating in lb/ft, ² from Card 11; 2.5 lb/ft ² for sandwich plate; 3.25 lb/ft ² for single skin
WSLOPE	S _p = slope of unit weight curves for bottom plating as function of design load, from Card 11
STRESS	σ_{limit} = stress limit in lb/in ² , from Card 11
DMAT	γ _{mat} = density of material in lb/ft ³ , from Card ll
Other	Hull geometry for subroutines NEWHULL, NEWVOL, etc.
OUTPUT:	Via COMMON blocks
A. GENERAL	
PRES	<pre>p = design pressure on plating in lb/in²</pre>
UNITWT	S = unit weight of plating in lb/ft ²
	Curves of unit weight for GRP single skin and sandwich plate are shown in Figures 4 and 5.
B. PLATFORM DECKS	
NPL	<pre>n = number of platform decks, excluding main deck</pre>
	$n_{pl} = 0$ if H_h is 10 ft or less
	$n_{pl} = 1$ if H_h is between 10 and 20 ft
	$n_{pl} = 2$ if H_h is 20 ft or greater

أمست تربقه فأ

and the second

الكسطيقية

in the second

Sec. 1

State of the local division of the local div

		٩.	SUBROUTINE STRUCT for GRP
	ZSP1 ZSP2	H _{p1}	 distance from lower, upper platforms to main deck 8 or 16 ft - see location of platforms in Figure 2
	PRES	P pl	= design pressure on platform in lb/in. ² = 64 (H _{pl} +4)/144
	WSF	s _{p1}	<pre>= unit weight of platform in lb/ft², Figure 4 = 2.50 + 0.140 P_{pl} for sandwich plate (IMAT=5)</pre>
	APL1 APL2 }	A _{pl}	<pre>= 3.25 + 0.192 P_{pl} for single skin (IMAT=3 or4) = area of platform in ft²; platforms extend length of hull, except engine room</pre>
	WPL1 WPL2 ZPL1 ZPL2	W _{p1} Z _{p1}	<pre>= weight of platform in lb = A_{p1} x S_{p1} = VCG of platform in ft = (Z_S at X/L_p=0.75) - H_{p1}</pre>
а с.	TRANSVERSE BULKHEADS		5 i pi
.]	NTB	n _{tb}	= number of transverse bulkheads input = 9 see location of transverse bulkheads in Figure 2 number will be reduced later if displace-
×	T	т ,	ment is less than 70 tons
	J		for DO LOOP $J = 1$, NTB
	ZKS	H _{tb}	= height of transverse bulkhead in ft = (Z _S -Z _K) at location of bulkhead
	ZF	H _{ft}	= height of fuel tank coincident with bulkhead see location of fuel tanks in Figure 2
]		N	= design acceleration in g's at bulkhead = 2.0, 4.0, 5.5 g's for aft, mid, forward fuel tanks
1	PRES	P _{tb}	= design pressure on bulkhead in $1b/in$. ² = 64 (H _t +4)/144 or
. 19	WSF	ç	<pre>52 (H_{ft} N)/144 whichever is greater = unit weight of transverse bulkhead,</pre>
]		s _{tb}	<pre>Figure 4 = 2.50 + 0.221 P for sandwich plate (IMAT=4 or 5) = 3.25 + 0.280 P for single skin (IMAT=3)</pre>
	AS	A _{tb}	= area of transverse bulkhead in ft ² = A _S = total sectional area from Subroutine NEWVOL
	WTB(J)	W _{tb}	= weight of transverse bulkhead in 1b = A _{tb} x S _{tb}

		,	
	ZTB(J)	Z _{tb}	SUBRCUTINE STRUCT for GRP = VCG of transverse bulkhead in ft = C _S
			= centroid of section from Subroutine NEWVOL
	WTBJ	Σw _{tb}	= total weight of all transverse bulkheads in 1b
	ZTBT	Z _{tb}	= net VCG of all transverse bulkheads in ft = $\Sigma(Z_{tb} \times W_{tb}) / \Sigma W_{tb}$
D.	LONGITUDINAL BULKHEAD	DS	
	NLB	n _{lb}	= number of longitudinal bulkheads
		n _{lb}	= 0 if hull depth is 10 ft or less
		n _{lb}	= 1 if midship chine beam is 20 ft or less
		n _{lb}	<pre>= 2 if midship chine beam is between 20 and 30 ft</pre>
		nlb	= 3 if midship chine beam is greater than 30 ft
		bread Longi below cente	tudinal bulkheads are equally spaced across th of hull; a single bulkhead is on centerline. tudinal bulkheads extend full length of hull the lower platform deck. Bulkheads not on rline are watertight; centerline bulkhead is atertight.
	WSF	s _{lb}	= unit weight of noncenterline bulkheads
			= $2.50 + 0.221 P_{lb}$ for sandwich plate (IMAT = 4 or 5)
			= $3.25 + 0.280 P_{lb}$ for single skin (IMAT=3)
			where P_{lb} = design pressure on bulkhead
			= pressure on lower platform deck
	WSMIN	s _{lb}	= unit weight of centerline bulkhead in 1b/ft
			= S _{min} (design pressure = 0, since not watertight)
	J	Index	for DO LOOP $J = 1$, NLB
	AREAP	A _{lb}	= area of longitudinal bulkhead in ft ²
	WLB(J)	W _{lb}	= weight of longitudinal bulkhead in 1b
		۶D	$= A_{lb} \times S_{lb}$
	ZLB(J)	Z _{lb}	= VCG of longitudinal bulkhead in ft
·	WLBT	ΣW _{Lb}	<pre>= total weight of all longitudinal bulkheads in lb</pre>
	ZLBT	\overline{z}_{lb}	= net VCG of all longitudinal bulkheads in ft ³
		~0	$= \Sigma (W_{lb} \times Z_{lb}) / \Sigma W_{lb}$

Concernant of the local division of the loca

ومروع يتأسط

Sec. Name

and the second second

Contraction of the

the second second

and and

للانتقاد والمناط

Association (Contraction)

والمتعالم المحافظ

E. HULL BOTTOM - K	SUBROUTINE STRUCT for GRP
PRESHH	
TRESH	P_{hh} = pressure due to hydrostatic head in 1b/in. ²
CKC (MAA)	$= 64 (Z_{S_{m}} + 4) / 144$
GKC (M40)	$G_{\rm b}$ = half-girth from keel to chine in ft_at $X/L_{\rm p}$ = 0.6
	N_{CG} = design acceleration at CG in g's = 3.0
PRESF	P = design pressure on forward 40 percent of bottom in 1b/in. ²
	= $9\Delta (1+N_{CG})/(2G_b L_p)/144$ or P_{hh} if greater
PRESA	P = design pressure on aft 60 percent of bottom in 1b/in. ²
	= $1/2 P_{\text{bf}}$ or P_{hh} whichever is greater
WSF1F	S = unit weight of forward bottom plating
	= $2.50 + 0.140 P_{bf}$ for sandwich plate (IMAT=5)
	$= 3.25 + 0.192 P_{\text{bf}} \text{ for single skin (IMAT=3 or4)}$ S. = unit weight of single skin (IMAT=3 or4)
WSF1A	S = unit weight of aft bottom plating
	= $2.50 + 0.140 P_{ba}$ for sandwich plate
	= $3.25 + 0.192 P_{\text{ba}}$ for single skin
ABOTTF	$A_{\rm bf}$ = area of forward 40 percent of bottom in ft ²
	L ^L P
	$= 2 \int_{-\infty}^{-\infty} G_{\rm KC} dX$
ABOTTA	0.6 L _p
ADUTIA	A_{ba} = area of aft 60 percent of bottom in ft ²
	$^{0.6 L_p}$
	$= 2 \int G_{\rm KC} dX$
WBOTT	$W_{\rm b}$ = weight of bottom plating in the
ZBOTT	= $(A_{bf} S_{bf}) + (A_{ba} S_{ba})$
	Z_{b} = VCG of bottom plating in ft
F. HULL SIDES - CHINE	TO MAIN DECK
WSF2	S = unit weight of side plating in 1b/ft ² , Figure 5
	= 1.4 + 0.0350 L _p for sandwich plate (IMAT=5)
	= 2.3 + 0.0395 L _p for single skin (IMAT=3 or 4) (minimum value of S is S min)
	s min'

Indian !

Sec. 1

a second second

And And

5 T

ī

ł

SUBROUTINE STRUCT for GRP

	ASIDE	A _s	= area of both sides in $ft^2 = 2 \int_0^{L_P} G_{CS}^{dX}$
	WSIDE	Ws	= weight of side plating in $lb = A_{s} \times S_{s}$
	ZSIDE	z _s	= VCG of side plating in ft
G.	MAIN DECK		
	WSF3	s _d	= unit weight of main deck in lb/ft ² , Figure 5
		-	= unit weight of side plating S s
	ADECK	A _d	= area of main deck in $ft^2 = 2 \int Y_S dX$
	WDECK	Wd	= weight of main deck in $lb = A_d \times S_d$
	ZDECK	Z _d	= VCG of main deck in ft
н.	FRAMING - TRANSVERSE	-	GITUDINAL
	WFRAM	W _{fr}	= weight of framing in 1b, Figure 6
			= 0.75 ∇_{h} for transverse framing (IFRM=1)
			= 1.20 ∇_{h} for longitudinal framing (IFRM=2)
	ZFRAM	Z _{fr}	= VCG of framing in ft = centroid of ∇_{h}
I.	STRESS CALCULATION AT	MIDSH	IPS
	WFLE	W _{fle}	= longitudinally effective framing weight in lb
			= 0.36 W for transverse framing
			= 0.48 W for longitudinal framing
	AFLE	A fle	= longitudinally effective framing half-area in ft ²
			= W _{fle} / 1.40 / 2
	AlP	A ₁ '	= effective half-area added to bottom at midship
			= 0.80 A for transverse framing
			= 0.90 A for longitudinal framing
	A3P	^A 3'	= effective half-area added to deck at midship
			= 0.20 A for transverse framing
			= 0.10 A for longitudinal framing

and the second second

Sector Sector

	×		
	177777		SUBROUTINE STRUCT for GRP
	XKF	^K f	= constant to take care of weight in core of stiffeners which are not effective in strength
			= 0.94 for single skin, longitudinally framed
			= 0.94 x 0.90 for sandwich plate, longitudinally framed
			= 0.60 for single skin, transversely framed
			= 0.60 x 0.70 for sandwich plate, transversely framed
	Tl	^t l	= thickness of bottom plating in inches = $(12 S_{ba}/\gamma_{mat}) \times K_{f}$
	Τ2	t ₂	= thickness of side plating in inches
	Τ3	t ₃	= $(12 \text{ S}_{s}/\gamma_{mat}) \times \text{K}_{f}$ = thickness of main deck in inches
	Yl	² ₁	 = (12 S_d/γ_{mat}) x K_f = half length of bottom at midships in inches = 12 G_{KC}
A second s	¥2	^l 2	m = half length of sides at midships in inches = 12 G _{CS}
	Y3	l ₃	<pre>= effective half length of deck at midships in inches</pre>
	A1	^A 1	<pre>= (2/3) (12 Y) = half area of bottom plating at midships in in.</pre>
	A2	^A 2	= $t_1 l_1 + A_1'$ = half area of side plating at midships in in. ²
	A3	^А з	= $t_2 l_2$ = half area of main deck at midships in in. ² = $t_3 l_3 + A_3$ '
	Zl	z ₁	= VCG of A_1 in inches = $12[Z_{K_m} + 1/2(Z_{C_m} - Z_{K_m})]$
	Z2	z ₂	= VCG of A ₂ in inches = $12[Z_{C_m} + 1/2(Z_{S_m} - Z_{C_m})]$

SUBROUTINE STRUCT for GRP

			SUBROUTINE STRUCT FOR GRP
	Z3	z ₃	= VCG of A_3 in inches in 12 x Z_{S_m}
	Z22	z ₂₂	= vertical height of sides in inches
		22	$= 12 (Z_{S_m} - Z_{C_m})$
	ZNA	z _{NA}	= height of neutral axis at midships above keel in inches
			$= (A_1A_1 + A_2Z_2 + A_3Z_3) / (A_1 + A_2 + A_3)$
	SI	I _m	= sectional inertia in in. ⁴
			$= 2(A_1Z_1^2 + A_2Z_2^2 + A_3Z_3^2 + A_2Z_{22}^2/12)$
			$- (A_1 + A_2 + A_3) Z_{NA}^2$
	SM	Sm	= least section modulus in in. ³
		• •	= $1/Z_{NA}$ or $1/(H_h - Z_{NA})$ whichever is smaller
		NB	= design bow acceleration in $g's = 7.55$
		N _{CG}	= design CG acceleration in g's = 3.0
	TM	М	= bending moment at midships in inlb
•			= 12 $L_p \Delta (128 N_B - 178 N_{CC} - 50)/1920$
	PSI	σ max	= maximum stress in 1b/in. ² = M_b/S_m
		If σ_m	$\leq \sigma_{\text{limit}}$, original plating thicknesses are OK
			$\sigma_{\text{limit}} = \sigma_{\text{NA}} = 0.5 \text{ H}_{\text{h}}$, increase t ₃ by
		0.02	in. and recalculate σ_{max} and $Z_{NA} > 0.5 H_{h}$, increase t_{3} and
		t _l by	0.02 in. and recalculate σ_{max}
	WSF1A	s _{ba}	= unit weight of aft bottom plating in lb/ft^2
		ba	= $t_1 \sigma_{mat} / 12 / K_f$
			recalculate if t ₁ is increased
	WSF3	s _d	= unit weight of deck in lb/ft ²
		u	= $t_3 \sigma_{mat}$ / 12 / K_f
			recalculate if t ₃ is increased
J.	VOLUME LOST		
	VI(1)	⊽,	= total volume of structure in ft ³
		T	= 0.11 ∇_{h} + (W_{fr} / 43)
			h ir

1

ad mark

Station of the local division of the local d

تعقده فا

Marine

The sector

	`	
1		SUBROUTINE STRUCT for GRP
	1 2 4 2	•
	ATOT	A = total area of hull side, bottom, tot main deck, platforms, and bulkheads
		$= A_{s} + A_{bf} + A_{ba} + A_{d} + A_{pl_{1}} + A_{pl_{2}}$
ي		+ ΣA_{tb} + ΣA_{lb}
iver a	VSIDE	∇_{s} = volume of sides = $\nabla_{1} A_{s}/A_{tot}$
-	VBOTT	$\nabla_{\rm b}$ = volume of bottom = $\nabla_{\rm 1} (A_{\rm bf} + A_{\rm ba})/A_{\rm tot}$
	VDECK	∇ = volume of main deck = $\nabla_1 A_d / A_{tot}$
	. VPL1	∇ = volume of lower platform = ∇ A pl ₁ /A tot
	VPL2	$\nabla_{pl_2}^{r=1}$ = volume of upper platform = $\nabla_1 \frac{A_{pl_2}}{A_{pl_2}}$ tot
	VTBT	$\nabla_{tb}^{f^2}$ = volume of transverse bulkheads = $\nabla_{l} (\Sigma A_{tb}) / A_{tot}$
1	VLBT	∇_{lb} = volume of longitudinal bulkheads = $\nabla_{l} (\Sigma A_{lb}) / A_{tot}$
	VFRAM	∇_{fr} = volume of framing = $W_{\text{fr}}/43 = 0.02326 W_{\text{fr}}$
K	. SUMMARY	OF STRUCTURESGroup 1
	W1(2)	W_{100A} = weight of plating for hull bottom in tons
a second		$= W_{\rm b}/2240$
	Z1(2)	$Z_{100A} = VCG$ of bottom plating / hull depth = Z_b/H_h
	V1(2)	∇_{100A} = volume of bottom plating in ft ³ = ∇_{b}
	W1(3)	W _{100B} = weight of plating for hull sides in tons
		$= W_{s}/2240$
	Z1(3)	$Z_{100B} = VCG$ of side plating / hull depth = Z_s/H_b
-	V1(3)	∇_{100B} = volume of side plating in ft ³ = ∇_{s}
	W1(4)	W_{101} = weight of framing in tons= $W_{fr}/2240$
	Z1(4)	$Z_{101} = VCG \text{ of framing / hull depth} = Z_{fr}/H_{h}$
	V1(4)	∇_{101} = volume of framing in ft ³ = ∇_{fr}
12	W1(5)	W _{103A} = weight of upper platform in tons
		$= W_{pl_2}/2240$
	Z1(5)	$Z_{103A} = VCG$ of upper platform / hull depth
		$= \frac{Z_{pl_2}}{h}$
1	V1(5)	$\nabla_{103A} = \text{volume of upper platform in ft}^3 = \nabla_{pl_2}$
5	W1(6)	$W_{103B} = \text{weight of lower platform in tons}$ = $W_{pl_1}/2240$

. .

10-11-A-1-

,

•

ı.

a link

The superstructure, foundations for propulsion and other equipment, and attachment are calculated in Subroutine TOTALS.

4

r

NAME :	SUBROUTINE STRUCT (to be used when ILC=1 and IMAT $<$ 3)		
PURPOSE:	Calculate weight, volumes, and VCG's of major structures, Group 1, for <u>landing craft</u> with well		
CALLING SEQUENCE:	CALL STRUCT		
INPUT:	Via COMMON blocks		
IMAT	<pre>IMAT = 1,2 for structures of aluminum or steel, from Card 11</pre>		
WSFMIN	S = minimum unit weight of plating in lb/ft ² , from Card 11		
WSLOPE	S_{p} = slope of unit weight curves, from Card 11		
DMAT	γ_{mat} = density of structural material in 1b/ft ³ , from Card 11		
XLWELL	L = length of well deck in ft, excluding aft ramp, from Card 6A		
XLBOWR	L = length of bow ramp in ft, from Card 6A		
BWELL	B = breadth of well deck in ft, from Card 6A		
BBOWR	B_{bow} = breadth of bow ramp in ft, from Card 6A		
BAFTR	B = breadth of aft (drive through) ramp in ft, from Card 6A		
ZWELL	Z = height of well deck above baseline in ft, from Card 6A		
ZAFTR	Z = height of aft ramp above baseline in ft, from Card 6A		
Other	Hull geometry from Subroutines NEWHUL, NEWVOL, etc.		
OUTPUT:	Via COMMON blocks		
A. GENERAL EQUATION	S		
	Same as Subroutine STRUCT for conventional planing hulls.		
B. GEOMETRY OF WELL	AND RAMPS		
XLAFTR	L_{aft} = length of aft ramp in ft = $L_p - L_{well}$		
I	Index for DO LOOP I = 1, NN		
HWELL(I)	H well = depth from main deck to well deck or aft ramp in ft		
	= $Z_{S} - Z_{well}$ if $X > L_{aft}$		
	$= Z_{S} - Z_{aft} \text{if } X \leq L_{aft}$		

and an

· SALAR

Sec.

Sec. 2

Course

ł

.

ì

r

b			SUBROUTINE STRUCT for Landing Craft
]	AWELL(I)	A well	<pre>= sectional area below main deck, not enclosed, in ft = B_{well} × H_{well} if X > L_{aft} = B_{aft} × H_{well} if X < L_{aft}</pre>
	VOLWE	⊽ well	
с.	PLATFORM DECKS		
		none	
D.	TRANSVERSE BULKHE	ADS	
	NTB	ⁿ tb	= number of transverse bulkheads input < 15 may be adjusted later so that bulkheads are spaced about 6 ft apart under well deck
	J	Index	for DO LOOP $J = 1$, NTB
	ZKS	H _{tb}	= height of bulkhead in ft = $Z_S - Z_K$
	PRES	Ptb	<pre>= design pressure on bulkhead in lb/in.⁴ = 64 (H_t+4)/144 </pre>
			no addition required for fuel tanks
	WSF	s _{tb}	= unit weight of transverse bulkhead, Figure 4
1	АР	A _{tb}	= area of transverse bulkhead in ft ² = A _S - A _{well}
3 7	DTB	D _{tb}	<pre>= depth of bulkhead web in ftfrom general equation</pre>
	WTB(J)	W _{tb}	<pre>= weight of transverse bulkhead in lb = A_{tb} × S_{tb}</pre>
]	VTB	∇ _{tb}	= volume of transverse bulkhead in ft ³ = A _{tb} × D _{tb}
]	ZTB(J)	Z _{tb}	= VCG of transverse bulkhead in ft = $[(A_S \times C_S) - A_{well}(Z_{well} + 1/2 H_{well})]/(A_S - A_{well})$
1	WTBT	ΣΔ _{tb}	<pre>= total weight of all transverse bulkheads in lb</pre>
]	VTBT	Σ∇ _{tb}	<pre>= total volume of all transverse bulkheads in ft³</pre>
	ZTBT	Ī _{tb}	= net VCG of all transverse bulkheads in ft = $\Sigma (W_{tb} \times Z_{tb}) / \Sigma W_{tb}$

SUBROUTINE STRUCT for Landing Craft

E. LONGITUDINAL BULKHEADS

NLB

1.00

Same of the second

n_lb = number of longitudinal bulkheads = number of propulsion units n - 1 Longitudinal bulkheads extend from transom to aft end of well deck and from bottom of hull up to bottom of aft ramp.

ZKS		= mean height of longitudinal bulkheads in ft $\approx Z_{aft} - Z_{K_2}$
PRES	Plb	= design pressure in 1b/in. ² = $64(H_{2b}+4)/144$
WSF	s	= unit weight in 1b/ft ² , Figure 4
ALBT	ΣA	= total area of longitudinal bulkheads in ft^2 = $H_{lb} \times L_{aft} \times n_{lb}$
DLB		= depth of longitudinal bulkhead web in ft
WLBT	ΣW ₀ b	= total weight of longitudinal bulkheads in 1b = $\Sigma A_{lb} \times S_{lb}$
VLBT	ΣV _{eb} =	= total volume of longitudinal bulkheads in ft ³ = $\Sigma A_{lb} \times D_{lb}$
ZLBT	Z _{lb} =	= net VCG of longitudinal bulkheads in ft = $Z_{K_2} + \frac{1}{2} H_{lb}$

F. HULL BOTTOM - KEEL TO CHINE

Same as Subroutine STRUCT for regular planing hull

WBOTT	W _b	= weight of bottom plating in lb
VBOTT	⊽ _b	= volume of bottom plating in ft^3
ZBOTT	z _ь	= VCG of bottom plating in ft

G. HULL SIDES - CHINE TO MAIN DECK + WALLS OF THE WELL

WSF2	Sso	= unit weight of outer side plating, Figure 5
WSFMIN	Ssw	= unit weight of plating for well walls = S min
ASIDE	Aso	= area of both outer sides in ft ²

 $= 2 \int_{0}^{L_{\rm P}} G_{\rm CS} \, dX$

_			
			SUBROUTINE STRUCT for Landing Craft
	ASWELL	A sw	= area of both sides of well in ft ²
		5	$= 2 \int_{0}^{L_{p}} H_{well} dX$
	DSIDE	D so	= depth of side plating web in ft
	WSIDE	W s	= weight of side plating, including well walls,
		5	in lb $-(A \times S) + (A \times S)$
	NOTOF	Π	<pre>= (A ×S so) + (A ×S sw) = volume of side plating, including well walls,</pre>
	VSIDE	$\nabla_{\mathbf{s}}$	in ft
	·		$= (A_{SO} \times D_{SO}) + (A_{SW} \times D_{D})$
	ZSIDE	Zs	= VCG of side plating in ft, assumed same as well wall
н.	MAIN DECK		
	PRES	Pd	= design pressure on main deck in $1b/in.^2$ = 64 × 4/144
	WSF3	s _d	= unit weight of main deck, Figure 4
	ABWELL	A bw	= area of bottom of well in $ft^2 = L_{well} \times B_{well}$
	AAFTR	A _{ba}	= area of bottom of aft ramp in $ft = L \times B$ aft aft
	ADECK	Ad	= area of main deck in ft ²
		u	$= 2 \int_{0}^{L_{p}} Y_{s} dX - (A_{bw} + A_{ba})$
			0
	DDECK	D d	= depth of main deck web in ft
	WDECK	Wd	= weight of main deck in $lb = A_d \times S_d$
	VDECK	₽d	= volume of main deck in $ft^3 = A_d \times D_d$
	ZDECK	zd	= VCG of main deck in ft
I.	STRESS CALCULATIO	N AT M	IIDSHIPS
		Not r	equired for landing craft
J.	WELL DECK, INCLUD	ING AF	T DRIVE-THROUGH RAMP
	PRES	P wd	= design pressures on well deck in lb/in. ² = 70.0
	WSF4	S _{wd}	= unit weight of well deck, Figure 4

Constant

and the second se

and the second

•

and the second

and South

Seivier B

and the second se

Contraction

in the second second

		SUBROUTINE STRUCT for Landing Craft
	ADECKW	A_{wd} = area of well deck, including aft ramp, in ft ² = A_{bw} + A_{ba}
	DDECKW	D_{wd} = depth of well deck web in ft
	WDECKW	W_{wd} = weight of well deck in 1b = $A_{wd} \times S_{wd}$
	VDECKW	$W_{wd} = \text{weight of well deck in lb} = A_{wd} \times S_{wd}$ $\nabla_{wd} = \text{volume of well deck in ft}^3 = A_{wd} \times D_{wd}$ $Z_{wd} = VCC of well l l l l l l l l l l l l l l l l l $
	ZDECKW	$Z_{wd} = VCG \text{ of well deck in ft}$ $= [(A_{bw} \times Z_{well}) + (A_{ba} \times Z_{aft})]/(A_{bw} + A_{ba})$
К.	BOW RAMP	
	WSF	S_{br} = unit weight of bow ramp in lb/ft ²
		Aluminum hull: $S_{pr} = 25.0$
		Steel hull: $S_{br} = 41.3$
	ABOWR	$A_{br} = area of bow ramp in ft2 = L_{bow} \times B_{bow}$
	DBOWR	D = depth of bow ramp in ft
	WBOWR	$W_{\rm br}$ = weight of bow ramp in 1b = A _{br} × S _{br}
	VBOWR	∇ = volume of bow ramp in ft ² = A × D br br br
	ZBOWR	$Z_{br} = VCG \text{ of bow ramp in } fc = 1.4 \times Z_{well}$
L.	FRAMING - LONGIT	UDINAL AND TRANSVERSE well
		Same as regular planing hull except that we
	WFRAM	well is subtracted from hull volume ∇_{μ}
		$W_{fr} = total weight of framing in 1b, Figure 6= f(\nabla_h') where \nabla_h' = \nabla_h - \nabla_{well}$
	VFRAM	∇_{fr} = volume of framing in ft ³ = 0.06 W _{fr} or 0.03 W _{fr} for aluminum or steel
	ZFRAM	$Z_{fr} = VCG \text{ of framing in ft}$
М.	SUMMARY OF STRUCT	URESGroup 1
	W1(2)	W_{100A} = weight of bottom plating in tons = $W_b/2240$
	W1(3)	W_{100B} = weight of side plating, including walls of well, in tons = $W_{s}/2240$
	W1(4)	W_{101} = weight of framing in tons = $W_{fr}/2240$
	W1(5)	W_{107A} = weight of bow ramp in tons = $W_{br}/2240$
	W1(6)	W _{107B} = weight of well deck, including drive-through ramp, in tons = W _{wd} /2240

Server a

R.C. Long

ないで

.

SUBROUTINE STRUCT for Landing Craft

W1(7)	W_{107C} = weight of main deck in tons = $W_d/2240$
NTB	$n_{tb}' = reversed number of transverse bulkheads$ = $(L_{well}/6.0) + 2$
W1(8)	$W_{114A} = \text{weight of transverse bulkheads in tons}$ = $\Sigma W_{tb} (n_{tb}^{i}/n_{tb})/2240$
W1(9)	W_{114B} = weight of longitudinal bulkheads in tons = $\Sigma W_{1b}/2240$
Zl array	VCG/H _h of structural components in same order as Wl array
Vl array	Volume in ft ³ of structural components in same order as Wl and Zl arrays
	The superstructure, foundations, and attachments are calculated in Subroutine TOTALS.
	Subscripts are BSCI 3-digit code

and and

NAME:	SUBROUTINE POWER
PURPOSE:	Estimate power requirements at design and cruise speeds. Calculate weights, volumes, and VCG's of major components of propulsion system, Group 2. Calculate fuel required for range specifications.
CALLING SEQUENCE:	CALL POWER
SUBROUTINES CALLED:	PHRES, PRCOEF, SAVIT, PROPS, WJETS
INPUT:	Via COMMON blocks
VDES	V = design (maximum) speed in knots, from d input Card 7
VCRS	V_{c} = cruise speed in knots $\leq V_{d}$, from Card 7
RANGED	Range = range requirement at design speed in nautical miles, from Card 7
	May be 0 if cruise range dominates
RANGEC	Range = range requirement at cruise speed in nautical miles, from Card 7
H13D	H _{1/3} = maximum significant wave height in ft specified for operation of ship at V _d , from Card 7
H13C	H _{1/3} = maximum significant wave height in ft specified for operation of ship at V _c , from Card 7
IPROP	Control for type of thrusters, from Card 6 IPROP = 1 for Gawn-Burrill type propellers IPROP = 2 for Newton-Rader type propellers IPROP = 3 for Wageningen B-screw type propellers IPROP = 4 for B-screw type, assuming no Cavitator
IPM	IPROP = 4 for B-screw type, assuming no cuvitator IPROP = 5 for water; ets Control for type of engines, from Card 6 IPM = 1 for diesel prime movers IPM = 2 for gas turbine prime movers IPM = 3 for CODOG system (gas turbines w/auxiliary dies IPM = 4 for COGOG system (gas turbines w/auxiliary dies
DLBS	∆ = ship displacement in lb, from Subroutine NEWHUL
PRN	<pre>n = number of prime movers = number of thrusters, from input Card 12 or Sub- routine PROPS</pre>
AUXNO	n = number of auxiliary engines, from Card 12
Other	Various constants relating to engines and gears from input Cards 13, 14, and 15 المحمد ال.
WFUEL	WFX = Fixed Fuel weight intons, From Cord 9 (optional input)

1944

1.00

51 - 12 A

J

t

.

OUT	PUT:	Via COM	MON blocks
A.			N AND CRUISE SPEEDS
• •	NV		of speeds = 2 (if $V_c < V_d$); 1 (if $V_c = V_d$)
	I		for DO LOOP I = 1, NV
	VKT(I)		= ship speed in knots = V_d , V_c when I = 1,2
	VFPS	V _K V	= ship speed in ft/sec = $1.6878 V_{\rm K}$
	FNV(I)	F _{n⊽}	= speed-displacement coefficient = $V/(g\nabla^{1/3})^{1/2}$
	H13(I)	H _{1/3}	= significant wave height in ft
	ADF(I)	n _a	= appendage drag factor
	TDF(I)	l-t	= thrust deduction factor
	TWF(I)	1-w	= thrust wake factor = torque wake factor
		Propel1	ers: ŋ, 1-t, 1-w from Subroutine PRCOEF
		Waterje	4
	TAU(I)	τ	<pre>= trim angle in degrees from Subroutine SAVIT</pre>
	RWS(I)	(R/W)s	= resistance-weight ratio from Subroutine SAVIT, not used for the power predictions
	RWB(I)	(R/W) _b	= resistance-weight ratio of bare hull = R_{b}/Δ
	RWA(I)	(R/W) a	= resistance-weight ratio of appendaged hull = R_a/Δ
	RWW(I)	(R/W) _w	= resistance-weight ratio in seaway = R_{T}/Δ
	RBH	R _b	<pre>= bare hull resistance from Subroutine PHRE or input from Card 7 or Card 29</pre>
		Ra	= appendaged hull resistance = R_b/η_a
	RT	R _T	= total resistance at $H_{1/3} = R + R_{aw}$
		Raw	= added resistance in waves
	ЕНРВН	Р _Е Ъ	= bare hull effective power = $R_b V / 550$
	EHP(I)	P _E	= total effective power = $R_T V / 550$
	THRUST(I)	T	= total thrust in $1b = \frac{1}{R_{T}}/(1-t)$
	DHP(I)	P _D	= total power delivered at thrusters

A MANAGER A

and the second second

Section 2

Control of the second

المنشطط

Second Second

SUBROUTINE POWER SHP(I) PS = total shaft power RPM(I) = speed of thrusters in revolutions per Ν minute PC(I) η_D = propulsive coefficient = P_F/P_D For propellers: P_D, P_S, N, n_D from Subroutine PROPS For waterjets: P_D, P_S, N, n_D from Subroutine WJETS BHP(I)PB = total brake power = overall performance coefficient = $P_{E_{1}}/P_{D}$ PCO(I) OPC TORQUE(I) Q = total torque in ft-1b = 33000 $P_{n}/(2\pi N)$ Pd BHP (1) = total brakepower at V_d BHP (2) = total brakepower at V Β. PRIME MOVERS AND GEARS PE = maximum brake power of each prime mover Pe = Pd/npr (or value of PEMAX input on Card 11) P_d' THP = total brake power of prime movers = P x n e pr SWe SWE = specific weight of engines in 1b/hp Diesels: $SW_e = FM1 (25.1/P_e^{0.207})$ Gas Turbines: $SW_e = FM1 (0.42+2.88 \times 10^6 / P_2^{2.67})$ W_e WE = weight of each prime mover in 1b = SW × P (or value of FWE in put on Cord 15) RE = speed of prime movers in rpm RD = speed of thrusters at V_d in rpm N d GR ^mg = gear ratio = Ne/Nd (or GRENG input on Cond 14) QE = gear weight factor = $(P_e/N_e)(m_g+1)^3/m_g$ ${}^{\mathsf{Q}}_{\mathsf{e}}$ Note: Input values supersede general equations in program.

When input value is blank or 0.0, general equation is used

SUBROUTINE POWER

с. د....

distantian di

and a second

10 m

WG
$$W_g$$
 = weight of gears for each prime mover
in 1b
= 16000 (Q_e/K)^{0.9} for single reduction $\begin{pmatrix} or F \omega C \\ Friend \\ Card IS \end{pmatrix}$
K = gear tooth factor input on Card 14
AUXILIARY ENGINES AND GEARS (By-pass if IPM < 3)
AHP P_c = total horsepower of auxiliary engines
= $P_a \times n_{aux}$
PEA P_a = horsepower of each auxiliary engines
in 1b/hp
Diesels: SW = Specific weight of auxiliary engines
in 1b/hp
Diesels: SW = FM2 (0.4242.88×10⁶/P_a^{2.67})
WEA W_a = weight of each auxiliary engine in 1b
= $SW_a \times P_a$ (or F $\omega \in A form C \text{ cord } II$)
WEA W_a = speed of auxiliary engines in rpm
Diesels: $N_a = FM6 (2.09\times10^6 P_a^{0.884}/W_a)$ (or RAMAX)
Gas Turbines: $N_a = FM6 (5.4\times10^5/P_a^{0.49})$ (or Cord IY)
QE Q_a = gear weight factor = ($P_a/N_a/(m_a+1)^3/m_{a_a}$
WGA W_a = weight of gears for each auxiliary
= 16000 (Q_a/K) for single reduction (or FWCA
= 9500 (Q_a/K) for planetary gears
K = gear tooth factor input on Card 14

SUBROUTINE POWER PROPELLERS, SHAFTING, BEARINGS, ETC. (By-pass if IPROP = 4) D. DFT D = diameter of propeller in ft from Subroutine PROPS EAR EAR = propeller expanded area ratio input on Card 12 WPR Wpr = weight of each propeller in 1b $= D^3$ (5.05 EAR + 3.3)SHL L sh = shaft length in ft from Subroutine PROPS QD Q_{sh} = torque per shaft in ft-lb = Q at V_d/n_{pr} S .s = shear stress due to torsion in 1b/in² = 14000= shaft inner diameter/outer diameter ζ initial value of 0.67 used for hollow shaft SHDO = outer shaft diameter in inches d_o = $[192 \ Q_{sh}/(\pi S_s)/(1-\zeta^4)]^{1/3}$ If $d_0 < 6$ inches, set $\zeta=0$ for solid shaft, and recalculate d_0 SHDI d, = inner shaft diameter in inches = ζd_{α} WSH W_{sh} = weight of each shaft in lb = 3.396 L_{sh} $(d_o^2 - d_i)^2 \pi/4$ L max = maximum length of unsupported shafting in ft = 178.5 $(d_0/N_d)^{1/2}$ = number of shaft segments = L /L sh max NSEG ⁿseg rounded up = length of each segment in ft = L /n seg SEGL L seg WB W_b = weight of coupling, bearings, etc. for each shaft in 1b = $n_{seg} (0.00792 Q_{d} + 5.0 d_{o} L_{seg})$ Da = diameter of auxiliary propeller in ft PROFDA input on Cord 12 $W_{Pra} = W_{eight} of each aux. prop. in 1b$ = $\tilde{D}_{a}^{3} (5.05 EAR + 3.3)$ WPLA

Ξ.	WATERJET PUMPS	(By-pass if IPROP < 4) SUBROUTINE POWER	3
	DFT	D = diameter of waterjet impeller in ft from Subroutine WJETS	
	AJ	A_{j} = area of jet in ft ² from Subroutine WJETS	
	WLW	<pre>B = breadth of each waterjet unit in ft ^{wj} = 1.10 D</pre>	
	WJL	L_{wj} = length of waterjet unit inside of hull, in ft wj = 4.8 D	5
	WJH	H = height of waterjet unit in ft ^{wj} = 1.8 D	
	₩2(3)	<pre>∇ = internal volume required for waterjets in ft⁻ wj = [n B + c(1 + n pr)] [H + c] [L j] where c is clearance of 1.5 ft around units</pre>	3
	Z2(3)	VCG = VCG of waterjets above baseline in ft	
		$w_{j} = Z_{K_{1}} + 0.5 (Z_{C_{1}} - Z_{K_{1}}) + 1.15 D$	
	HPD	P = maximum input horsepower per unit d = (DHP at V _d) / n _{pr}	
	WPR	$W_{wj} = \text{weight of each complete waterjet unit in 1b*}$ = 1.4 ρ A _J (b ₀ P _d ^e 0 + b ₁ P _d ^{e1} + b ₂ P _d ^{e2} + b ₃ P _d ^{e3})	
		where $b_0 = -695241$. $e_0 = -1.0556$ $b_1 = 4321.3$ $e_1 = -0.0556$ $b_2 = 1.2156$ $e_2 = 0.9444$ $b_3 = -0.0000395$ $e_3 = 1.9444$	
	WSH	Weight of shaftings, bearings, etc. included in W _{wj} ;	
	WB	$W_b = 0$ Factor of 1.4 in equation for waterjet weight takes care of steering-reversing gear.	

All all and

E

F.		OR PROPULSION SYSTEM
	VOLE	
		movers in ft ³ Diesels: $\nabla_{e} = 31.95 P_{d} \Delta_{LT}^{0.228} / V_{d}^{1.37}$
	VOLEA	Gas Turbines: $\nabla_e = 0.274 P_d$ $\nabla_a = volume of space for auxiliary engines$
		in ft ³ Diesels: $\nabla_a = 31.95 P_c \Delta_{LT}^{0.228} / V_c^{1.37}$
	VOLE2	Gas Turbines: $\nabla_a = 0.137 P_c$ $\nabla_{e2} = volume of inlets and exhausts for$
	VOLEA2	Diesels: $\nabla_{e2} = 0.0357 P_{d}$
		Gas Turbines: $\nabla_{e2} = 0.06135 P_{d}$ $\nabla_{a2} = volume of inlets and exhausts for$
		auxiliary engines in ft ³ Diesels: $\nabla_{a2} = 0.0357 P_c$ Gas Turbines: $\nabla_{a2} = 0.06135 P_c$
		∇_{e} , ∇_{a} , ∇_{e2} , ∇_{a2} from general equations above may be superseded by values of FVOLE, FVOLEA, FVOLE2, FVOLA2, respectively, input on Card 15.
		Space for all other components of propulsion system assumed to be included in main engine room ∇_{ρ} ,
		e' except for waterjets. See Section D for additional volume required for waterjets.

diam.

Under a

the start

Sugar Se

Marine Sta

and the second

Sec.

have a

SUBROUTINE POWER

G.	SUMMARY OF PROPULSIC	NGroup	2
	W2(2)	₩ ₂₀₁	<pre>= weight of propulsion units, engines and gears in tons = [(We+Wg) npr + (Wa+Wga) naux]/2240</pre>
	W2(3)	W ₂₀₃	= weight of shafting, bearings, and propellers (or waterjets) in tons =[(W _{sh} +W _b +W _{pr}) n _{pr} /2240] + [Wpr _c n _{cup} /2240]
	W2(4)	W ₂₀₄ ,205	<pre>= weight of combustion air supply and uptakes in tons = 0.0002 P d</pre>
	W2(5)	^W 206	<pre>= weight of propulsion control equipment in tons = 0.00005 P d</pre>
	W2(6)	W ₂₀₉	= weight of circulating and cooling water system in tons = 0.000036 P _d
	W2(7)	W ₂₁₀	= weight of fuel oil service system in tons = $0.000076 P_d + W_{ft}$
	W2(8)	W ₂₁₁	= weight of lubricating oil system in tons = 0.000036 P _d
	W2(9)	W _{250,251}	= weight of repair parts and operating fluids in tons = 0.000118 P d
	V2(2)	[∇] 201	= volume of propulsion units in ft^3 = $\nabla_e + \nabla_a$
	V2(3)	[∇] 203	<pre>= 0.0 except when waterjets are used; see section on waterjets</pre>
	V2(4)	[∇] 204,205	= volume of air supply and uptakes in ft ³ $\nabla_{e2} + \nabla_{a2}$
	VPR	∇ _{pr}	= total volume of propulsion system in ft ³ = $\nabla_{201} + \nabla_{203} + \nabla_{204,205}$
			ts are BSCI 3-digit code
	Z2(4)	^Z 204,205	<pre>= VCG of air supply and uptakes / hull depth = 1.13</pre>
н.	FUEL REQUIREMENT		
	SFCD	SFCd	<pre>= specific fuel consumption of prime movers at design speed in lb/hp/hr</pre>
		Diesels:	$SFC_{d} = FM3 [0.859-0.247 \log P_{e} +0.0309(\log P_{e})^{2}]$
		Gas Turb	

A MAN

A. Carlor

Same

a second

Survey and

لمشيسه

-2242

Sec. 1 and

أستسلما

Sec. of

المشموعينية

	÷
	SUBROUTINE POWER
SFCdfrc	om general equations may be superseded by
value of	FSFCD input on Card 15.
SFCc	= specific fuel consumption of prime movers at cruise speed in lb/hp/hr (by-pass if auxiliary engines are used)
Diesels:	$SFC_{c} = SFC_{d} [0.853/(P_{c}/P_{d})^{0.214}]$
N	+0.147 $(P_c/P_d)^3$]
Gas Turb	ines: $SFC_{c} = SFC_{d} [(-0.181 P_{e}^{0.11} + 0.762)]$
	$/(P_c/P_d)^{0.825} + 0.377 P_c^{0.0734}$
SFC	= specific fuel consumption of auxiliary engines with maximum power at V in lb/hp/hr
Diesels:	$SFC_{c} = FM4 [0.859-0.247 \log P_{a} + 0.0309 (\log P_{a})^{2}]$
Gas Turbi	
SFC from	general equations may be superseded by
value of	FSFCC input on Card 15.
FRd	= total fuel rate in lb/hr at design speed = SFC \times P d
FR	= total fuel rate at cruise speed in lb/hr = SFC × P c c
	<pre>= operating time for cruise speed range in hours = Range_/V_c</pre>
H _d	<pre>= operating time for design speed range in hours = Range_d/V_d</pre>
W _f c	fuel required for cruise speed range in tons H × FR /0.95/2240
W _f =	fuel required for design speed range in tons H × FR /0.95/2240

SFCC

SFCC

•

N.Y.

New Leve

Sec. 1

Sec.

No. of the second

A States

All states

.

FRD

FRC

HOURS

HOURSD

WF

WFDES

.

ī

e .

WF

WFT

 $W_{f} = weight of fuel in tons$ $= W_{f_{c}} or W_{f_{c}}, whichever is greater$ Range_c or Range_d is recalculated based on the dominating fuel weight W_{f} . $W_{ft} = weight of fuel tanks in tons$ If IFT = 0, then W_{ft} = 0, since fuel tanks, are included with the hull structures.
If IFT = 1, then W_{ft} = 0.15 W_{f} , for separate fuel tanks (1.0 lb / gallon of fuel)

NAME :	SUBROUTINE ELECPL
PURPOSE:	Calculate weights, volumes, and VCG's of the major components of the electric plant, Group 3
CALLING SEQUENCE:	CALL ELECPL
INPUT:	Via COMMON blocks
FKW	<pre>KW = electric power in kilowatts, optional input on Card 11</pre>
W	W = total ship weight in tons = Δ_{LT} , from PHFMOPT
HMB	H = height of machinery box in ft, from Subroutine NEWVOL
HDM	H_h = hull depth at midships in ft, from PHFMOPT
PL	L _p = ship projected chine length in ft, from input Card 29
BPA	B _{PA} = average chine beam in ft, from Subroutine NEWHUL
VOLT	∇_{T} = total enclosed volume, including superstruc-
	ture, in ft ³ , from Subroutine NEWVOL
OUTPUT:	Via COMMON blocks
PKW	KW = electric power in kilowatts = $4.29 \times W^{0.79}$ or value of FKW input on Card 11
W3(2)·	W_{300} = weight of electric power generation in tons = 0.352 + 0.0408 KW if KW \leq 40
	= 1.8 + 0.0046 KW if $KW > 40$
Z3(2)	$Z_{300} = VCG$ of electric power generation / hull depth = (2.0 + 0.63 H _{mb}) / H _h
W3(3)	W ₃₀₁ = weight of power distribution switchboard in tons = 0.0033 KW
Z3(3)	Z ₃₀₁ = VCG of power distribution switchboard / hull depth = 0.786 H _{mb} /H _h
W3(4)	W_{302} = weight of power distribution system cables = 0.000085 ∇_{T}
Z3(4)	$Z_{302} = VCG$ of power cables / hull depth = 0.699
W3(5)	W_{303} = weight of lighting system in tons = 0.0000265 L _P × B _{PA} × H _h
Z3(5)	Z_{303} = VCG of lighting system / hull depth = 1.383 No volume is added for electric plant assumed to be
	included in volume of main engine room.
	Subscripts are BSCI 3-digit code

J

(Shedies

analis.

and the second

]

	AME:	SUBROUTINE COMCON
1	PURPOSE:	Calculate weights, volumes, and VCG's of the non- military components of communication and control, Group 4
1	CALLING SEQUENCE:	CALL COMCON
	INPUT:	Via COMMON blocks
1	VOLT	$\nabla_{\rm T}$ = total enclosed volume, including superstruc-
3		ture, in ft ³ , from Subroutine NEWBOL
1	PL	L _p = ship projected chine length in ft, from input Card 29
1	BPA	B _{PA} = average chine beam in ft, from Subroutine NEWHUL
3	HDM	H_{h} = hull depth at midships in ft, from PHFMOPT
1	ZPC	Z _{PC} = centroid of profile above baseline / hull depth, from Subroutine NEWVOL
-	OUTPUT:	Via COMMON blocks
1	W4(2)	W ₄₀₀ = weight of non-electronic navigation equipment in tons = 0.0000035 ∇ _T
	Z4(2)	$Z_{400} = VCG$ of navigation equipment / hull depth = 2.18 Z_{PC}
	V4(2)	∇_{400} = volume of navigation equipment in ft ⁻³ = 0.10 ∇_{T}
]	W4(3)	W ₄₀₁ = weight of interior communication system in tons = 0.0000465 L _P B _{PA} H _h
1	Z4(3)	$Z_{401} = VCG$ of communication system / hull depth = 0.786
3	V4(3)	$\nabla_{401} = \text{volume of communication system in ft}^3$ = 0.0036 ∇_{T}
		Remainder of communication and control is considered part of the payload.

			1 N 29 - 14
N	NAME :	SUBROU	JTINE AUXIL
F	PURPOSE:	Calcul compor	ate weights, volumes, and VCG's of major ments of auxiliary systems, Group 5
C	ALLING SEQUENCE:	CALL A	
I	NPUT:	Via CC	MMON blocks
	VOLT	$\nabla_{\mathbf{T}}$	<pre>= total enclosed volume in ft³, from Subroutine NEWHUL</pre>
	PL	L _P	= ship length in ft, from input Card 29
	BPA	B _{PA}	<pre>= average chine beam in ft, from Subroutine NEWHUL</pre>
	HMB	H mb	= height of machinery box in ft, from Subroutine NEWVOL
	HM	Н	<pre>= draft at midships in ft, from Subroutine NEWHUL</pre>
	DMULT	м _Д	<pre>= multiplier for ship size, from Subroutine CREWSS</pre>
	ZPC	z _{PC}	= centroid of hull profile above baseline / H _h , from Subroutine NEWVOL
	ACC	acc	<pre>= total accommodations, from input Card 10 or Subroutine CREWSS</pre>
	DAYS	days	= number of days for provisions, from Card 10
	WF	W _F	= weight of fuel in tons, from Subroutine POWER
	W	W	= total ship weight in tone - A
OU	TPUT:	Via COM	= total ship weight in tons = Δ_{LT} from PHFMOPT MON blocks
Α.	GENERAL NOTATION		
		W denote	es weight in long tons
			es VCG / hull depth
			es volume in ft ³
		Subscrip	t is BSCI 3-digit code
Β.	HEATING AND AIR-C	CONDITIONI	NG SYSTEMS
	W5(2)	W _{500,502}	=0.000036 V _T .
	Z5(2)	•	$= 1.271 Z_{PC}$
с.	VENTILATION SYSTE		
	W5(3)	W ₅₀₁	= 0.000025 $\nabla_{\rm T}$

- 4.6.11.

J

A.

are the party of

ANA PARA

]

أتشتينا والمراجع

and the second se

Sec. 1

ī

-

SUBROUTINE AUXIL

		Z5(3)	z ₅₀₁	= 1.528 Z _{PC}
.3		V5(3)	⊽ ₅₀₁	= 0.03 $\nabla_{\rm T}$
1	D.	REFRIGERATING SPAC	ES	
4		W5(4)	W ₅₀₃	= M_{Δ} (0.26 + 0.0113 acc)
		Z5(4)	z ₅₀₃	= 0.465
		V5(4)	∇ ₅₀₃	= 0.69 acc × days
1	E.	PLUMBING INSTALLA	TIONS	
1		W5(5)	W ₅₀₅	= 0.0267 acc
1		Z5(5)		= 1.29 Z _{PC}
		V5(5)	∇ ₅₀₅	= 26.4 acc + 100.0
	F.	FIREMAIN, FLUSHIN	G, SPRINK	LING
1		W5(6)	^W 506	= 0.00004 $\nabla_{\rm T}$
3		Z5(6)	z ₅₀₆	= 0.6689
	G.	FIRE EXTINGUISHIN	IG SYSTEM	
Provide		W5(7)	W ₅₀₇	= 0.0000131 ∇ _T
J		Z5(7)	z ₅₀₇	= 0.750
6	н.	DRAINAGE AND BALL	.AST	
		W5(8)	W.508	= 0.0000194 ∇ _T
7		Z5(8)	z ₅₀₈	= 0.292
		V5(8)	∇ ₅₀₈	= 0.00438 V _T
	I.			1
	. •	W5(9)	W ₅₀₉	= 0.023 acc
		25(9)	2509 2509	= 1.005 Z _{PC}
]				10
-	J.	SCUPPERS AND DECK		
		W5(10) ·	W ₅₁₀	= 0.00000333 $\nabla_{\rm T}$
		Z5(10)	z ₅₁₀	= 0.9806
	К.	FUEL AND DIESEL (DIL FILLI	4G
-		W5(11)	W ₅₁₁	$= 0.0003 W_{\rm F}$.
		Z5(11)	z ₅₁₁	= 0.418

Sec. 1

ŕ

L	. COMPRESSED AIR	CX CTTT (SUBROUTINE AUX
-	W5(12)		
		^W 513	= 0.0
М	Z5(12)	z ₅₁₃	= 0.0
11			
	W5(13)	W ₅₁₇	$= 0.000848 (15 acc)^{1.021}$
	25(13)	² 517	= 0.540
	V5(13)	⊽ ₅₁₇	= H _{mb} [160.0 + 0.0031 (15 acc)]
N.	. STEERING SYSTEM		
	W5(14)	W ₅₁₈	$= 0.001205 \text{ H L}_{p}$
	Z5(14)	z ₅₁₈	= 0.656
	V5(14)	⊽ ₅₁₈	= 0.2176 $B_{PA} L_{P}$
ο.	RUDDERS	218	PA P
0.	W5(15)		
	Z5(15)	W519	L
		z ₅₁₉	= 0.382
Ρ.	MOORING, TOWING,	ANCHOR,	DECK MACHINERY
	W5(16)	w ₅₂₀	= 0.0002 ∇_{T}
	Z5(16)	z ₅₂₀	= 0.702
	V5(16)	∇ ₅₂₀	= 0.5 W
Q.	STORES HANDLING	220	
	W5(17)	W	= 0.00000865 V _T
	Z5(17)	^W 521 Z	= 1.0
	V5(17)	^Z 521 ⊽	
R.		⊽ ₅₂₁	= 0.00088 ∇_{T}
к.	REPLENISHMENT AT		
	W5(18)	W ₅₂₈	= 0.0000025 $\nabla_{\rm T}$
	Z5(18)	z ₅₂₈	= 0.807
	V5(18)	⊽ ₅₂₈	= 0.00168 $\nabla_{\rm T}$
s.	REPAIR PARTS		-
	W5(19)	W ₅₅₀	= 0.0053 (W ₅₀₀ ,502 ^{+W} 501 ^{+W} 503 ^{+W} 505 ^{+W} 506 ^{+W} 507
			+W ₅₀₉ +W ₅₁₃ +W ₅₁₇ +W ₅₁₈ +W ₅₂₀)
			202 212 211 218 250,

]

and some

Same and

1. A.B

-

SUBROUTINE AUXIL

Z5(19)	z ₅₅₀	= 0.5335
V5(19)	∇ ₅₅₀	= 0.004 V _T

T. OPERATING FLUIDS

W5(20)	W ₅₅₁ = 0.04 (Sum of all preceding Group 5 weights)
Z5(20)	$Z_{551} = 0.9039$
	Volumes of items not specified are assumed to either
	be negligible or included in the machinery box.

Weights and volumes from these general equations for the auxiliary systems may be changed or eliminated by appropriate multipliers (K-factors) input on Cards 22 and 23. The multiplications are performed in Subroutine TOTALS together with the summation of all Group 5 weights.

NAME:		INE OUTFIT
PURPOSE:	Calcula ponents	te weights, volumes, and VCG's of major com- of outfit and furnishings, Group 6
CALLING SEQUENCE:	CALL OU	TFIT
INPUT:	Via COM	MON blocks
VOLT	$\triangledown_{\mathtt{T}}$	<pre>= total enclosed volume in ft³, from Subroutine NEWVOL</pre>
· VPR	⊽ pr	= total volume of propulsion system in ft ³ , from Subroutine POWER
VF	$\nabla_{\mathbf{F}}$	= volume of fuel tanks in ft ³ , from Sub- routine LOADS
PL	L _p	= ship length in ft, from input Card 29
BPA	B _{PA}	= average chine beam in ft, from Subroutine NEWVOL
DMULT	M_{Δ}	= multiplier for ship size, from Subroutine CREWSS
ZPC	z _{pc}	= centroid of hull profile above baseline / hull depth, from Subroutine NEWHUL
ACC	acc	<pre>= total accommodations, from Card 10 or CREWSS</pre>
CREW	crew	<pre>= number of enlisted men, from Card 10 or CREWSS</pre>
CPO	CPO's	= number of CPO's, from Card 10 or CREWSS
OFF	office	rs = number of officers, from Card 10 or CREWS
OUTPUT:	Via CO	MMON blocks
A. GENERAL NOTATIO	N	
	W deno	tes weight in long tons
· •		tes VCG / hull depth
		tes volume in ft ³
	Subscr	ipt is BSCI 3-digit code
B. HULL FITTINGS		
W6(2)	W ₆₀₀	= $0.00034 L_{P} B_{PA}$
Z6(2)	z ₆₀₀	= 1.064
C. BOATS, STOWAGES		IDLING
W6(3)	W ₆₀₁	= 0.02232 acc
• •	00T	

]

A Contraction of the local distribution of t

True and

]

.

ł

and the second second state and the second second

1

ä

SUBROUTINE OUTFIT RIGGING AND CANVAS = 0.005 (sum of all Group 6 weights) W₆₀₂ W6(4) $= 2.15 Z_{PC}$ Z6(4) Z₆₀₂ LADDERS AND GRATING Ε. = 0.000032 M_{Δ} (3 $\nabla_{\rm pr} + \nabla_{\rm T}$) W₆₀₃ W6(5) = 0.469Z6(5) Z₆₀₃ = 0.10 M_{Δ} ($\nabla_{\rm T} - \nabla_{\rm pr} - \nabla_{\rm F}$) 7603 V6(5) F. NONSTRUCTURAL BULKHEADS AND DOORS = 0.0000209 $M_{\Lambda} \nabla_{T}$ W6(6) W604 $= 1.438 Z_{PC}$ z₆₀₄ Z6(6) G. PAINTING = 0.00003348 ∇_{T} W₆₀₅ W6(7) $= 0.958 Z_{PC}$ Z₆₀₅ Z6(7) DECK COVERING н. = 0.0000368 ∇_{π} W606 W6(8) $= 1.331 Z_{PC}$ Z₆₀₆ Z6(8) HULL INSULATION I. $= 0.00022 \ \nabla_{\rm T}$ ₩₆₀₇ W6(9) $= 1.271 Z_{PC}$ Z6(9) Z₆₀₇ J. STOREROOMS, STOWAGE, AND LOCKERS = 0.0688 acc W6(10) W608 = 0.633 Z₆₀₈ Z6(10) = 1.125 acc [∇]608 V6(10) K. EQUIPMENT FOR UTILITY SPACES = 0.01 accW₆₀₉ W6(11) z₆₀₉ = 0.728 Z6(11) = 0.552 acc V6(11) [∇]609 L. EQUIPMENT FOR WORKSHOPS = 2.0 + 0.000005 ∇_{T} , if $\nabla_{\mathrm{T}} \ge$ 300,000 W₆₁₀ W6(12) = 0.00001165 ∇_{T} , if ∇_{T} < 300,000

			SUBROUTINE OUTFIT
	Z6(12)	² 610	$= 1.207 Z_{PC}$
	V6(12)	⊽ ₆₁₀	= 8.0 (100.0 + 0.00025 $\nabla_{\rm T}$), if $\nabla_{\rm T} \ge 300,000$
			= 8.0 (0.000585 $\nabla_{\rm T}$) , if $\nabla_{\rm T}$ < 300,000
Μ.	GALLEY, PANTRY,	SCULLERY,	COMMISSARY
	W6(13)	W ₆₁₁	= 0.01833 acc
	Z6(13)	z ₆₁₁	$= 1.45 Z_{PC}$
	V6(13)	⊽ ₆₁₁	= 29.6 acc
N.	LIVING SPACES		
	W6(14)	W ₆₁₂	<pre>= 0.03693 (Crew + 1.55 CPO's + 4.35 officers) + 0.00529 (Crew + 4.17 CPO's + 6.36 officers)</pre>
	Z6(14)	z ₆₁₂	= 1.32 Z_{PC}
	V6(14)	∇ ₆₁₂	<pre>= 8.0 [19.8 (Crew + 1.55 CPO's + 2.75 officers) + 140.0 + 4.46 (Crew + 3.36 CPO's + 4.68 officers)]</pre>
0.	OFFICERS, CONTROL	CENTER	
	W6(15)	W ₆₁₃	= 0.02 acc
	Z6(15)	z ₆₁₃	= 1.538 Z _{PC}
	V6(15)	V ₆₁₃	$= 149.3 W_{613}$
Ρ.	MEDICAL - DENTAL	SPACES	
	W6(16)	W ₆₁₄	= 0.0035 acc
	Z6(16)	z ₆₁₄	= 1.38 Z _{PC}
	V6(16)		= 149.3 W_{614} of items not specified are assumed to be e.
		appropria These mul	and volumes from these general equations for t and furnishings will be multiplied by te K-factors input on Cards 24 and 25. tiplications and summations of all Group 6 re performed in Subroutine TOTALS.

- And - And

and the

Sector 1

Star March

Sec. Sec.

Marine

NAME :	SUBROUTINE LOADS
PURPOSE:	Calculate weights, volumes, and VCG's of the fuel load, crew and effects, personnel stores, and potable water
CALLING SEQUENCE:	CALL LOADS
INPUT:	Via COMMON blocks
WF	W _F = weight of fuel in tons to meet range require- ment(s), from Subroutine POWER
HDM	H_{h} = hull depth at midships in ft, from PHFMOPT
ACC	acc = total accommodations, from Card 10 or Sub- routine CREWSS
DAYS	days = number of days for provisions, from Card 10
XL array	K-factors for the loads, from card 16
OUTPUT:	Via COMMON blocks
WL(2)	W_{F} = weight of fuel in tons
ZL(2)	Z _F = VCG of fuel / hull depth, see Figure 2
	Z_{F} = centroid of midship section $C_{S_{m}}/H_{h}$ if $H_{h} \leq 10.0$
	$Z_{F} = (H_{h} - 8.0)/H_{h}$ if 10.0 < $H_{h} \le 20.0$
	$Z_{\rm F} = ({\rm H}_{\rm h} - 16.0) / {\rm H}_{\rm h}$ if ${\rm H}_{\rm h} > 20.0$
VL(2)	$\nabla_{\rm F}$ = volume of fuel in ft ³ = 42.96 × W _F × 1.05
WL(3)	W _{L1} = weight of crew and personnel effects in tons = 0.120 × acc
ZL(3)	$Z_{L1} = VCG$ of crew and effects / hull depth = 0.732
VL(3)	∇_{L1} = volume of crew and effects in ft ³ = 0.344 × acc
WL(4)	W _{L6} = weight of personnel stores in tons = 0.00284 × acc × days
ZL(4)	Z _{L6} = VCG of personnel stores / hull depth = 0.536
VL(4)	$\nabla_{\rm L6}$ = volume of personnel stores in ft ³
	= $(1.05 \times acc \times days) + (0.265 \times acc^{1/2} \times days)$ + $(4.38 \times acc^{1/2} \times days^{1/2}) + (0.4 \times days) + 8.0$
WL(5)	W _{L12} = weight of potable water in tons = 0.1485 × acc (40 gal per man)
ZL(5)	$Z_{L12} = VCG$ of potable water / hull depth = 0.138

and so in

No. And And

1

Sec. 6

Statistics and

The second second

China State

	SUBROUTINE LOADS
VL(5)	∇_{L12} = volume of potable water in ft ³ = 5.35 × acc
	Weights and volumes of loads from the preceding general equations are multiplied by appropriate K- factors input on Card 16. Normally the K values are l.O. VCG's are not affected by the multipliers.
WCE	W_{CE} = total weight of crew and provisions in tons = W_{L1} + W_{L6} + W_{L12}
ZCE	Z_{CE} = net VCG of crew and provisions / hull depth = $(W_{L1}Z_{L1} + W_{L6}Z_{L6} + W_{L12}Z_{L12})$ /
VCE	$(W_{L1} + W_{L6} + W_{L12})$ ∇_{CF} = volume of crew and provision in ft ³

Justice of

Ţ,

Sec. 1

 $\nabla_{CE} = \text{volume of crew and provision in ft}^{3}$ $= \nabla_{L1} + \nabla_{L6} + \nabla_{L12}$

NAME:	SUBROUTINE TOTALS
PURPOSE:	Calculate remaining weights for Groups 1 through 6 and apply multipliers from input Cards 17 through 25. Calculate margins and totals for each weight group. Calculate weight, volume, and VCG of the resultant useful load and the payload.
CALLING SEQUENCE:	CALL TOTALS
INPUT:	Via COMMON blocks
W	W_{T} = total ship weight, full load, in tons = Δ_{LT} from PHFMOPT
VOLT	$\nabla_{\rm T}$ = total volume of ship, including superstruc-
	ture, in ft ³ , from Subroutine NEWVOL
KG	KG = net VCG of ship in ft, from Subroutine NEWHUL
HDM	H _h = hull depth at midships in ft, from PHFMOPT
HMB	H = height of machinery box in ft, from Sub- routine NEWVOL
ZPC	Z _{PC} = centroid of hull profile above baseline / H _b , from Subroutine NEWVOL
ZSS	Z = VCG of superstructure / H, from Subroutine NEWVOL
VOLSS	∇ = volume enclosed by superstructure in ft ³ , ss from input Card 10 or Subroutine CREWSS
Wl array Zl array	Weight in tons VCG's / hull depth } Structural components, Group 1,
V1 array	Volumes in ft ³) from Subroutine STRUCT
W2 array Z2 array	Weight in tons VCG's / hull depth Propulsion components, Group 2, from Subroutine POWER
V2 array	Volumes in ft ⁵) from Subroutine rower
W3 array Z3 array	Weight in tons VCG's / hull depth Electric plant components,
V3 array	Volumes in ft ³) Group 3, from Subroutine ELECPL
W4 array Z4 array	Weight in tons VCG's / hull depth {
V4 array	Volumes in ft ³) from Subroutine COMCON
W5 array Z5 array	Weight in tons VCG's / hull depth Auxiliary systems, Group 5,
V5 array	Volumes in ft ³) from Subroutine AUXIL

and a second

المتحدث والمحاط

Contraction of

de la composition de la compos

and the second se

for showing

مشغط

 $i \in \{1, \dots, n\}$

X

Annual

1939-14

He Car

(a), (a)

West with

Sec. Bar

3

SUBROUTINE TOTALS

	SUBROUTINE TOTALS
W6 array Z6 array	Weight in tons VCG's / hull depth Outfit and furnishings, Group 6,
V6 array	Volumes in ft ³) from Subroutine OUTFIT
Xl array X2 array X3 array X4 array X5 array X6 array	Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 K-factors for each BSCI 3-digit group from input Cards 17 through 25. Weights and volumes from the general equations will be multiplied by the corresponding K-factor
WF ZF	Weight in tons VCG's / hull depth } fuel load, from Subroutine LOADS
VF	Volume in ft ³
WCE ZCE	Weight in tons VCG's / hull depth } total of crew and effects, personnel stores, and potable
VCE	Volume in ft ³) water from Subroutine LOADS
OUTPUT:	Via COMMON blocks
A. PROPULSIONGroup	2
Z2(2) etc.	$Z_{201} = Z_{206} = Z_{209} = Z_{210} = Z_{211} = Z_{250,251}$ = VCG of machinery box / hull depth = 0.615 H _{mb}
Z2(3)	Z ₂₀₃ = VCG of shafting, bearings, and propellers / hull depth
	= 0.0, propellers assumed at baseline, if IPROP < 3
	= VCG of waterjets / H_h , if IPROP = 3
L	Index for DO LOOP L = $2,9$
W2(L)	Weights in tons of propulsion components from general equations in Subroutine POWER multiplied by corresponding K-factors from input Card 19
Z2(L)	VCG's / hull depth of propulsion components from general equations. Not affected by K-factors
V2(L)	Volumes in ft ³ of propulsion components from general equations multiplied by corresponding K-factors
W2(10)	W_{2m} = weight margin for propulsion in tons = (K ₂ - 1.0) (sum of weights of propulsion
	components)
Z2(10)	$Z_{2m} = VCG$ of margin / hull depth = net VCG ratio of all propulsion components
V2(10)	∇_{2m} = volume margin for propulsion = 0.0

		SUBROUTINE TOTALS
	W2(1)	W ₂ = total weight of propulsion, including margin, in tons
	Z2(1)	Z ₂ = net VCG of propulsion / hull depth
	V2(1)	∇_2^{-} = total volume of propulsion in ft ³
в.	ELECTRIC PLANTG	roup 3
	L	Index for DO LOOP L = $2,5$
	W3(L) Z3(L) V3(L)	Weight in tons, VCG's / hull depth, volumes in ft ³ of electric plant components. Weights and volumes from general equations multiplied by K-factors from Card 20
	W3(6)	W_{3m} = weight margin for electric plant in tons = (K ₃ - 1.0) (Sum of weights of electric plant
		components)
	Z3(6)	Z _{3m} = VCG of margin / hull depth = net of all components
	V3(6)	∇_{3m} = volume margin for electric plant in ft ³ = 0.0
	W3(1)	W ₃ = total weight of electric plant, including margin in tons
	Z3(1)	Z ₃ = net VCG of electric plant / hull depth
	V3(1)	∇_3 = total volume of electric plant in ft ³
с.	COMMUNICATION AND	CONTROLGroup 4 (Non-military)
	L	Index for DO LOOP L = 2,3 ·
	W4(L) Z4(L) V4(L)	Weight in tons, VCG's / hull depth, volumes in ft ³ of non-military communication and control components. Weights and volumes multiplied by K-factors from Card 21
	W4(4)	W_{4m} = weight margin in tons = (K ₄ - 1.0) (Sum of non-military weight
		components)
	Z4(4)	Z _{4m} = VCG of margin / hull depth = net of components
	V4(4)	∇_{4m} = volume margin = 0.0
	W4(1)	W ₄ = total weight of non-military communication and control, including margin in tons
	Z4(1)	Z ₄ = net VCG / hull depth
	V4(1)	∇_4 = total volume in ft ³

No.

New York

]

1000

No.

Hanna

Name of

100

D.	AUXILIARY	SYSTEMSGroup 5
	L	Index for DO LOOP $L = 2,20$
	W5(L) Z5(L) V5(L)	Weight in tons, VCG's / hull depth, volumes in ft ³ of auxiliary systems. Weights and volumes from general equations multiplied by K-factors from Cards 22 and 23
	W5(21)	W_{5m} = weight margin in tons = (K ₅ - 1.0) (Sum of all auxiliary system weights)
	Z5(21)	$2_{5m} = 0.0$ of margin / hull depth = net of components
	V5(21)	∇ = volume margin in ft ³ 5m = 0.06 (Sum of all auxiliary system volumes)
	W5(1)	W ₅ = total weight of auxiliary systems, including margin, in tons
	Z5(1)	Z ₅ = net VCG of auxiliary systems / hull depth
	V5(1)	∇_5 = total volume of auxiliary system, including margin, in ft ³
E.	OUTFIT AND	FURNISHINGSGroup 6
	L	Index for DO LOOP L = $2,16$
	W6(L) Z6(L) V6(L)	Weight in tons, VCG's / hull depth, volumes in ft ³ of outfit and furnishings. Weight and volumes multiplied by K-factors from Cards 24 and 25
	W6(17)	<pre>W = weight margin in tons 6m = (K₆ - 1.0) (Sum of all outfit and furnishings weight)</pre>
	Z6(17)	Z_{6m} = VCG of margin / hull depth = net of components
	V6(17)	$\nabla_{6m} = \text{volume margin in ft}^3$ = 0.06 (Sum of all outfit and furnishings volume)
	W6(1)	W ₆ = total weight of outfit and furnishings, includ- ing margin, in tons
	Z6(1)	Z ₆ = net VCG of outfit and furnishings / hull depth
	V6(1)	∇_6 = total volume of outfit and furnishings, includ- ing margin, in ft ³

لمسقر

the second

and a

1977 Sec.

al de

-

السرابيدين

Section 2.

SUBROUTINE TOTALS

F. STRUCTURES--Group 1 W_{111} = Weight of superstructure in tons = ∇_{ee} /2240 W1(10) $Z_{111} = VCG$ of superstructure / hull depth = Z_{ss} Z1(10) ∇_{111} = volume of structural materials for super-V1(10) structure, assumed negligible W_{112} = weight of foundations for propulsion plant in W1(11)tons, Figure 7 Aluminum Hull $\begin{cases} W_{112} = 0.04911 W_2 , \text{ if } W_2 \leq 10.0 \\ W_{112} = 0.1785 + 0.03125 W_2, \text{ if } W_2 > 10.0 \end{cases}$ Steel or GRP $\begin{cases} W_{112} = 0.06371 W_2 , \text{ if } W_2 \leq 5.5 \\ W_{112} = 0.1785 + 0.03125 W_2, \text{ if } W_2 > 5.5 \end{cases}$ $Z_{112} = VCG$ of propulsion plant foundation / hull depth = 0.15 Z1(11) ∇_{112} = volume of propulsion foundations, assumed V1(11) negligible W_{113} = weight of foundations for auxiliary and other W1(12) equipment in tons, Figure 8 Aluminum hull: $W_{113} = 0.03884 W_A \quad (W_A = W_3 + W_5 + W_6)$ Steel or GRP hull $\begin{cases} W_{113} = 0.05179 W_A, & \text{if } W_A \le 10.0 \\ W_{113} = 0.1295 + 0.03884 W_A, & \text{if } W_A > 10.0 \end{cases}$ Z1(12) $Z_{113} = VCG$ of other foundations / hull depth = 0.78 ∇_{113} = volume of other foundations, assumed negligible V1(12) W_{att} = weight of attachments in tons W1(13) Aluminum or Steel: $W_{att} = 0.05 \times \text{total structures}$ GRP hulls: $W_{att} = 0.02 \text{ x total structures}$ Z = VCG of attachment / hull depth att = net of other components Z1(13) ∇_{att} = volume of attachments, assumed negligible V1(13) The attachments, which encompass several BSCI codes, are arbitrarily designated 198 in this program.

1 ·	
	SUBROUTINE TOTALS
L	Index for DO LOOP $L = 2,13$
W1(L) Z1(L) V1(L)	Weight in tons, VCG's / hull depth, volumes in ft ³ of structural components. Weights and volumes from general equations multiplied by K-factors from Cards 17 and 18
W1(14)	<pre>W = weight margin for structures in tons = (K₁ - 1.0) (Sum of weights of structural components)</pre>
Z1(14)	Z = VCG of margin / hull depth = net of components
V1(14)	∇_{1m} = volume margin for structures = 0.0
W1(1)	W = total weight of structures, including margin, in tons
Z1(1)	Z ₁ = net VCG of structures / hull depth
V1(1)	∇_1 = total volume of structures in ft ³
G. EMPTY SHIP	
WE1	$W_{E} = \text{weight of empty ship, less fixed payload items,}$ in tons $= W_{1} + W_{2} + W_{3} + W_{4} + W_{5} + W_{6}$
ZE1	$Z_{E} = VCG \text{ of empty ship / hull depth} $ = $(W_{1}Z_{1} + W_{2}Z_{2} + W_{3}Z_{3} + W_{4}Z_{4} + W_{5}Z_{5} + W_{6}Z_{6})/W_{E}$
VE1	$\nabla_{\rm E}$ = volume of empty ship in ft ³ $\nabla_1 + \nabla_2 + \nabla_3 + \nabla_4 + \nabla_5 + \nabla_6$
H. MOMENTS	
ZKG	$Z_{T} = VCG$ of total ship weight / hull depth = \overline{KG} / H_{h}
WZKG	$W_T^Z_T$ = total weight moment
WZE1	W _E Z _E = empty ship weight moment
I. USEFUL LOADS	
WU =	$W_{\rm U}$ = useful load in tons = $W_{\rm T} - W_{\rm E}$
WL(1)	<pre>= total of fuel, crew and effects, personnel store, potable water, and payload</pre>

Statistics.

SUBROUTINE TOTALS

ZU =	Z_{U} = VCG of useful load / hull depth
ZL(1)	$= (W_T Z_T - W_E Z_E) / (W_T - W_E)$
VU = VL(1)	$\nabla_{\rm U}$ = volume of useful load in ft ³ = $\nabla_{\rm T} - \nabla_{\rm E}$

J. PAYLOAD

WP =	W_{P} = weight of payload in tons
WL(6)	= $W_{U} - W_{F} - W_{CE}$
ZP =	$Z_P = VCG \text{ of payload / hull depth}$
ZL(6)	= $(W_T Z_T - W_E Z_E - W_F Z_F - W_{CE} Z_{CE}) / W_P$
VP =	$\nabla_{\rm p}$ = volume of payload in ft ³
VL(6)	= $\nabla_{\rm U} - \nabla_{\rm F} - \nabla_{\rm CE}$

Payload includes the armament, Group 7, the military portion of communication and control, Group 4, and ammunition loads in addition to any special loads required for the ship's mission, such as the tanks carried by a landing craft.

This program does not break down the payload into its various components.

K. WEIGHT FRACTIONS

R(1)	W ₁	/	W _T
R(2)	W ₂	7	w_T
R(3)	^W 3	/	WT
R(4)	W4	1	W _T
R(5)	W ₅	1	w_{T}
R(6)	W ₆	/	W _T
R(7)	W _E	/	W_{T}
R(8)	W _U	/	$w_{_{\mathrm{T}}}$
R(9)	WCE	1	$w_{\rm T}$
R(10)	W _F	/	W_{T}
R(11)	W _P	1	$w_{_{\mathrm{T}}}$

SUBROUTINE TOTALS

L	VCG / HULL DEPTH RATIOS	
	G(1) Z ₁	
	G(2) Z ₂	
	G(3) Z ₃	
	G(4) Z ₄	
	G(5) Z ₅	
	G(6) Z ₆	
	G(7) Z _E	
	G(8) Z _U	
	G(9) Z _{CE}	
	G(10) Z _F	
	G(11) Z _P	
M	VOLUME FRACTIONS	
	$S(1)$ ∇_1 / ∇_T	
	$S(2)$ ∇_2 / ∇_T	
	$S(3)$ ∇_3 / ∇_T	
	$S(4)$ ∇_4 / ∇_T	
	$S(5)$ ∇_5 / ∇_T	
	S(6) ∇_6 / ∇_T	
	$S(7)$ ∇_{E} / ∇_{T}	
	$S(8)$ $\nabla_{\rm U} / \nabla_{\rm T}$	
	$S(9)$ ∇_{CE} / ∇_{T}	
	$S(10)$ ∇_{F} / ∇_{T}	
	$S(11)$ $\nabla_{\mathbf{p}} / \nabla_{\mathbf{T}}$	

and the second se

Sec. 2

Sector Sector

NAME :	SUBROUTINE COSTS
PURPOSE:	Estimate base cost of ship by major weight groups. Also estimate life costs of ship
CALLING SEQUENCE:	CALL COSTS
INPUT:	Via COMMON blocks
CKN array	Cost factors for weight Groups 1 through 6 and pay- load input on Card 26
OPHRS	Operating hours per month, from input Card 27
OPYRS	Total vehicle operating years, from Card 27
XUNITS	Number of vehicles to be built, from Card 27
TIMED	Portion of time operating at maximum speed, from Card 27
TIMEC	Portion of time operating at cruise speed, from Card 27
FUELR	Cost of fuel in dollars per ton, from Card 27
OUTPUT:	Via COMMON blocks
C(1)	C ₁ = cost of structures
C(2)	$C_2 = \text{cost of propulsion}$
C(3)	$C_3 = \text{cost of electric plant}$
C(4)	$C_4 = \text{cost of non-military communication and control}$
C(5)	C ₅ = cost of auxiliary systems
C.(6)	$C_6 = \text{cost of outfit and furnishings}$
C(7)	$C_7 = cost of empty ship = C_1 + C_2 + C_3 + C_4 + C_5 + C_6$
C(8)	C ₈ = cost of payload
C(9)	C_9 = base cost of first unit = $C_7 + C_8$
C(10)	C_{10} = average cost of XUNITS
C(11)	C_{11}^{10} = life cost of personnel pay and allowances
C(12)	C ₁₂ = life cost of maintenance
C(13)	C ₁₃ = life cost of operations, except energy
C(14)	C ₁₄ = life cost of major support
C(15)	C ₁₅ = life cost of fuel
C(16)	$C_{16}^{C} = \text{total life cost} \\ = C_{10}^{C} + C_{11}^{C} + C_{12}^{C} + C_{13}^{C} + C_{14}^{C} + C_{15}^{C}$
	Cost estimates are in millions of FY 77 dollars.

Sec. 10

This area

أستنحر والكلا

كاللغان والمالي

No.

كمششفة

- actions

1

Section 2

SUBROUTINE COSTS

The cost equations used are based on statistics developed under the ANCVE project and are not for public release.

• 3

Cost data from this program should be used only for comparative purposes, i.e., percentage change from some parent configuration, and not as absolute cost figures.

and the second

Sec. 1

1.12.24

NAME:	SUBROUTINE PHRES
PURPOSE:	Estimate the bare-hull, smooth-water resistance of a hard-chine planing hull from synthesis of Series 62 and 65 experimental data
CALLING SEQUENCE:	CALL PHRES (DLBS, FNV, SLR, DCF, SDF, RLBS)
SUBPROGRAMS CALLED:	DISCOT, YINTX, C1DSF
INPUT:	
DLBS	Δ = ship displacement in 1b
FNV	$F_{n\nabla}$ = speed-displacement coefficient $V/(g\nabla^{1/3})^{1/2}$
SLR	$L_p/\nabla^{1/3}$ = slenderness ratio
DCF	$C_A = correlation allowance; may be 0$
SDF	<pre>Standard deviation factor SDF = 0.0 corresponds to mean resistance-weight R/W curves derived from Series 62 and 65 data SDF = 1.645 corresponds to minimum R/W curves SDF can be used to approximate the resistance curves for a particular hull form</pre>
OUTPUT:	
RLBS	$ \begin{array}{l} R_{b} & = \text{ bare-hull, smooth-water resistance in lb} \\ & = \Delta(\text{mean } R/W - \text{SDF } \times \sigma) \end{array} $
	σ = standard deviation of Series 62-65 data from mean R/W
PROCEDURE:	
XFNV array	Tabulated values of $F_{n\nabla}$ from 0.0 to 4.0
ZSLR array	Tabulated values of $L_p/\nabla^{1/3}$ from 4.0 to 10.0
YRWM matrix	Tabulated values of mean R/W as $f(F_{n\nabla}, L_{p}/\nabla^{1/3})$
	for 100,000-lb planing craft derived from Series 62 and 65 experimental data. See Table 1 and Figure 9
YWSR matrix	Tabulated values of mean wetted area coefficients
	$S/\nabla^{2/3}$ from Series 62 and 65 hulls. See Table 2 and Figure 10
SD array	Tabulated values of standard deviation σ as f(F $_{n \bigtriangledown})$ See Table 1 and Figure 9
RWM	R/W for 100,000-1b planing craft interpolated from YRWM matrix of mean R/W values at input $F_{n\nabla}$ and $L_p/\nabla^{1/3}$

Summer of the second

de la constante

1

L'in seide

A second second

and the second

WSR	SUBROUTINE PHRES $S/\nabla^{2/3}$ interpolated from YWSR matrix at input $F_{n\nabla}$ and $L_p/\nabla^{1/3}$
	Subroutine DISCOT used for the double interpolation
SDM	σ interpolated from SD array at input F $_{n\nabla}$
	Function YINTX used for single interpolation
RWM	<pre>(R/W) = corrected R/W for 100,000-1b planing craft</pre>
DLBM	$\Delta_{\rm m}$ = displacement of 100,000-1b planing craft
XL	λ = linear ratio of actual ship to 100,000-1b craft
	$= (\Delta/\Delta_m)^{1/3}$
VFPSM	V = speed of 100,000-1b craft in ft/sec = 19.32 (input $F_{n\nabla}$)
VFPSS	V_s = speed of actual ship in ft/sec = $V_m \lambda^{1/2}$
PLM	L = length of 100,000-1b craft in ft
	= 11.6014 (input $L_p / \nabla^{1/3}$)
PLS	L_{s} = length of actual ship in ft = L_{m} λ
REM	$R_{m} = Reynolds number of 100,000-1b craft$ $m_{m} = V_{m} L_{m} / v_{m}$
RES	$R_n = Reynolds number of actual ship = V_s L_s/v_s$
CFM	C _F = Schoenherr frictional resistance coefficier m for 100,000-1b craft
CFS	C _F = Schoenherr frictional resistance coefficien s for actual ship
	Function ClDSF used to obtain Schoenherr frictional resistance coefficients
SM	S_{m} = wetted area of 100,000-1b craft in ft ² = 134.5925 S/ $\nabla^{2/3}$
SS	s_s = wetted area of actual ship in ft ² = $s_s \lambda^2$
RM	$R = resistance of 100,000-1b craft in 1b = (R/W) \Delta_m$

1112-010

Sec.

Sec. B. in

and the second

]

and the second

and the second

SUBROUTINE PHRES

CTM	m	=	total resistance coefficient of 100,000-1b craft $R_m^{-1}/(V_m^{-2} S_m^{-1} \rho_m^{-1}/2)$
CR	c _r	=	residual resistance coefficient = $C_{T_m} - C_{T_m}$
CTS	°Ts	=	total resistance coefficient of actual ship $C_F + C_R + C_A$ s
RLBS			resistance of actual ship in 1b $C_T v_s^2 S_s \rho_s/2$
VIS	v s	=	kinematic viscosity for actual ship, input via COMMON
VISM	νm	22	kinematic viscosity for tabulated data = 1.2817×10^{-5}
RHO2	ρ _s /2	=	1/2 water density for actual ship, input via COMMON
RHO2M	ρ _m /2	=	<pre>1/2 water density for tabulated data = 1.9905/2</pre>

Constant of the

The second se

dat the

TABLE 1 - MEAN VALUES OF RESISTANCE/WEIGHT RATIOS FOR 100,000-POUNDS PLANING CRAFT

From Series 62 and 65 Experimental Data Published in NSRDC Report 4307 with LCG Ranging from 1/3 to 1/2 $\rm L_p$ Forward of Transom

	SPEED (KNOTS)	F _n ∨	$L_{p}(FT)$ 46.4 $L_{p}/V^{1/3}$ 4.0	52.2 4.5	58.0 5.0	63.8 5.5	69.6 6.0	75.4 6.5	81.2 7.0	87.0 7.5	92.8 8.0	104.4 9.0	116.0 10.0	Standard Deviation U
	0.00	0.00	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5.72	0.50	0,0120	0.0100	0.0085	0.0075	0.0070	0.0065	0.0060	0.0057	0.0055	0.0050	0.0045	0.0065
	8,59	0.75	0.0420	0.0345	0.0280	0.0235	0.0200	0.0170	0.0150	0.0135	0.0125	0.0110	0.0100	0.0080
	11.45	1.00	0,1050	0.0875	0.0715	0.0580	0.0480	0.0405	0.0350	0.0305	0.0270	0.0220	0.0190	0.0089
	14.31	1.25	0.1800	0.1420	0.1140	0.0940	0.0795	0.0675	0.0585	0,0510	0.0450	0.0360	0.0305	0.0095
	17.17	1.50	0.1980	0.1550	0.1255	0.1065	0.0930	0.0815	0.0730	0.0660	0.0600	0.0500	0.0425	0.0100
	20.03	1.75	0.1995	0.1602	0.1350	0.1165	0.1025	0.0910	0.0820	0,0755	0.0700	0.0610	0.0530	0.0106
	22.89	2.00	0.1900	0.1630	0.1430	0.1275	0.1135	0.1020	0.0930	0.0855	0.0795	0.0705	0.0630	0.0112
	25.76	2.25	0.1775	0.1642	0.1505	0.1375	0,1260	0.1150	0.1060	0.0985	0.0915	0,0815	0.0745	0.0121
	28.62	2.50	0.1690	0.1645	0.1575	0.1475	0.1375	0.1280	0.1200	0,1125	0.1060	0.0950	0,0880	0.0132
	31.48	2.75		0.1620	0.1610	0.1550	0.1480	0.1405	0.1330	0.1270	0.1210	0.1110	0,1040	0,0148
	34.34	3.00			0.1610	0.1590	0,1565	0.1520	0.1465	0.1415	0.1365	0.1280	0.1205	0.0170
	37.20	3.25				0.1590	0.1595	0.1600	0.1585	0.1560	0.1530	0.1465	0.1400	0.0199
	40.06	3.50					0.1610	0.1665	0.1695	0.1700	0.1700	0.1670	0.1620	0.0231
1	42.93	3.75						0.1735	0.1795	0.1825	0.1840	0.1850	0.1830	0.0266
l	45.79	4.00							0.1890	0.1930	0.1960	0.2005	0.2030	0.0300

TABLE 2 - MEAN VALUES OF WETTED AREA COEFFICIENT $S/\nabla^{2/3}$ For planing hulls

From Series 62 and 65 Experimental Data Published in NSRDC Report 4307 with LCG Ranging from 1/3 to 1/2 $\rm L_p$ Forward of Transom

	$L_{p}/V^{1/3}$										
	р [,] 4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	9.0	10.0
Fn∇						 \					
0.00	5.80	6.15	6.50	6.85	7.20	7.55	7.90	8.25	8.60	9.30	10.00
0.50	5.95	6.33	6.70	7.07	7.43	7.77	8.09	8.42	8.75	9.42	10.10
0.75	5.99	6.38	6.77	7.15	7.50	7.85	8.18	8.50	8.82	9.48	10.15
1.00	5.99	6.40	6.80	7.20	7.57	7.90	8.23	8.56	8.88	9.54	10.21
1.25	5.92	6.37	6.80	7.22	7.60	7.93	8.27	8.61	8.93	9.60	10.28
1.50	5.76	6.29	6.78	7.21	7.60	7.95	8.30	8.65	8.97	9.65	10.34
1.75	5.51	6.16	6.72	7.17	7.59	7.94	8.29	8.67	9.00	9.70	10.41
2.00	5.20	5.97	6.59	7.08	7.54	7.92	8.27	8.65	9.01	9.75	10.48
2.25	4.76	5.70	6.41	6.97	7.46	7.85	8.23	8.62	9.01	9.78	10.55
2.50	4.20	5.37	6.18	6.81	7.35	7.75	8.15	8.56	8.99	9.80	10.62
2.75		4.95	5.89	6.60	7.17	7.61	8.04	·8.48	8.94	9.80	10.68
3.00			5.55	6.35	6.94	7.42	7.89	8.37	8.85	·9.79	10.75
3.25				6.06	6.65	7.17	7.68	8.21	8.73	9.76	10.80
3.50					6.30	6.87	7.43	8.01	8.58	9.71	10.85
3.75						6.53	7.10	7.75	8.37	9.62	10.88
4.00							6.70	7.40	8.10	9.50	10.90

NAME:	SUBROUTINE SAVIT
PURPOSE:	Estimate the bare-hull, smooth-water resistance and trim for a hard-chine planing hull using Savitsky's equations for prismatic planing surfaces
CALLING SEQUENCE:	CALL SAVIT (DISPL, LCG, VCG, VFPS, BEAM, BETA, TANB COSB, SINB, HW, WDCST, RHO, VIS, AG, DELCF, R, TD, NT, CLM, GDB)
SUBPROGRAM CALLED:	ClDSF
INPUT:	
DISPL	Δ = ship displacement in 1b
LCG	AG = distance of center of gravity
	transom in ft
VCG	KG = distance of
VFPS	V = speed in ft/sec
BEAM	b = beam in ft = maximum chine beam B in Du
BETA .	= maximum chine beam B_{PX} in Program PHFMOPT β = deadrise angle in degrees = deadrise at midships β in Pure pure
TANB	= deadrise at midships β_m in Program PHFMOPT tan β
COSB	cos β
SINB	sin β
н	H_{W} = height of center of wind drag above baseline in ft
WDCST	$C_{D}' = horizontal wind force in 1b / V2W = 0.0 in Program PHFMOPT; wind drag neglected$
RHO	ρ = water density in 1b × sec ² /ft ⁴
VIS	v = kinematic viscosity of water in ft ² /sec
AG	$g = acceleration of gravity in ft/sec^2$
DELCF	$C_A = correlation allowance; may be 0$
UTPUT:	
R	R = bare hull, smooth-water resistance in 1b
TD	τ = trim angle in degrees
NT	Number of iterations to obtain trim angle
CLM	λ = mean wetted length-beam ratio L /b not used by Program PHFMOPT ^m

مقتليه

la di seconda di second

Sec. Same

No. 1. St

2543.43

المنابع والمراجع

Sec. 1

Marine

(Second

Berlin

ALC: NO

Name of Street, or other

ł.

			SUBROUTINE SAVIT
	GDB	AP	= longitudinal center of pressure, distance forward of transom, in ft not used by Program PHFMOPT
PROC	EDURE:		
]	TD	τ	= trim angle of planing surface from horizontal in deg first approximation of $\tau = 4$ deg
-	cv	C _v	= speed coefficient = $V/(gb)^{1/2}$
	CLM	•	= mean wetted length-beam ratio = $L_{M}/b = (L_{K} + L_{C})/2b$
	CLO	с _г	= lift coefficient for flat surface = $\tau^{1.1}$ (0.012 $\lambda^{1/2}$ + 0.0055 $\lambda^{5/2}/C_V^2$)
	CLB	с _г	= lift coefficient for deadrise surface = $\Delta/[v^2 b^2 p/2] = C_L - 0.0065 C_L_0^{0.6}$
		cL	and λ obtained by Newton-Raphson iteration
		C	st approximations: $C_{L} = 0.085; \lambda = 1.5$
ð	ХК	L _K	= wetted keel length in ft = $b[\lambda + \tan \beta/(2\pi \tan \tau)]$
	XC	LC	= wetted chine length in ft = 2 b λ - L _K
3		L _K	- $L_{C} = (b \tan \beta) / (\pi \tan \tau)$
	GDB	AP	= longitudinal center of pressure forward of transom in ft
3			= $b \lambda [0.75 - 1/(5.21 C_V^2/\lambda^2 + 2.39)]$
	CLD	C ^L	= dynamic component of lift coefficient = 0.012 $\lambda^{1/2} \tau^{1.1}$
	VM	V _m	= mean velocity over planing surface in ft/sec = $V \left[1 - \left(C_{L_d} - 0.0065 \beta C_{L_d}^{0.6} \right) / \left(\lambda \cos \tau \right) \right]^{1/2}$
	RE	Rn	= Reynolds number for planing surface = $V_{\rm m} b \lambda/v$
	CF	C _F + C _A	= Schoenherr frictional resistance co- efficient as f(R) plus correction allowance

DFX	D = viscous force due to wetted surface, parallel to the planing surface, in 1b
	= $(C_{F} + C_{A})$ ($\rho/2$) (V_{m}^{2}) ($b^{2} \lambda/\cos \beta$)
СК	$C_{K} = 1.5708 (1 - 0.1788 \tan^{2}\beta \cos \beta - 0.09646 \tan \beta \sin^{2}\beta)$
CK1	$C_{K_1} = C_K \tan \tau / \sin \beta$
Al	$a_{1} = \frac{[\sin^{2}\tau(1-2C_{K})+C_{K}^{2}\tan^{2}\tau(1/\sin^{2}\beta-\sin^{2}\tau)]}{\cos \tau + C_{K}^{2}\tan \tau \sin \tau}$ ^{1/2}
TANO	
	$\tan \phi = \left(\frac{a_1 + C_{K_1}}{1 - a_1} \right) / \left(\frac{1 - a_1 C_{K_1}}{1 - a_1} \right)$
THETA	θ = angle between outer spray edge and keel in radians
	= $\arctan(\tan \phi \cos \beta)$
DLM	$\Delta \lambda$ = effective increase in length-beam ratio due to spray
RE	= $[\tan \beta/(\pi \tan \tau) - 1/(2 \tan \theta)]/(2 \cos \theta)$
κ <u>μ</u>	R = Reynolds number for spray
CF	
	C = Schoenherr frictional resistance coefficient S for spray drag
DSX	D = viscous force due to spray drag, parallel to the planing surface, in lb
	= $C_{F_S} (\rho/2) (v^2) (b^2 \Delta \lambda / \cos \beta)$
DWX	D = component of wind drag parallel to planing Surface in lb
	$= C_{D_{cos}} v^2 / \cos \tau$
DTX	D = total drag force parallel to planing surface T in lb
	$= D_F + D_S + D_W$
PDBX	P = total pressure force perpendicular to surface . T in lb
	= $\Delta/\cos \tau + P_{T} \tan \tau$

le sur la s

Sec. 1

Marias

a anna a

200 000

Contraction of the

144.7%

Sec. 10

A local set

-

EDB

ep

RMT

10.11

NT

FF

FW

R

 $= \overline{AG} - \overline{AP}$ $f_{F} = \text{moment arm from center of viscous force to}$ center of gravity in ft $= \overline{KG} - (b \tan \beta / 4)$ $f_{W} = \text{moment arm from center of wind drag to}$ center of gravity in ft $= \overline{KG} - H_{W}$ $\Sigma M = \text{sum of moments about CG in ft-lb}$ $= P_{T} e_{p} + (D_{F}+D_{S}) f_{F} + D_{W} f_{W}$ Iterate with small changes in τ until $\Sigma M \leq 0.001 \Delta$ Number of iterations required to obtain equilibrium trim; maximum of 15 iterations

= moment arm from center of pressure to

center of gravity in ft

 R_{b} = total horizontal resistance force in 1b

= $D_{T} \cos \tau + P_{T} \sin \tau$

NAME:	SUBROUTINE	PRCOEF							
PURPOSE:	Estimate p with prope	ropulsio llers on	on coeff 1 inclin	icients ed shaf	for pl	aning h	u11		
CALLING SEQUENCE:	CALL PRCOE	F (FNV,	TDF, AD	F, TWF)					
SUBPROGRAMS CALLED:	MINP, YINT								
INPUT:									
FNV	$F_{-\nabla} = spee$	d-displa	cement	coeffic	ient =	$V/(\alpha \nabla^{1})$	3,1/2		
OUTPUT:	110	$F_{n\nabla}$ = speed-displacement coefficient = V/($g\nabla^{1/3}$) ^{1/2}							
. TDF	1-t = thru	st deduc	tion fa	ctor					
ADF	/ 10	l h <mark>oriz</mark> o tal shaf ndage dr	L- line	thrust	e of ap	pendage	d hull		
	= resis apper	stance o ndaged h	f bare 1 ull	hull / :	resista	nce of			
TWF	1-w = thrus	st wake	factor =	= torque	e wake i	Eactor			
REFERENCE:	Blount, D.I Predictions	. and D ," West	.L. Fox	, "Small Sectio	l Craft on of th	Power le Socie	ety 1975)		
PROCEDURE:		of Naval Architects and Marine Engineers (Feb 1975) 1-t, 1-w, and η_a interpolated from following table							
	of values a	of values at input value of $F_{n\nabla}$. The tabulated							
	data repres collected f reported in	ent mear or numer	n values cous twi	from a n-screw	bandwi	dth of	data		
FV array F _{n⊽}	= 0.5 1.0	1.5	2.0	2.5	3.0	3.5	4.0		
	= 0.92 0.92								
TW array 1-w	= 1.05 1.06	1.04	0.99	0.97	0.975	0.98	0.975		
AD array na s a	=0.951 0.948	0.942	0.934	0.925	0.913	0.900	0.885		

Number of

Summer of

1000

あるためが

•

N. Harrison

a manual di

ı

NAME:	SUBROUTINE OWKTQ
PURPOSE:	Calculate propeller open-water characteristics as function of pitch ratio, expanded area ratio, and number of blades from coefficients derived from Wageningen B-Screw Series for airfoil section propeller or modified coefficients for flat face, segmental section propellers.
REFERENCE:	Oosterveld and Van Oossanan, "Recent Development in Marine Propeller Hydrodynamcis," Proceedings of the Netherlands Ship Model Basin 40th Anniversary (1972) and "Further Computer Analyzed Data of the Wageningen B-Screw Series," International Shipbuilding Progress, Vol. 22 (July 1975).
CALLING SEQUENCE:	CALL OWKTQ
INPUT:	
IPROP	Control for type of propellers = 1 for Gawn-Burrill type (flat face, segmental sections) = 3,4 for Wageningen B-Screw type (airfoil sections)
PD	= 2 For Newton-Roder type * P/D = propeller pitch/diameter ratio (0.6 to 1.6)
EAR	EAR = propeller expanded area ratio (0.5 to 1.1)
Z	Z = number of propeller blades (3 to 7)
OUTPUT:	
N	n_{j} = number of J values generated max of 60
JT	J = array of propeller advance coefficients in ascending order from (J=0) to (J at $K_T \approx 0$)
	in increments of 0.025 if P/D<1.2 in increments of 0,050 if P/D>1.2
КТ	K _T = array of open-water thrust coefficients T = f (P/D, EAR, Z, J)
KQ	K _Q = array of open-water torque coefficients = f (P/D, EAR, Z, J)
	$K_{T}^{}$ and $K_{Q}^{}$ developed from equation in above references
	for airfoil section propellers. For Gawn-Burrill type
	propellers (IPROP=1) the equations are modified to
	produce slightly higher K_{T} and K_{Q} than B-Screw Series.

Int Pla

1....

sh

NAME : SUBROUTINE CAVKTQ

PURPOSE: Calculate propeller characteristics in cavitation regime as function of pitch ratio, expanded area ratio and cavitation number.

REFERENCE: Blount and Fox, "Design Considerations for Propellers in a Cavitating Environment," Marine Technology (Apr 1978)

CALLING SEQUENCE: CALL CAVKTQ

SUBPROGRAMS CALLED: TQMAX

INPUT:

HI.VA

Sec. 5

IPROP	Control	<pre>for type of propellers = 1 for Gawn-Burrill type (flat face, segmental sections) = 2 for Newton-Rader types = 3 for Wageningen B-Screw (airfoil sections) = 4 for & Screw (airfoil sections)</pre>
PD	P/D	= 4 For B-Screw type, assuming he Cavitation = propeller pitch/diameter ratio
EAR	EAR	= propeller expanded area ratio
NJ	nJ	<pre>= number of J values input from open-water curves max. of 60</pre>
JT	J	= array of propeller advance coefficients
KTO	K _{To}	<pre>= corresponding array of propeller open-water thrust coefficients</pre>
KQO	К _Q o	<pre>= corresponding array of propeller open-water torque coefficients</pre>
NS	n _s	= number of cavitation numbers max. of 8 at which propeller characteristics are to be computed and printed from this routine (if $n_s = 0$ only the constants are computed)
SIGMA	σ	= array of cavitation numbers

GENERAL NOTATION FOR PROPELLERS:

Number of

Lana -

1.1.1

All and the second second

100

Sec. 2

1. A. S. S.

VA	= propeller speed of advance
n	= rate of revolution
D	= propeller diameter
Т	= thrust
Q	= torque
ρ	= water density
Po	= pressure at center of propeller = $p_A+p_H-p_V$
J	= advance coefficient = $V_A/(n D)$
Κ _T	= thrust coefficient = T / $(\rho n^2 D^4)$
К _Q	= torque coefficient = Q / ($\rho n^2 D^5$)
K _T /J ²	= thrust loading = T / ($\rho D^2 V_A^2$)
K _Q ∕J ²	= torque loading = Q/($\rho D3 V_A^2$)
K _Q ∕J ³	= power loading = Q n/ ($\rho D^2 V_A^3$)
σ	= cavitation number based on advance velocity = $p_0 / (1/2 \rho V_A^2)$
V _{0.7R} ²	= velocity ² at 0.7 radius of propeller = V_A^2 + $(0.7 \pi nD)^2$ = $V_A^2(J^2+4.84)/J^2$
0.7R	= cavitation number based on $V_{0.7R}$ = $P_0/(1/2 \rho V_{0.7R}^2) = \sigma J^2/(J^2+4.84)$
A _P	= projected area of propeller = $(\pi D^2/4)$ EAR (1.067-0.229 P/D)
τ _c	= thrust load coefficient = T / (1/2 ρ A V _{0.7R} ²) = K _T / $\left[1/2 (A_p^P/D^2) (J^2+4.84) \right]$
Q _C	= torque load coefficient = $Q / (1/2 \rho D A_P V_{0.7R}^2)$ = $K_Q / [1/2 (A_P / D^2) (J^2 + 4.84)]$

SUBROUTINE CAVKTQ

MAXIMUM THRUST AND TORQUE LOADS:

Blount and Fox (see reference) give equations for maximum thrust and torque load coefficients in a cavitating environment based on regression of experimental data for the three propeller series used herein.

τ _{em}	<pre>= maximum thrust load coefficient = a σ_{0.7R}^b (transition region) = τ_{c_x}(fully cavitating region)</pre>
Q _{cm}	= maximum torque load coefficient

. =	maximum torque load coefficient
=	$c \sigma_{0.7R}^{d}$ (transition region)
=	Qo (full-
	Q_{c_X} (fully cavitating region)

OUTPUT:

. . .

S. Same

1. A. 10 M

Canal D

No.

T1	a a a	= 1.2 = 0.703 + 0.25 P/D = 1.27	<u>IPROP</u> 1 2 3
T2	Ե Ե Ն	= 1.0 = 0.65 + 0.1 P/D = 1.0	1 2 3
Q1	с с	= 0.200 P/D = 0.240 P/D - 0.12 = 0.247 P/D - 0.0167	1 2 3
Q2	d d d	= $0.70 + 0.31 \text{ EAR}^{0.9}$ = $0.50 + 0.165 \text{ P/D}$ = 1.04	1 2 3
TCX	^τ c _x τ _{cx} τ _{cx}	= 0.0725 P/D - 0.0340 EAR = 0.0833 P/D - 0.0142 EAR = 0.0	1 2 3
QCX	Q _{cx}	= $[0.0185 (P/D)^2 - 0.0166 P/D + 0.00594]$ /EAR ^{1/3}	1
	Q _{cx} Q _{cx}	= 0.0335 P/D - 0.024 EAR ^{1/2} = 0.0	2 3
RMAX	transitio	= 0.8 11-scale trial data (see Figures 5 and 6 o e) indicates actual thrust and torque in t on region less than the maximums derived f eller series data, the factor k is applied	he

transition region less than the maximums derived from the propeller series data, the factor k is applied to T_{c_m} and Q_{c_m} in the transition region. The factor k is not applied to T_{c_x} and Q_{c_x} .

SUBROUTINE CAVKTQ

APD2	$A_p/D^2/2$	=	Constant for calculation of $\tau_{\rm C}$ and $Q_{\rm C}$
J	J	=	advance coefficient from input array
OPEN WATER }	$\left. \begin{smallmatrix} K_{T_{O}} \\ K_{Q_{O}} \end{smallmatrix} \right\}$	=	input values of open-water thrust and torque coefficients
SIGMA	σ	=	cavitation number from input array
KT .	К _Т	=	thrust coefficient as f (J, σ) K $_{T_o}$ or K_{T_m} , whichever is smaller
	к _{тт}	=	$\tau_{c_m} (1/2 A_p/D^2) (J^2 + 4.84)$
	τ _{cm}	=	$(k a \sigma_{0.7R}^{b})$ or (τ_{c_X}) , whichever is greater
LC		-	1 character identifier for propeller cavitation C indicates more than 10% back cavitation for Gawn props: $\tau_c > 0.494 \sigma_{0.7R}^{-0.88}$
			* indicates thrust limit due to cavitation $K_T = K_T_m$
KQ	К _Q	Ξ	torque coefficient as f (J, σ) $K_{Q_{\rm O}}$ or $K_{Q_{\rm m}},$ whichever is smaller
	^K Q _m	=	$Q_{c_m} (1/2 A_p/D^2) (J^2 + 4.84)$
	Q _{cm}	=	(k c $\sigma_{0.7R}^{d}$) or (Q_{c_X}) , whichever is greater
			$\mathtt{K}_{\mathtt{T}_{\mathtt{I\!I\!I}}}$ and $\mathtt{K}_{\mathtt{Q}_{\mathtt{I\!I}}}$ generated by Function TQMAX

are seen

The second second

فستحسب

الكالحين وسنده

فكمدمونا

1.00 million

الأستسانك

فتستنكفهم

and and

NAME: FUNCTION TQMAX PURPOSE: Calculate maximum thrust or torque coefficient in a cavitating environment as function of cavitation number and advance coefficient CALLING SEQUENCE: X = TQMAX (SIGMA, JT, ITQ) INPUT: SIGMA σ = cavitation number ` JT J = advance coefficient ITQ = 1 if maximum thrust coefficient required i = 2 if maximum torque coefficient required i

> Variables: a, b, c, d, τ_{c_x} , Q_{c_x} , k, $1/2 A_p/D^2$ generated by Subroutine CAVKTQ

OUTPUT:

54 J.F.M.

Sec. Sec.

and the second

TQMA X	
--------	--

K _{Tm} or K) _m	depending on value of i
τ _{cm}	=	maximum thrust load coefficient $k = \sigma_{0.7R}^{b}$, or $\tau_{c_{X}}$ if greater
κ _T m	=	τ_{c_m} (1/2 Ap/D ²) (J ² +4.84)
Q _{cm}	=	maximum torque load coefficient $k c \sigma_{0.7R}^{d}$, or $Q_{c_X}^{}$ if greater
		Q_{c_m} (1/2 A_p/D^2) (J ² +4.84)

NAME:

SUBROUTINE PRINTP

PURPOSE:

Interpolate for propeller performance at specified value of (1) advance coefficient J, (2) thrust loading K_T/J^2 , (3) torque loading, K_Q/J^2 , or (4) power loading K_Q/J^3 .

CALLING SEQUENCE: CALL PRINTP (IP, PCOEF, SIGMA)

SUBPROGRAMS:

TQMAX, YINTE

INPUT: IP

Option	=	1,	2,	3,	or	4	
A		· •	,	ω,			

PCOEF	J _T K _T /J ² K _Q /J ² K _Q /J ³	= = = =	input propeller coefficient, dependent on value of IP advance coefficient, input if IP=1 thrust loading, input if IP=2 torque loading, input if IP=3 power loading, input if IP=4
SIGMA	σ	=	cavitation number
NJ	nJ	=	number of J values defining propeller characteristics
JT	J	-198 494	array of advance coefficient, in ascending order
KT	K _{To}	Ξ	array of open-water thurst coefficients
KQ	KQO	3	array of open-water torque coefficients

PERFORMANCE AT SPECIFIC J:

JTP	J_{T}	=	input advance coefficient
KTP	κ _T	-	thrust coefficient at J_T open-water thrust coefficient interpolated from input array of K_T versus J, or maximum thrust coefficient in cavitating regime K_T calculated by Function TQMAX, whichever is smaller.
KQP	К _Q	=	torque coefficient at J_T open-water value interpolated from K_{Q_O} vs J, or maximum cavitation value K_{Q_m} calculated from TQMAX, whichever is smaller

145

				·		
					SUBROUTIN	VE PRINTP
	PERFORMANCE AT	SPECIFIC	LO	ADING:		
	PLOG	$\frac{\ln(K_T/J^2)}{\ln(K_Q/J^2)}$ $\ln(K_Q/J^3)$)	if IP=3	natural] input loa coefficie	ding
	XLOG	$\frac{\ln(K_{T_O}/J)}{\ln(K_{Q_O}/J)}$	$\binom{2}{2}{3}{3}{}$	if IP=2 if IP=3 if IP=4	of open-w	natural logs mater loading ent at J value t array
	JTP	J _T o	=	open-water advance coe from array of open-wat coefficients versus J loading required (logs the rapid change of lo low J's)	er loadin at the sp are used	g ecific because of
	If J_{T_0} is in no	on-cavitat	ing	g region (K _{To} <k<sub>Tm)</k<sub>		
	KTP	K _T	th	rust and torque coeffic	ients at	JTo
	KQP	KQ	int	rust and torque coeffic cerplated from arrays o	f K $_{T_O}$ and	K _{Qo} vs J
	If J_{T_0} is in ca	vitating	reg	gion ($K_{T_o} > K_{T_m}$)		
	XLOG	$\frac{\ln(K_{T_m} / J)}{\ln(K_{Q_m} / J)}$ $\ln(K_{Q_m} / J)$	2) 2) 3)	if IP=3 } if IP=4 }	array of m of loading based on M KQ _m as fur	
	JTP	JTm	=	advance coefficient in of cavitation loading of the specific loading re	coefficier	d from array nts vs J at
		KT } KQ }		maximum cavitation thru coefficients at J_{T_m} cal	ist and to Loulated f	orque from TQMAX
	OUTPUT:					
	JTP	J _T =	=	final advance coefficie	ent)	
	KTP	K _T =	=	final thrust coefficier	nt	at propeller
	KQP	KQ =	:	final torque coefficier	nt	performance point
)	EP	ⁿ o =	:	propeller efficiency J _T K _T /(2πK _Q)		specified by PCOEF and SIGMA

Contract of

(state)

1204

and the second

A CULTURE OF

Sector Sector

frailer of

Sec. 1

- the second

and the second second

SUBROUTINE PRINTP

TAUC	τ _c		thrust load coefficient
		=	$K_{T} / [\frac{1}{2}(A_{P}/D^{2}) (J^{2}+4.84)]$
SIG7	⁰ 0.7R	=	cavitation number based on velocity at 0.7 radius of propeller
,		=	$\sigma J^2 / (J^2 + 4.84)$ 4.84=(0.7 π) ²
XSIG7	0.88 4.94 ⁰ 0.7R	=	term representing 10% back cavitation line for Gawn-Burrill propeller series
LT		=	l character identifier for propeller cavitation
			* indicates thrust limit due to cavitation: $K_T = K_T_m$
			C indicates more than 10% back cavitation for Gawn-Burrill propellers, but less than thrust limit cavitation $\tau_{c} > 0.494 \sigma_{0.7R}^{0.7R}$

1

فتنبع والمناط

ALC: NO

ألغاره والمرابع

NAME	SUBROUTINE PROPS
PURPOSE:	Estimate powering requirements for ship at design and cruise speeds with propellers on inclined shafts. Select appropriate number of propellers and/or propeller diameter, if not already specified
CALLING SEQUENCE:	CALL PROPS
SUBPROGRAMS CALLED:	YINTX, PRINTP
INPUT:	Via COMMON blocks
PROPNO	n = number of propellersoptional input on Pr Card 12
PROPDI	D = propeller diameter in inchesoptional input on Card 12
AUXNO	n = number of auxiliary propulsion units for
<i>Г К о г [?] Д А</i> Р ЕМАХ	Da = cruise speed operation, from input Card 12 P = maximum horsepower of each prime mover, max from input Card 12
PL	L_p = ship length in ft, from input Card 29
HT	H = draft at transom in ft, from Subroutine NEWHUL
NV	Number of speeds, from Subroutine POWER
VKT(I)	V_{K} = ship speed in knots, from Subroutine POWER
TWF(I)	= design speed V_d , cruise speed V_c when $I = 1, 2$
THRUST(I)	1-w = thrust wake factor, from Subroutine PRCOEF
	T = total shaft-line thrust in lb, from Subroutine POWER
EHP(I)	P = total effective power, from Subroutine POWER
APD2	$\frac{1}{2}A_p/D^2$ = propeller constant, from Subroutine CAVKTQ
TCDES	$(\tau_c / \sigma_{0.7R})^*$ = constant for sizing propeller, from Card 12
	≈ 0.6 for Gawn-Burrill 10% back cavitation
CONSTANTS:	criteria
PRA	$p_A = atmospheric pressure in 1b/ft^2 = 2116$
PRV	P_V = vapor pressure in 1b/ft ² = 36
•	

J

Sec. Sec.

Same in

A.444

Sec.

Same a

.

۰.

	SUBROUTINE PROPS
PRH	P _H = static water pressure at propeller center in lb/ft ²
	= ρ g h _{pr} h = depth of propeller center below waterline pr in ft
EEMAX OPC	= H_t + 0.75 D \approx 1.5 H_t , if D not defined ε_{max} = maximum shaft angle in degrees = 15 Preliminary estimate of η_p = 0.55
OUTPUT: PRSHP	P_{B} = preliminary estimate of total brake horsepower $= 0.55 P_{-}$ at design speed
NPR	<pre>bo = 0.55 P at design speed n = number of prime movers = number of propellers = P /P (rounded up) or value Specified on input Card 12</pre>
	Limits: $4 \leq n_{pr} \leq 2$ Index for DO LOOP I=1, NV
I VA(I)	$V_{A} = \text{speed of advance of propeller in ft/sec}$ $= 1.6878 V_{K} (1-w)$ $\sigma = \text{cavitation number} = (p_{A}+p_{H}-p_{V})/(l_{2}\rho V_{A}^{2})$
SIG(I) TLMAX	$(K_{T}/J^{2})^{*} = upper limit on thrust loading$ $= \frac{l_{2}(A_{p}/D^{2})}{\sigma (\tau_{c}/\sigma_{0.7R})^{*}}$
DM	$D_{min} = \text{diameter in inches of smallest propeller} \\ \text{capable of producing required thrust} \\ \text{at current speed} \\ = 12 \left[T / \rho V_A^2 n_{po} (K_T/J^2)^* \right]^{1/2}$

	SUBROUTINE PROPS
	n = number of propellers in operation
	= n at design speed
	= n at cruise speed, if no auxiliary engine
	= n at cruise speed, if n > 0 aux
DIN	D = final propeller diameter in inches
	= 1.05 D at design speed
	or 1.05 D at cruise speed, whichever if larger
	or value specified on input Card 12
XSH	X = longitudinal distance from transom to point where shafting enters hull in ft = 0.2 L _p
XSF	X_{sf} = longitudinal distance from transom to forward end of shafting in ft = 0.3 L _p
CRUD	C_r = chord length of rudder in ft
	$= 0.03464 L_{p}/n_{pr}^{1/2}$
	Trailing edge of rudder assumed flush with transom
	Projected area of each rudder = 0.0016 L_p^2/n_{pr}
DMAX	$D = maximum propeller diameter in inches,max limited by \varepsilon and 0.25 D tip clearance$
	= 12 $(X_{sh}-C_r)$ tan $\varepsilon_{max}/0.75$ (1+tan ε_{max})
	If $D > D$, n is increased and D is recal-
	culated, unless n is a fixed input value or up to the limit of 4
PRN	<pre>n = final number of propellers, prime movers pr</pre>
DINMAX	<pre>D max' = maximum propeller diameter in inches, limited by hull breadth over chines at transom = 12 (2 Y_{C1}) / [n + 0.25 (n -1)]</pre>
	If D > D set final D = D max'
DFT	D = final propeller diameter in ft = $D_{in}/12$
XSA	X = longitudinal distance from transom to aft end sa of shafting at propeller centerline
	= 0.75 D + C _r , assuming 0.25 D from rudder to propeller
D75	H_{sa} = height from aft end of shafting to hull in ft
	= 0.75 D, assuming 0.25 D propeller tip clearance

Tourse of

and the second se

the second second conservation

ı.

SUBROUTINE PROPS

	EE	ε	= shaft angle in degrees
		6	
			= $\arctan \left[\frac{H_{sa}}{sf^{sa}} \right]$
	SHL	L _{sh}	= shaft length in ft = $(X_{sf} - X_s)/\cos \varepsilon$
™ *	THLD(I)	κ _t /j ²	= shaft length in ft = $(X_{sf} - X_{sa})/\cos \varepsilon$ = $T/[n_{po} \rho V^2 (1-w)^2 D^2]$
			= thrust loading of final propellers
-	TJ	J	= advance coefficient, from Subroutine PRCHAR
	EP(I)	η _o	= propeller efficiency, from Subroutine PRCHAR
3	RCF	Ncorr	= rpm correction factor, from Subroutine PRCHAR
*	RPM(I)	N	= propeller rpm = 60 V (1-w) N _{corr} /(J D)
-	PC(I)	n _D	= propulsive coefficient = $\eta_0 \eta_H \eta_R$
		n _H	= hull efficiency = $(1-t)/(1-w)$
		n _R	= relative rotative efficiency = 1.0 since thrust wake and torque wake are assumed equal
	DHP(I)	P _D	= total horsepower developed at propellers
		2	$= P_E / \eta_D$
	SHP(I)	PS	<pre>= total shaft horsepower = 1.02 P assuming 2 percent shaft transmission losses</pre>

and the second

and second

1

Same and

* When auxiliary propellers used with suxiliary engines, propeller diameter D= PROPDA (input on Card 12) is used for cruise speed calculations.

NAME :	SUBROUTINE WJETS
PURPOSE:	Design waterjet pumps capable of producing required thrust at design and cruise speeds and estimated powering requirements. Select appropriate number o waterjets if not already specified.
REFERENCE:	Denny, S.B. and A.R. Feller, "Waterjet Propulsor Performance Prediction in Planing Craft Application DTNSRDC Report SPD-0905-01 (Aug 1979)
CALLING SEQUENCE:	CALL WJETS
SUBPROGRAMS CALLED:	YINTE
INPUT:	Via COMMON blocks
PROPNO	<pre>n = number of prime movers = number of waterjet pumps optional input on Card 12</pre>
AUXNO	n = number of auxiliary propulsion units for aux cruise speed operation, from input Card 12
PEMAX	<pre>P = maximum horsepower of each prime mover, from max Card 12; required if n not specified pr</pre>
PROPDI	D = impeller diameter in inches optional in input on Card 12
AJET	A _j = area of jet in ft ² optional input on Card 12A
XK 1	<pre>K = bollard jet velocity/ship speed at design point, input from Card 12A</pre>
XK 2	K ₂ = constant for inlet head recovery IHR, from Card 12A
XK 3	$K_3 = \text{constant for } \tau \text{ vs. } \sigma_{\text{TIP}} \text{ cavitation criteria}, from Card 12A c$
DHD	D _h /D = diameter of impeller hub/diameter of impeller, input from Card 12A
TLC	^τ c _d = thrust load coefficient at design point, from Card 12A; not used if A _J is input
STP	^o TIP _d = impeller tip velocity cavitation number at design point, from Card 12A
HT	H = draft at transom in ft, from Subroutine NEWHUL
NV	Number of speeds, from Subroutine POWER
VKI(I)	V _K = ship speed in knots, from Subroutine POWER

Sec. 1

No. of Concession, Name

State of

ある時間の行

Sec. M

ŧ

THRUST(I)	Т	= total thrust required in 1b, from Subroutine POWER
CONSTAN"S:		
PRA	PA	f atmospheric pressure in $lb/ft^2 = 2116$
PRV	\mathbf{P}_{T}	vapor pressure in 1b/ft ² = 36
PRH	P _H	<pre>static water pressure on rotating axis in lb/ft² = pg h ra</pre>
	h _{ra}	 depth of rotating axis relow waterline in ft Z 0
OPC	Preli	minary estimate of $n_{\rm D} = 0.4$
RHO	ρ	= water donsity in lbs x \sec^2/ft^4 = 1.9905
GA	g	= acc_{le_1} tion of gravity in ft/sec ² = 32.174
OUTPUT:		
PRSHP	P _{Bo}	= preliminary estimate of cotal brake power = 0.4 P at design speed
NPR	n _{pr}	<pre>= number of prime movers = number of waterjets = P_/P_ (rounded up) B_ emax</pre>
		or value specified on Card 12 Limits: $4 \le n \le 2$
VFPS(1)	v _{sd}	= design ship speed in ft/sec = 1.6878 v_{K_1}
VFPS(2)	v _s	= cruise ship speed in ft/sec = 1.6878 $V_{K_{o}}$
THI(1)	T _d	<pre>= thrust requirement in 1b for each waterjet at design speed = T₁/n pr</pre>
THI(2)	т _с	= thrust in 1b for each waterjet at cruise speed = T_2/n_{aux} or T_2/n_{pr} when $n_{aux} = 0$
VJB	v _{jb} d	= bollard jet velocity in ft/sec at full power = $K_1 V_{S_d}$
DVJ	∆V _J .	= increase in jet velocity due to IHR at V _S
	d	$= K_2 V_{S_d} [(V_{JB_d}/V_{S_d}) + 1]^{-1.737}$
VJ	VJd	= jet velocity in ft/sec at V _S = V _{JB} + ΔV _J d d
Q	Qd	= mass flow in ft ³ /sec at V _S
	u	= $A_J V_J$, if A_J is input
		= $T_d/[p (V_J - V_S)]$, if A_J is not specified

Manual de

and a

A T	CORCOLLUR WOELS
AJ	A_J = area of jet in ft = Q_d / V_J or value from Card 12A d
AI	A_{I} = open area of pump inlet in ft ²
	= $(\pi D^2/4)(1 - D_h^2/D^2)$, if D is input
	= $T_d \sigma_{TIP_d} / \tau_c / (p_A + p_H - p_V)$, if D not specified
VID	V = average flow velocity into pump inlet at design point in ft/sec = Q _d /A _I
DMAX	D = maximum impeller diameter in ft, so that the center of rotating axis will not be above the still waterline
	= H _t '/1.25, where H _t ' is draft at 1/4 buttock at transom
DFT	<pre>D = diameter of pump impeller in ft = D_{in}/12, if D_{in} is input</pre>
	= $[4A_{I}/\pi(1-D_{h}^{2}/D^{2})]^{1/2}$, if D_{in} not specified If D calculated>D _{max} , set D=D _{max}
DIN	D = diameter of pump impeller in inches in = 12 D, or value input on Card 12
DHPMAX	P = maximum input horsepower
	$= (\rho A_J V_{JB_d}^3/620.517)^{0.94733}$
RPMMAX	N = pump speed in rpm at full power
	= 60 $[p_A + p_H - p_V) / (1/2 \rho \sigma_{TIP_d}) - V_{I_d}^2]^{1/2} / (\pi D)$
Ι	Index for DO LOOP I=1,NV (NV = number of speeds = 2)
VS	<pre>V = ship speed in ft/sec (design speed, cruise i speed, i = 1,2)</pre>
J	<pre>Index for DO LOOP J=1,NHP(NHP = 4) Calculate thrust at 4 selected values of horse- power Interpolate to obtain horsepower required at specified speed</pre>
HP(J)	P_j = selected horsepower = (J/4) P_d
VJB	V _{JB} = bollard jet velocity in ft/sec at P
	$= [620.517 P_{j}^{1.0556} / (0 \Lambda_{j})]^{1/3}$

÷----

المراجع المراجع

Reading and

and the

Sec. 1

and the second se

, Farmer

A second second

		SUPROATINE MAELS
DVJ	${}^{\Delta abla} \mathbf{J}$	= increase in jet velocity at P_i and V_s .
		$= \kappa_{2} v_{s_{i}} [(v_{JB_{j}}/v_{s_{i}}) + 1]^{-1.737}$
VJ	V _{J.}	= jet velocity at P and V = $V_{JB} + \Delta V_{J}$
Q	Q,	= mass flow at P and V = A V J = thrust in 1b at P and V S i
TH(J)	Т. j	= thrust in 1b at P_j and V_s_j
	-	$= \rho Q_{j} (V_{J_{j}} - V_{S_{i}})^{-1}$
DHP(I)	P i	<pre>= input horsepower for required thrust at specified ship speed, interpolated from array of P, vs T, at input value of T, i</pre>
RPM(I)	N _i	= pump speed in rpm
		$= N_{\max} (P_i/P_{\max})^{1/3}$
VJB	V _{JB} ,	= bollard jet velocity at required input horsepower in ft/sec
	+	= $[620.517 P_{1}^{1.0556}/(\rho A_{1})]^{1/3}$
		1 0
DAN	∆V _J i	= increase in jet velocity due to IHR = $K_2 V_{S_i} [(V_{JB_i} / V_{S_i}) + 1]^{-1.737}$
VJ	V _J	= jet velocity in ft/sec = V_{JB} + ΔV_{J}
Q	Qi	= jet velocity in ft/sec = $V_{JB} + \Delta V_{J}$ = mass flow in ft ³ /sec = $A_J V_{J}$
Vl		<pre>= average flow velocity into pump inlet in ft/sec = Q_i/A_I</pre>
SIG(I)	$^{\sigma}$ i	= cavitation number = $(p_A + p_H - p_V)/(1/2 \rho V_I^2)$
RPS	ⁿ i	= pump speed in rps = N _i /60
SIGTIP	σ _{tip}	= impeller tip velocity cavitation number
	-	$= (P_{A} + P_{H} - P_{V}) / [1/2 \rho (V_{I_{i}}^{2} + \pi^{2} n_{i}^{2} D^{2})]$
TAUC	^τ c _i	= thrust load coefficient
	1	$= T_{i} / [1/2 \rho A_{i} (V_{i}^{2} + \pi^{2} n_{i}^{2} D^{2})]$
TCMAX	^T max,	= cavitation limit on thrust load coefficient
	J	= cavitation limit on thrust load coefficient = σ_{TIP_i} + 0.14 K ₃
TCD(I)	(t max	τ_{i} - τ_{c}) negative value indicates cavitation
QG(I)	Q'i	= mass flow in gal/min = 448.828 Q_i
	• –	

1. 1997

No. of Street

Sec. Sec.

أماسة خبال

and prove

No. of Concession, Name

A Summer Shi

Contraction of the local distribution of the

Sec. 10

Sec. 10

t

NPSH_i = net positive suction head = $(V_I^2/2g)(1 + \sigma)$ XNPSH(I) SS(I) = suction specific speed = $N_i (Q'_i)^{1/2} / (NPSH)^{3/4}$ s_si = effective advance coefficient = V /n D i J' í XJ(I) = number of pumps in operation i
= n at design speed (i = 1)
= n aux at cruise speed if n aux > 0 (i=2) PRNN ⁿpo_i = n at cruise speed if n = 0 (i=2) P_Di DHP(I) = total horsepower developed at pumps = P n i po = total shaft horsepower = P_Si SHP(I) P_Di

SUBROUTINE DISCOT NAME: Single or double interpolation for continuous or PURPOSE: discontinuous function using Lagrange's formula CALL DISCOT (XA, ZA, TABX, TABY, TABZ, NC, NY, NZ, CALLING SEQUENCE: ANS) SUBPROGRAMS CALLED: UNS, DISSER, LAGRAN These subroutines are concerned with the interpolation, and are not documented separately INPUT: x value (first independent variable) for interpolated XA point z value (second independent variable) for interpolated ZA point Same as x value for single-line function interpolation Table of x values--first independent variable TABX array Table of y values--dependent variable TABY array Table of z values--second independent variable TABZ array Three digit control integer with + sign NC Use + sign if NX = NY/NZ = points in X array Use - sign if NX = NYUse 1 in hundreds position for no extrapolation above maximum Z Use 0 in hundreds position for extrapolation above maximum Z Use 1-7 in tens position for degree of interpolation desired in X direction Use 1-7 in units position for degree of interpolation desired in Z direction NY Number of points in y array NZ Number of points in z array OUTPUT: y value (dependent variable) interpolated at x, z ANS DISCOT is a "standard" routine used at DTNSRDC. Consult User Services Branch of the Computation, Mathematics and Logistics Department for additional information.

NAME: FUNCTION MINP

PURPOSE:

Select index of minimum x value to be used for Lagrange interpolation, from an array of x values greater than required

CALLING SEQUENCE: I = MINP (M, N, XA, X)

INPUT:

Μ

Ν XA

m = number of points required for interpolation of degree m-1 $n = total number of points in x array \ge m$

x value to be used for interpolation

Table of x values, must be in ascending order, but X array need not be equally spaced

OUTPUT:

MINP

Index of minimum x value from the array to be used by FUNCTION YINTE for Lagrange interpolation of degree m-1

SAMPLE PROGRAM USING FUNCTIONS MINP AND YINTE:

DIMENSION X(10), Y(10) N = 10M = 4READ (5, 10) (X(J), J=1, N), (Y(J), J=1, N), XAI = MINP (M, N, XA, X)YA = YINTE (XA, X(I), Y(I), M)

ALTERNATE PROGRAM USING FUNCTION YINTX:

DIMENSION X(10), Y(10) N = 10M = 4READ (5, 10) (X(J), J=1, N), (Y(J), J=1, N), XAYA = YINTX (XA, X, Y, M, N)

The result from either program is the same. In either case, only the M points closest to XA are considered in the interpolation formula. The first combination should be used whenever several dependent variables are to be interpolated at some value of the independent variable, since MINP need only be called once. FUNCTION YINTE may be used alone whenever N = M.

NAME:	FUNCTION YINTE
PURPOSE:	Single interpolation of degree n-l for function represented by n (x,y) points using Lagrange's formula
CALLING SEQUENCE:	YA = YINTE (XA, X, Y, N)
INPUT:	
XA	x value (independent variable) for interpolated point
X array	Table of x valuesindependent variable
	x values can be in either ascending or descending order and do not need to be equally spaced
Y array	Table of y valuesdependent variable
Ν	n = number of (x,y) values defining the function
OUTPUT:	
YINTE	Interpolated y value (dependent variable) derived from Lagrange formula of degree n-l
	For example, when n = 4, cubic interpolation is performed

]

des antes

]

in the second second

Lagrange's Interpolation Formula

$$y = \frac{(x-x_1) (x-x_2) \dots (x-x_n)}{(x_0-x_1) (x_0-x_2) \dots (x_0-x_n)} y_0$$

+
$$\frac{(x-x_0) (x-x_2) \dots (x-x_n)}{(x_1-x_0) (x_1-x_2) \dots (x_1-x_n)} y_1$$

+
$$\frac{(x-x_0) (x-x_1) (x-x_3) \dots (x-x_n)}{(x_2-x_0) (x_2-x_1) (x_2-x_3) \dots (x_2-x_n)} y_2 + \dots$$

+
$$\frac{(x-x_0) (x-x_1) (x-x_2) \dots (x-x_{n-1})}{(x_n-x_0) (x_n-x_1) (x_n-x_2) \dots (x_n-x_{n-1})} y_n$$

NAME:	FUNCTION YINTX
PURPOSE:	Single interpolation of degree m-1 for function represented by n (x,y) points using Lagrange's formula. If n > m, only the m closest points are considered in the interpolation formula
CALLING SEQUENCE:	YA = YINTX (XA, X, Y, M, N)
INPUT:	
XA	x value (independent variable) for interpolated point
X array	Table of x valuesindependent variable x values must be in ascending order, but need not be equally spaced
Y array	Table of y valuesdependent variable
М	<pre>m = number of (x,y) values considered for the interpolation process of degree m-1</pre>
N	$n = total number of (x,y) values \ge m$
OUTPUT:	
YINTX	Interpolated y value (dependent variable) derived from Lagrange formula of degree m-1
	FUNCTION YINTX may be used instead of FUNCTION MINP and FUNCTION YINTE together

14-14)

1999 (M)

Sec. 13

See Sample Programs using these three functions

NAME :	FUNCTION SIMPUN
PURPOSE :	Numerical integration of area under curve defined by set of (x,y) points at either equal or unequal intervals
CALLING SEQUENCE:	AREA = SIMPUN (X, Y, N)
INPUT:	
X array	Table of x valuesindependent variable x values must be in ascending order
Y array	Table of y valuesdependent variable
Ν	Number of (x,y) values
OUTPUT:	
SIMPUN	Area under curve $\approx \int \dot{y}^{*} dx$

LIBRARY SUBPROGRAMS:

Example

ABS	a	= absolute value of a	B = ABS (A)
AMINI	Min(a, b,)	= smallest value in list	C = AMIN1 (A, B)
ALOG	log (a)	= natural logarithm of a	D = ALOG (A)
ALOG10	log ₁₀ (a)	= common logarithm of a	E = ALOG10 (A)
ATAN	arctan(a)	= arctangent of a	F = ATAN (A)
	arctan(a/b)	= arctangent of a/b	G = ATAN (A,B)
COS	cos(a)	= trigonometric cosine of a	P = COS (A)
EXP	e ^a	= exponential of a	Q = EXP (A)
SIN	sin(a)	= trigonometric sine of a	R = SIN (A)
SQRT	(a) ^{1/2}	= square root of a	S = SQRT (A)
TAN	tan(a)	= trigonometric tangent of a	T = TAN (A)

Note: Angle A must be in radians for trigonometric functions SIN, COS, TAN.

T. a.

an lende

12.315.25

and a street

10-10-10 P

the second

a name

.

A COLORADO

APPENDIX B

SAMPLE INPUT AND OUTPUT

1

SAMPLE INPUT 1-10 12.2 . c .

				بىرى	MPLE	INPle.	T FOR	PROGR	AM PI	HEMOP	7-
	/USH /CH/ ATTF LDSE F/EOF 27 20 20 20 20 20 20 20 20 20 20 20 20 20	4,F3,T200 ER ARGE ARGF,FHFML (GFF) 4LG0. 127 26 137 26 1400 15 26 158 26 158 26 158 158 158 158 158 158 158 158	.GO, '=ZERO, (OCT (5+25) (15) 1		15 18 0.73 0.73 0.69 0.67 0.58 0.54 0.46 0.38 0.29 0.16 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01	21 26 1.80 1.80 1.80 1.84 1.88 2.008 2.16 2.38 2.44 2.54 2.54 2.54 2.54 2.55 3.35 3.39 3.40 3.42 3.44 3.46 3.48	Fez 7.564 7.564 7.682 7.64 7.684 7.682 7.684 7.926 8.50 8.50 8.50 9.250 8.50 9.553 9	0.00	<u>4M P</u>]	<u>4<i>FN</i>1<i>cP</i></u>	7
			0.21 0.08	4.46 3.92	3.21 3.54	3.52 3.54	10.04				
3		+087	0.00	0.00	10.50	0.00	10.50				
	4	0.00 10.0 5.0 10	0.00 15.0 00.0	0.00 20.0 4.00	25.00 22.5 2.00	0.00 25.0 1.50	0.00 27.5 50.00	0.00 30.0	0.00 35.0	0.00 40.0	0.00 45.0
1			8.0 0.14	1.0 103.	1.0 8000.	3.0 0.00	0.00	3000.	1900.	0.0	0.0
ð.			0.0 1.00	1.0	0.7 1.00	3.0 1.00	0.6				
			200. 650.	0.90	0.0	0.0	0.0	0.0	0.0	.51	
1		1.0	1.0	1.0	1.0	1.0	1.0				
		1.10	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		1.00	1.0 1.0	1.0 1.0	1.0	1.0	1.0	1.0	1.0	1.0	
		1.10	1.0	1.0			1 0		• •		
		1.0	1.0 1.0	1.0	0.0 1.0	$1.0 \\ 1.0$	1.0	1.0 1.0	0.0	1.0 1.0	1.0 1.0
		1.10 1.0	1.0	0.0	1.0 1.0	1.0 1.0	1.0	1.0	1.0	0.5	1.0
		.191 1	.000	2.036	1.000	1.528	1.000	1.000			
		5.00	15.0	20.0	1.0	0.0 50.0	100. 0.00	20.0			
	1	00.0 1	20.0	18.0	10.0						
	1	10.0 1	20.0	18.0	10.0						

ſ

--EOR--END OF FILE

LINEL LINEL CONTENT 50000 155.25 0.00 27 24 13 10 7 1 4 5 7 12 15.25 7 1 4 5 7 12 15 16 100 7.43 7.21 .723 1.80 7.54 0.00 100 7.43 7.23 .62 1.84 7.64 0.00 100 7.43 7.23 .58 1.98 7.72 0.00 150 7.49 7.33 .58 1.98 7.72 0.00 .200 7.54 8.04 .44 2.08 7.80 0.00 .50 7.29 8.33 .01 2.75 8.29 0.00 .50 6.54 9.13 .01 2.75 8.29 0.00 .50 6.54 9.33 .01 2.75 8.29 0.00 .50 6.54 9.		الموريدية أأغ								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ECH	IPUT DATA				(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				15 18	21 23					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	7 4 7	7 71	. 77	1.80	7,56	0.00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.96	7.68	0.00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.59		.58						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.58								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						9.21	0.00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.54	8.38	.1.5	3.40	9,25	0.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.850		7,88							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.29								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.00	0.00	0.00	0.00	0,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									40.00	45.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.00	2.00	1.50	50.00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.00	8,00	1,00	1.00						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,50	.14	103.00						0,00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.00	0.00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						A AA	0.00	0.00	E 1	0 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.00	0.00	+ 51	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1.00	1.00	1.00	1.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.00	1.00	1.00	1100	1		••••
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.00	1.00	1.00	1.00	1.00	1.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
1.10 1.00 0.00 1.00 <th< td=""><td>1.10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1.10									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00	1.00	1.00							
2.19 1.00 2.04 1.00 1.53 1.00 1.00 100.00 15.00 20.00 1.00 0.00 100.00							1.00	1.00	.50	1.00
100.00 15.00 20.00 1.00 0.00 100.00							4			
							1.00			
5.00 1.00 1.00 0.00 50.00 0.00 20.00										
	÷, 5.00	1.00	1,00	0.00	20.00	0.00	20.00			

Sector of

ECHO OF INPLET DATA FROM SUBBOUTINE READIN

1

PROPELLER CHARA	IPF	:OF = 1	F'/[i = 1	1.000	ÉAR =	.700	3. BLADES							
T1 1.2000	T2 1.0000	Q1 ,2000	02 •9249	TCX 10487	0088	RMAX ,8000	AF02 .2304							

		IATER CH			SIGHA			= 3,50		= 2.00		= 1.50	SIGHA		SIGMA=		SIGMA=	
L	K. 1	KQ	EP	KT/JSQ	КТ .	KQ	KT	KQ	КТ	κα	KT	KQ	КТ	KQ	КT	KΩ	КТ	KQ
.000	.490	.0734	.000	0.000		.0098		.0098		.0098		.0098		.0098	.054*		.054*	
.005	.488	.0732	.005	0.000		.0098	.054#			.0098		.0099		.0098	•054*		.054*	.0098
.010	.487	.0730	.011	0.000		.0098	.054*			,0099		.0098	.054*	.0098	.054*	.0099	.054*	,0098
.015	•485	.0728	•016	0.000	.054*	.0098	.054*	.0098	.054*	.0098	.054*	.0098	•054*	.0098	•054*	•0098	.054*	.0098
.020	.483	.0726	.021	0.000	. 054∦	.0098	.054*	.0098	.054*	.0099	.054*	.0098	.054*	.0098	.054*	.0098	.054*	.0098
.025	.482	.0723	.025	0.000	.054*	.0078	.054*	.0073	.054*	.0098	.054*	.0098	.054*	.0098	+054*	.0098	.054*	.0098
.035	.478	.0719	.037	0.000	.054*	.0098	.054*	.0098	.054*	,0098	.054*	.0099	.054*	.0098	.054*	.0098	.054*	.0098
.050	.473	.0712	.053	0.000		.0098		.0098		.0098		.0098		.0098	.054*			.0098
.075	.454	.0700		82.506		.0098		.0093		.0098		.0098		.0098	.054*			.0098
.100	.455	.0688		45,499		.0079		.0079		.0099		.0099		.0099	.054*			.0099
.125	.446	.0676		28.522		.0099		.0099		.0099		.0077		.0099	.054*			.0099
.150	.436	.0663		19,381		.0099	.055*			.0099		.0099		.0099	.055*			.0099
.175	.426	.0650				.0099		.0099		.0099		.0099		.0099	.055*			.0079
				13.919														
.200	• 415	.0636		10.407		.0111	•055*			.0099		.0099		.0099	·055*			,0099
	.406	+0623	•234	8.021		.0138		.0099		.0099		.0099	·055*		`₊055¥		.055*	
.250	.395	.0609	.259	6.330		.0168		.0102		.0100		.0100	.055*		.055*		.055*	
.275	.385	,0594	.284	5.092	.100*			.0121		.0100		.0100	.055*		.055*		.055*	
.300	• 374	.0580	.308	4,159	.119*			.0143		.0100		.0100	.055*		.055*		.055*	
.325	.363	.0565	.333	3.440	.140*			.0166	.055¥			.0101	.055*		·055*		•055∦	
.350	.352	.0550	.357	2.875	.163*			.0190		.0113		.0101	•056*		.056*		•056*	.0101
.375	.341	.0535	.380	2.425	.187*			.0216	.052*	.0129	.053*	.0101	•056*	.0101	.056*	.0101	.056*	.0101
.400	.330	,0520	• 404	2.060	.212*	,0401	.124*	.0243	.071*	.0145	.053*	.0111	.055*	.0102	•053*	.0102	.055*	.0102
.425	.318	0504	• 427	1.751	.240*	.0448	.140*	.0272	.030*	.0162	.030*	.0124	.055*	.0102	.053*	.0102	.056*	.0102
.450	.305	,0488	• 4 4 9	1.513	.269*	.0498	،157 *	.0303	•090*	.0180	•057*	.0138	, 057¥	.0102	.057*	.0102	.057*	.0102
.475	.295	.0473	.471	1.306	.2950	.0473	.175*	.0335	.100*	.0199	.075*	.0153	.057*	.0105	. 057≭	.0103	.057*	,0103
.500	.283	.0457	.493	1.131	.283C	.0457	.194*	.0368	.111*	.0219	.083*	.0138	.057*	.0115	.057*	.0103	.057*	
.525	.271	.0441	.514	.983	+271C	.0441	.213*	.0403		.0240	.091*	,0184	.061*	,0127	+057*	.0104	.057*	.0104
.550	.259	.0424	.534	.855	.259C	,0424	.234*	.0424	.134*	.0262	.100*	.0201	.067*	.0138	·058¥	.0106	.058*	.0105
.575	.247	.0408	.553	.746	.247	.0408		.0409		.0284		.0218	.073*		.058*		.058*	
.600	.234	.0392	.572	.651	.234	.0392	.234C			.0308		.0236	.080*		.060*		.058*	
.625	.222	.0375	.589	.569	.222	.0375		.0375		.0332	.130*		.086*		.035*		.059#	
.650	.210	.0359	.605	.497	.210	.0359	.2100	.0359	.187*		.140*		.093*		•070¥		.059*	
.675	,197	.0342	.620	.433	.197	.0342	.197	.0342	.197C		.151*		.101*		.076*		.059*	
.700	.185	.0325	.634	.378	,185	,0325	.185	.0325	.1850		.163*		.109*		.081*		.050*	
.725	.173	.0309	.645	.328	,173	.0309	.173	.0309		.0309		.0309	.116*		.087*		.030*	
.750	.160	.0292	.655	.285	.160	.0292	.130	.0292	.1300	.0292		.0292	.124*		+093+		.032*	
.775	.148	.0275	.662	.246	.148	.0275	.148	.0275	.148	.0275			.133#		.100*			
.800	.135	.0259										.0275					.066*	
.825	.123	+0242	• 6 6 5	.211	.135	.0259	.135	.0259 .0242	.135	.0259		.0259	.1350		.106*		•071*	
			.666	.180	.123		.123		,123	.0242	.123	.0242	.1230			.0225	·075¥	
.850	.110	.0226	.662	.153	.110	.0226	.110	+0226	.110	.0226	.110	.0226		+0225	,110C		•080¥	
.875	.098	+0209	.653	.128	.098	.0209	.098	.0209	.098	.0209	.098	.0209	•09B	.0209	,0980			
.900	.086	.0193	.637	.106	.086	.0193	•086	.0193	.086	.0193	.096	.0193	.085	.0193	.085	.0193	.084C	
.925	.073	.0176	.612	.086	.073	.0176	.073	•0176	.073	.0176	.073	.0176	.073	.0176	.073	.0176		.0175
,950	.031	.0160	•577	.068	.061	.0160	.061	.0160	.061	.0160	.061	.0160	.061	.0140	.061	.0160	.061	.0160
.975	.049	.0144	.527	.051	.049	.0144	.049	.0144	.049	.0144	•049	.0144	.049	.0144	.049	.0144	.049	.0144
1.000	.037	.0128	.457	.037	.037	.0128	.037	.0128	.037	.0128	.037	.0128	.037	.0128	.037	.0128	•037	.0128
1.025	.025	.0112	.359	.024	.025	.0112	.025	.0112	.025	.0112	+025	.0112	.025	.0112	.025	.0112	.025	.0112
. 1,050	.013	.0097	+221	.012	.013	.0097	.013	.0097	.013	.0097	.013	.0097	.013	.0097	.013	,0097	•013	.0097
1,075	.001	.0081	.019	.001	,001	.0081	.001	.0081	.001	.0081	.001	.0081	.001	.0081	.001	.0081	.001	.0091
* 5						· ·												

PROPELLER OPEN-WATER AND CAVITATION CHARACTERISTICS FROM SUBROUTINE CAVIKTO

HULL SIRUCTURES GRP (B-B)	SAMP	LE (OCT)	82)		
	DESIGN P (PSI)	UNIT WT. (LB/SQ.FT)	AREA (SQ.FT)	WEIGHT (LB)	T (IN)
TRANSVERSE BULNHEADS					
1 X=0.000	5.45	3.70	133.8	496.	
2 X= .075	5.54	3.73	136.8	510.	
3 X= ,150	5.65	3.75	143.5	538.	
4 X= .300	5,85	3.79	145.9	554.	
5 X= .450	6.10	3.85	151.2	582.	
6 X= .500	5.37	3,91	145.7	573.	
7 X≃ ,750	5.71	3,98	129.9	517,	
8 X= .875	6+65	3.97	97.9	389.	
9 X=1.000	5.37	3.69	39.4	145.	
FRAMING (LONG.+TRANSVERSE)				9984.	
STRESS(FSI) = 765. T(IN) = .27 .12 .13					
HULL BOTTOM (BELOW CHINE)	22.01 44.03	5.58 8.66	1055.0 414.3	9540.	• 27
HULL SIDES (ABOVE CHINE)		2.50	1677.8	4194.	.12
MAIN DECK	1.78	2.75	1965.3	5402,	.13

STRUCTURAL DATA FROM SUBROUTINE STRUCT (Printed only if IOPT=0)

.

.

,

÷

	int of				-	and a second										in a start and a start and a start and a start				
					G HULL F										MPLE	(OCT 82)				
	*****	*****	*****	*****	******	(******	*****	******	****	(******	*****	******	****	******	******	*******	*****	******	*****	*****
		6.12		53	5.01 1	LF-FT 00,00	BFX-F1 19.00	13.	38	HM-FT 4.88	HT-FT 4.01	D-I 61,		F/D 1.00	EAR Z 700 3	HFR AS , 3 1	H-DEG 5,3	LSH-FT 25.02	DSH-1 4.56	
			-LBS 9976,	f [.] rov 3	-DAYS 0 .0	FFICERS 1.0	CF0 1.0	8.0 ENL-HE		0.0	GM-FT 2.00			KG-FT 8,51	LCG/1			0LSS-F 5014		B IFRM 1
	S	TRUCT GRP (. МАТ. 8-в)	MIN	.LES/FT2 2.5	SLOF .1400		NS.LBS/ 103.			-FSI 0.	C-L'OAD ,749		HULLS 1	LOA-FT 108.70			5-FT 0,00	#CS-FT 0,00	HCS-FT 0.00
	ν-κτ	FNV	SIGMA	a H13-I	FT RB/W	₽A/W	R₩Z₩	1-W	1-7	, KTZJS	η TL Ω	EP	ዮር	ዐዮር	T-LB	Q-FT.LB	RPH-P	EHP	DHF	внр
	1:ESIG 40.0	IN SPE 2+94	ED WIT .30	(H PRI) 0.00	ME MOVER 0 .1503	S .1644	•1644	•974	•920	.073	•942	. 589≭	.557	.509	50003.	65492,	814,	5647.	10146.	10556.
	CRUIS 25.0	E SFE 1.84	ED WI1	FH FRI 0.00	ME HOVER 0 ,1017	S .1086	.1086	1,004	.920	.115	• 838	•345*	.590	.553	33042.	37247.	557.	2332.	3950.	4110,
	10.0 15.0 20.0 22.5 25.0 27.5 30.0 35.0 40.0 45.0	.74 1.10 1.47 1.66 1.84 2.02 2.21 2.58 2.94 3.31	3.62 2.10 1.71 1.44 1.23 1.06 .29 .60 .47		0 .0179 0 .0588 0 .0879 0 .0948 0 .1017 0 .1099 0 .1189 0 .1358 0 .1503	.0521 .0933 .1009 .1086 .1177 .1278 .1471 .1644 .1723	.0621 .0933 .1009 .1086 .1177 .1278 .1471 .1644 .1723	1.042 1.025 1.006 .988 .978 .970 .974	.920 .920 .920 .920 .920 .920 .920 .920	.146 .145 .128 .116 .108 .100 .086 .073	.837 .858 .875 .889 .898 .907 .924 .942	.665* .660* .653* .645* .638* .631* .613*	.578 .583 .586 .590 .594 .593 .582 .582	.553 .555 .552 .537 .509	5735. 18880. 28383. 30393. 33042. 35797. 38888. 44745. 50003. 52416.	6503. 19482. 30207. 336901 37247. 41237. 45757. 55266. 65492. 74282.	519, 557, 596, 637, 723, 814,	1603. 1950. 2332. 2779. 3294. 4421. 5647.	1384. 2750. 3327.	1440. 2851. 3461. 4110. 4866. 5774. 7910. 10556.
	37.2	2.73	• 70	0.00	,1425	.1549	+1549					.603*	•572	.526	47129.	59630.	761.	4944,	8345.	8995.
	GAS TI CRUIS	URB 3	5.0	NO. 3.		₽РМ-Е 1800.	.510 .663	976	•	SW •83	WE 2500.			NG 4650,		1387, 5	16.	GEARC 16000,	GEARK 200+	GEARE
	FAYL	0AD RI		MENTS	WT =	= 11200	. LRS	V0L=	100	00. FT3	vc	G= 4.(00 F	T + HULL	БЕРТН	PAYLOAI) DENSI			
	VEH1(PAYLO	CLE DE DAD DE	ENSITY ENSITY	= 21.	02 LBS/F 77 LBS/F	T3 GR		GROUP 2 FROP.	GRC		ROUP 4 Comm.	GROUF AUX.9	° 5	GROUF & OUTFIT	енрту	USEFUL		EW	FUEL LOAD	PAY- LOAD
	WEIG	НТ/ТОТ НТ ІМ НТ ІМ	LRS	• (27	9876, LE	47	1708 803. .341	.2095 58358. 24.053	129)462 233. 773	.0030 1391. .755	050 14176 6.32	5.	・0554 15510, と、924	.5376 150471. 67.174	.4624 129405. 57.770	.02 620 2.7	5, 112	.4002 2000. 0.000	.0400 11200, 5.000
, a 8 6 . 	- VCG - 1	IULL I CN FT	EPTH FROM 1	(1 RL	0.00 FT		6770 6,77	.5483 5.49		3231 3.23	.8755 8.76	.722 7.2		•8486 8•49	• 6639 6 • 64	1.0677 10.68	.40 4.	76 .	6054 5,05	5,0558 60,53
	iê Anroi Anroi	1E/101 1E IN	FT¥¥3	L. (1	8326. FT		0726 96.5	•1647 3018•2		0000 0.0 1	.1036 898.6	.173 3171,		.2737 5015.4	.8076 14800.4	.1924 3525.5	.00 124		1231 255.4	.0325 1145.0

PAGE I FROM SUBPOLTINE PRIDUT IN

ENDURANCE WITH PRIME MOVERS

V-KT	BHF	SFC	RAHGE-NK	HOURS
10.0	301.	3.082	1146.	114.53
15.0	1440.	1.099	1009.	67.27
20.0	2861.	.773	962.	48.10
22.5	3461.	.711	973.	43.23
25.0	4110.	.663	976.	39,06
27.5	4856,	.622	967.	35.18
30.0	5774.	.585	944.	31.48
35.0	7910.	.531	887.	25.35
40.0	10555.	.492	820.	20.51
45.0	13263.	.457	774.	17.20
37.2	7000.	.510	861.	23.18

PAGE 2 FROM SUBROUTINE PRTOUT

	RSCI NO.	WEIGHT FRACTION	VOLUME FRACTION	VCG / HULL DEPTH	WEIGHT (L&S)	WEIGHT (L.TONS)		VOLUHE (FT##3)	VOLUME (M**3)	MULT
LUADS							•		-	
USEFUL LOAD	0	.4624	.1924	1.0677	129405.	57.770	58.697	3525.5	99.83	1.00
FUEL	0	.4002	.1231	.6054	112000.	50.000	50.802	2255.4	63.87	1.00
CREW AND EFFECTS	1	.0096	.0002 .	.7320	2688.	1.200	1,219	3.4	.10	1.00
FERSONNEL STORES	6	.0007		.5360	191.	.085	.087	67.2	1.90	1.00
POTABLE WATER	12	.0119	.0029	.1380	3326.	1.485	1.509	53.5	1.51	1.00
PAYLOAD	0	.0400	,0625	6.0558	11200.	5,000	5,080	1146.0	32.45	1.00
HULL STRUCTURE										
	1	.1708	.0926	• 6770	47803.	21.341	21,683	1696.5	48.04	1.10
•	100	.0341	.0189	.1689	9537.	4.258	4.326	346.9	9.82	1.00
	100	.0150	.0215	.6930	4194.	1.873	1,903	393.2	11,13	1.00
	101	.0357	.0127	.6260	9984.	4.457	4.529	232.2	6.57	1.00
	103	0.0000	0.0000	0.0000	0.	0.000	0.000	0.0	0.00	1.00
	103	0.0000	0.0000	0.0000	0.	0.000	0,000	0.0	0.00	1.00
	107	.0193	.0251	1.0270	5402.	2.412	2,451	460.6	13.04	1.00
	114	.0154	.0144	.5158	4304.	1,921	1.952	263.7	7,47	1.00
	114	0.0000	0.0000	0.0000	0.	0.000	0.000	0.0	0.00	1.00
	111	.0179	0.0000	1.6000	5014.	2.238	2,274	0.0	0.00	1.00
	112	.0079	0.0000	.1500	2224.	,993	1.009	0.0	0.00	1.00
;	113	.0070	0.0000	.7800	1945.	•868	,882	0,0	0.00	1.00
3	198	.0030	0.0000	.6770	852.	.380	.387	0.0	0.00	1.00
	199	.0155	0.0000	. 5770	4346.	1.940	1.971	0.0	0.00	0.00
FROPULSION						·				
	2	.2085	.1547	.5483	58358.	25.053	26,471	3018.2	85.45	1.00
	201	.0766	.1346	.6150	21450.	9.576	9,730	2466.0	69.83	1.00
	203	.0347	0.0000	0.0000	9706.	4.333	4,403	0.0	0.00	1.00
	204205	.0144	.0301	1.1300	4032+	1.800	1.829	552.2	15.54	1.00
	206	.0036	0.0000	.6150	1008.	.450	, ,457	0.0	0.00	1.00
	209	.0026	0.0000	.6150	726,	.324	.329	0.0	0.00	1.00
	210	.0655	0.0000	.6150	18332.	8,184	8,315	0.0	0.00	1.00
	211	.0026	0.0000	.3150	726.	.324	.329	0.0	0.00	1.00
	250251	.0085	0.0000	.6150	2379.	1.062	1.079	0.0	0.00	1.00
	299	0.0000	0.0000	.5483	0.	0.000	. 0.000	0.0	0.00	0.00
ELECTRIC PLANT										
	3	.0462	0.0000	.8231	12933.	5.773	5,846	0.0	0.00	1.10
	300	.0216	0.0000	.8300	6036.	2.695	2,738	0.0	0,00	1.00
	301	.0051	0.0000	,7860	1438.	+642	.652	0.0	0.00	1,00
	302	.0125	0.0000	.6990	3489.	1.558	1.583	0.0	0.00	1.00
	303	.0028	0.0000	1,3830	794.	,355	.360	0.0	0.00	1.00
	399	.0042	0.0000	.8231	1176.	.525	.533	0.0	0.00	0.00

PAGE 3 FROM SUBROUTINE PRIOUT

124.94-TON FLANING HULL FEASIBILITY MODEL

GANN-BURRILL PROPELLERS SAMPLE

E (OCT 82)

	BSCI NO.	UEIGHT FRACTION	VOLUME FRACTION	VCG / HULL DEPTH	WEIGHT (LRS)	WEIGHT (L.TONS)	WEIGHT (M.TONS)	VOLUME (FT**3)	VOLUHE (M**3')	MULT
COMMUNICATION AND CONTROL										
	4	.0050	,1035	.8755	1591.	.755	,767	1898.6	53.76	1.10
	400	.0005	,1000	1.7437	144.	.064	.065	1832.6	51.89	1.00
	401	.0050	.0035		1394.	.622	.632	66.0	1.87	1.00
	499	.0005	0.0000	.8755	154.	.069	.070	0.0	0.00	0.00
AUXILIARY SYSTEMS				·•						
	5	.0507	.1731	.7223	14176.	6.329	6.430	3171.8	89.81	1.10
	500502	.0053	0.0000	1.0165	1478.	.650	. 570	0.0	0.00	1.00
	501	.0037	.0300	1,2222	1026.	.458	.466	549.8	15.57	1,00
	503	0.0000	0.0000	4650	0.	0.000	0.000	0.0	0.00	0.00
	505	.0021	.0199	1.0318	598,	.237	.271	364.0	10.31	1.00
	506	.0059	0.0000	. 5 5 8 9	1642.	.733	.745	0.0	0.00	1.00
	507	.0019	0.0000	.7500	538.	.240	.244	0.0	0.00	1.00
	508	0.0000	0.0000	.2920	ο.	0.000	0.000 '	0.0	0.00	0.00
	509	.0018	0.0000	.8033	515.	.230	.234	0.0	0.00	1.00
	510	.0005	0.0000	.9306	137.	.061	.062	0.0	0.00	1.00
	511	.0001	0.0000	.4180	34.	.015	.015	0.0	0.00	1.00
	513	0.0000	0.0000	0.0000	• 0.	0.000	0.000	0.0	0.00	1.00
	517	.0011	.0876	.5400	317.	.141	.144	1604.7	45.44	1.00
3	518	.0047	.0159	• 5550	1316.	.587	.597	291.1	8.24	1.00
	519	.0122	0.0000	.3820	3419.	1.526	1.550	0.0	0.00	1.00
	520	.0029	.0034	.7020	821.	•367	.372	62.5	1.77	1.00
	521	.0013	0009	1.0000	355.	.159	.151	16.1	.46	1.00
	528	.0004	.0017	.8070	103.	.045	•047	30.8	•87	1.00
	550	.0002	.0040	,5335	46.	+021	.021	73 .3	2,08	1.00
	551	.0019	0.0000	.9039	545.	.243	•247	0.0	0.00 *	1.00
	599	.0045	.0098	,7223	1289.	•575	.585	179,5	5,08	0.00
OUTFIT AND FURNISHINGS		,								
	6	.0554	.2737	+8435	15510.	6.924	7,035	5015.4	142.02	1.10
	600	.0035	0.0000	1.0540	1019.	.455	+452	0.0	0.00	1.00
	601	0.0000	0.0000	1.2480	0.	0.000	0.000	0.0	0.00	0.00
	602	.0003	0.0000	1.7197	70.	.031	.032	0.0	0.00	1,00
	503	.0040	.0408	4390	1125,	.502	.510	748.2	21.19	1.00
	604	.0018	0.0000	1.1502	492.	.220	.223	0.0	0.00	1.00
	605 606	.0049 .0054	0.0000	.7663	1374.	.614	.623	0.0	0.00	1.00
			0.0000	1.0646	1511.	.674	.685	0.0	0.00	1.00
	607 608	.0161	0.0000	1.0165	4516.	2.016	2.048	0.0	0.00	.50
	609	.0003	.0005 .0003	. 5330	1541;	.688	.699	11.3	.32	1.00
	610	0.0000	0.0003	,7280	224.	.100	.102	5.5	.15	1.00
	611	.0015	.0162	.9654 1.1598	0.	0.000	0.000	0.0	0.00	0.00
	612	.0049	.1987	1.0558	411. 1369.	.183	.186	296.0	8,33	1.00
	613	.0015	.0015	1.2302	448.	.611	. 521	3640.6	103.09	1.00
	614	0.0000	0.0000	1,1038	448.	.200	,203	29.9	.85	1.00
	699	.0050	.0155	.8486	1410.	0.000	0.000 .640	0.0	0.00	0.00
	2			10100	19101	+0.17	+040	283.9	8.04	0.00

レイ

PAGE 4 FROM SUBROUTINE PRIMIT

			وسمينية أقتعه			Second	. Surger				PS PE	XY SAY .		STAR IN SUC		3		
		94-TON FLAN						BURRILL				AMPLE		CT 82)				
	******	·*********	*******	*****	*** ****	*******	******	******	*****	******	******	******	******	******	*****	*****	*****	******
	LOA-F 108.	T LP-FT	80A-F 22,2	T ይዮአ-F	T L	₽/8₽X 5.56	BPA-FT 13,33			DZS-FT 0.00	HUL		.CS-FT 0.00	BCS-FT 0.00	HCS-	FT		
	DISFL-1 279873		NS HM-F 4.81			.₽/V13 6.12	KB-FT 3.17		-FT .34	KM-F1 10.51		4-FT 2.00	KG-F 8.5:		CG-FT 8.14			
8 - 1	X/L 0.00 0.02 0.07 10 15 20 255 30 35 40 45 55 .40 .55 .40 .55 .40 .55 .80 .85 .80 .857 .900 .925 .900 .905	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ZS-F1 9.12 9.22 9.26 9.31 9.36 9.41 9.46 9.51 9.55 9.60 9.75 10.00 10.25 10.35 10.62 10.86 11.11 11.16 11.46 11.56 11.62 11.86 11.92 12.11 12.27 12.67	2.12 2.12 2.20 2.22 2.36 2.46 2.55 2.70 2.81 2.90 3.00 3.25 3.34 3.50 3.84 3.99 4.01 4.04 4.08 4.11 4.13 4.15 4.18	ZK-FT .84 .93 .68 .54 .54 .54 .54 .54 .05 .01 .01 .01 .01 .01 .01 .01 .15 .59 .58 1.49 .59 .58 1.49 .59 .58 .59 .59 .59 .59 .59 .59 .59 .59	YS-FT 8,50 8,53 8,57 8,64 9,36 9,36 9,36 9,36 9,36 9,36 9,36 9,36	YC-FT 9.01 8.998 8.997 9.085 8.925 8.925 8.925 8.925 8.925 8.925 8.925 8.925 8.925 8.925 8.925 8.925 8.925 8.920 8.925 8.920 8.927 8.925 8.920 8.925 8.920 8.925 8.9556 8.955 8.9556 8.9556 8.9556 8.9556 8.9556 8.9556 8.9556		$\begin{array}{cccccccccccccccccccccccccccccccccccc$.99 .59 .90 .60 .90 .09 .35 .16 .94 .55 .98 .98 .33 .83 .83 .07 .74 .07 .74 .03 .63 .95 .83 .95 .83 .95 .85 .95 .95 .95 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09	AS-FT2 133.80 133.96 135.83 136.84 139.60 143.57 145.22 146.19 145.94 147.56 149.17 151.20 149.64 155.94 146.67 143.14 136.79 129.88 118.07 111.37 97.94 90.63 71.03 53.50 45.30 39.43	334 671 1012 1357 2066 2789 3517 4248 4981 5723 6474 7227 7988 8751 9473 10174 10841 11463 12035 12298 12532 12737 12892 13013 13119	.00 .69 .21 .23 .41 .17 .11 .93 .78 .77 .60 .33 .61 .62 .74 .62 .74 .64 .57 .51 .13 .36 .91 .34			•		
						0.00	0.00	0.00		.00		13312						
	፣ የምግጥጥጥ ችላ	********								**** ***	******	******	K******	*****	*****	*****	(*****	*****
		SEA STAT H13-FT		4.13 5.6	6 7.36	1 1.92		3 5,66 (1 1,92	2 4.13	3 5.56	4 7,36	1 1,92	2 4.13	3 5,63	4 7.36
	V~KT	SAVITSKY R/W TRI	M	CG ACC (G) 		BOW AC			FIXE			C (G)			BOW AC	C (G)	
253 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.00 15.00 20.09 22.50 25.00 30.00 30.00 30.00 45.00	.0538 2.7 .0643 3.0 .0775 3.4 .0850 3.6 .0928 3.9 .1008 4.2 .1955 4.4 .1219 4.8 .1313 5.0 .1380 4.9	7 .08 6 .12 A .17 B .19 A .21 1 .24 B .26 B .31 1 .35	.76 1.0	6 .47 9 .63 5 .72 2 .81 9 .90	, 53 , 68 , 76 , 84 , 93 , 93 , 1,01 , 1,17 , 1,30	1.14 1.47 1.64 1.81 1.99 2.17 2.51 2.80	1.12 1.56 2.01 2.24 2.48 2.73	2.03 2.62 2.92 3.23 3.55 3.87 4.47 1.99	TRIH 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50	.08 .12 .14 .18 .20 .22 .24 .28 .32 .36	.17 .25 .34 .38 .42 .47 .51 .59 .68		.30 .45 .60 .58 .76 .83 .91 1.06 1.21 1.35	. 52 . 58 . 73 . 79	1.08 1.33 1.46 1.58 1.69 1.81 2.03 2.24	1,09 1,47 1,83 2,00 2,16 2,32 2,48 2,78 3,08 3,36	1.92 2.38 2.60 2.81 3.02 3.22 3.62 4.00

PAGE 5 FROM SUBFOUTINE PRTOUT

* * * * * * *	******	******	******	*****	*******	*****	******	******	K*****	*****	*****	*****	*****	*****	******	******	*****	******	*****
LUA	ርዮ	₽F X	нн	нт	DISPL-LB	BETA	LCG	VCG	W1	W2	W 3	W 4	W5	WG	WF	WCE	WP	₩-L.T	COST
97.8	90.0	18,00	10.00	4.28	273923.	23.0	34.6	8.2	20.0	25.8	5.6	.7	6.0	6.5	50.0	2.8	5.0	122.3	3.60
109.7	100.0	18.00	10.00	4.01	279876.	23.0	33.1	8.5	21.3	26.1	5.8	• 8	6.3	6.9	50.0	2.8	5,0	124.9	3.68
119.6	110.0	18.00	10.00	3.80	286363,	23.0	41.7	8.8	22.7	26.5	6.0	•8	6.7	7.3	50.0	2.8	5.0	127.8	3.76

Ň

٠.

SUMMARY PAGE AT END FOR ALL CASES

•

52

÷

INITIAL DISTRIBUTION

Copies 14

30

12

8[.]

]

TAN AND

فتديدوهما

Constant Sugar

in which is

(and a set

and a second

1989.000

~"

NAVSEA
2 PMS 300T
1 941
1 521
1 5213
1 5241
1 03D3
1 03D4
1 03F2
1 03R
1 03R3
1 312
1 3124
1 31241
NAVSEADET Norfolk/6660
DDC
ABC-17

CENTER DISTRIBUTION

Copies	Code
1 1 1 1	11 (Ellsworth) 1103 Data Bank 112 117 118
1 1 1 7 1	15 152 1524 1524 (Hubble) 1532

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES; CONTAIN INFORMATION OF A PRELIM-INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

