DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

PROGRAM PHFMOPT
PLANING HULL FEASIBILITY MODEL
USER'S MANUAL
by
E. NADINE HUBBLE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT REPORT

DECEMBER 1978
DTNSRDC/SPD-0840-01
Revised January 1981
Revised October 1982 (NAUSEADET Norfolie)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER 2. GOVT ACCESSION NO. DTNSRDC/SPD-0840-01	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subttio) PROGRAM PHPMOPT, PLANNING HULL FEASIBILITY MODEL, USER'S MANUAL	3. TYPE OF REPORT \& PERIOD COVERED Final
	8. PERFORMING ORG. REPORT NUM3ER
7. AUTHOR(0) E. Nadine Hubble	8. CONTRACT OR GRANT NUMGER(:)
9. PERFORMING ORGANIZATION NAME ANO AODRESS David W. Taylor Naval Ship R\&D Center Bethesda, MD 20084	10. PROGRAM ELEMENT, PROJECT, TASX AREA \& WORK UNIT NUMBERS O\&MN Work Unit 1-1524-718
11. CONTROLLING OFFICE NAME ANO ADDRESS Naval Sea Systems Command (PMS 300) Washington, D.C. 20362	12. REPORT OATE December 1978, Revised January 1981
	13. NUMEER OF PAGES 190
14. MONITORING AGENCY NAME A ADORESS(II difforent from Controlling Offtee) Naval Sea Systems Command, Detachment Norfolk U.S. Naval Station Norfolk, VA 23511	15. SECURITY CLASS. (Of thia roport) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEOULE
16. DISTRIBUTION STATEMENT (ol th/s Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If dilferent from	Raport)

19. KEY WORDS (Continue on reverse alde If neceesary and Identity by block number)

Planing Craft, Feasibility Model
20. ABSTRACT (Continuo on reverse elde if necofeary end identify by block number)

Documentation of a computer program for performing design feasibility studies of planing hulls is presented. The mathematical model is oriented to combatant craft but may also be applied to other types of planing ships with full-load displacement up to 1500 tons and speed-displacement coefficient $F_{n} \nabla$ up to 4. Options are available for structural materials of aluminum or steel or glass reinforced plastic, diesel or gas turbine prime movers with or without auxiliary engines of either type, and propellers on inclined shaft or waterjet pumps. Weight, volume, and vertical center of gravity for the major
ship components, including loads, are estimated. Hull size may either be fixed or optimized to meet design payload requirements.
table of contents
ABSTRACT ${ }_{1}^{\text {Page }}$
ABSTRACT. 1
ADMINISTRATIVE INFORMATION. 1
INTRODUCTION. 1
GENERAL DESCRIPTION OF MODEL. 2
HULL GEOMETRY. 2
STRUCTURES . 3
RESISTANCE . 3
THRUST . 4
PROPULSION . 6
OTHER SYSTEMS . 6
LOADS. 7
OPTIMIZATION . 7
FINAL HULL . 8
REFERENCES. 17
APPENDIX A - DOCUMENTATION OF SUBPROGRAMS 19
FLOW CHART . 20
PROGRAM PHFMOPT - EXECUTIVE ROUTINE 25
SUBROUTINE READIN - INPUT 29
SUBROUTINE PRTOUT - OUTPUT. 45
SUBROUTINE PARENT - PARENT FORM NONDIMENSIONALIZED. . . 59
SUBROUTINE NEWHUL - HYDROSTATICS OF NEW HULL. 61
SUBROUTINE NEWVOL - ENCLOSED VOLUME OF NEW HULL 63
SUBROUTINE CREWSS - CREW AND SUPERSTRUCTURE SIZE. . . . 65
SUBROUTINE STRUCT(1) - STRUCTURES OF ALUMINUM OR STEEL . . 67
SUBROUTINE STRUCT(2) - STRUCTURES OF GLASS REINFORCED \quad PLASTIC 77
SUBROUTINE STRUCT(3) - STRUCTURES FOR LANDING CRAFT. . . . 87
SUBROUTINE POWER - PROPULSION SYSTEM 93
SUBROUTINE ELECPL - ELECTRIC PLANT. 103
SUBROUTINE COMCON - COMMUNICATION AND CONTROL 104
SUBROUTINE AUXIL - AUXILIARY SYSTEMS 105
SUBROUTINE OUTFIT - OUTFIT AND FURNISHINGS. 109
SUBROUTINE LOADS - FUEL, CREW, WATER, PROVISIONS . . . 113
SUBROUTINE TOTALS - GROLP 1-6 TOTALS, USEFUL LOAD, PAYLOAD. 115
SUBROUTINE COSTS - COST ESTIMATES. 123
SUBROUTINE PHRES - RESISTANCE ESTIMATE, SERIES 62-65 1.25
SUBROUTINE SAVIT - RESISTANCE ESTIMATE, SAVITSKY 131
SUBROUTINE PRCOEF - PROPULSION COEFFICIENT WITH PROPELLERS. 135
SUBROUTINE OWKTQ - PROPELIER OPEN-WATER CHARACTERISTICS 137
SUBROUTINE CAVKTQ - PROPELLER CHARACTERISTICS INCAVITATION REGIME139
FUNCTION TQMAX - MAXIMUM THRUST OR TORQUE COEffiCIENTS 143
SUBROUTINE PRINTP - PROPELIER PERFORMANCE INTERPOLATION 145
SUBROUTINE PROPS - POWERING REQUIREMENTS WITH PROPELLERS 149
SUBROUTINE WJETS - POWERING REQUIREMENTS WITH WATERJETS 153
SUBROUTINE DISCOT - DOUBLE INTERPOLATION 159
FUNCTION MINP
FUNCTION YINTE $\}$ SINGLE INTERPOLATION ROUTINES 161 162
FUNCTION YINTX
FUNCTION SIMPUN - NUMERICAL INTEGRATION 165163
FUNCTION CIDSF - SCHOENHERR FRICTIONAL RESISTANCE 165
APPENDIX B - SAMPLE INPUT AND OUTPUT 169
LIST OF FIGURES
1 - Geometry of Computer Model for Planing Hull 9
2 - General Arrangement of Typical Planing Hull 10
3 - General Arrangement of Typical Landing Craft. 10
4 - Weight of Stiffened Plating as a Function of Design Load. 11
5 - Weight of Stiffened Plating for Hull Sides. 12
6 - Hull Framing System Weights 12
7 - Propulsion Plant Foundation Weights 13
8 - Auxiliary and Other Equipment Foundation Weights 13
y - Mean Values of Resistance/Weight Ratio
from Series 62 and 65 Data. 14
10 - Mean Values of Wetted Area Coefficients
from Series 62 and 65 Data 15

LIST OF TABLES

1 - Mean Values of Resistance/Weight Ratio for 100,000-1b Planing Craft. 128
2 - Mean Values of Wetted Area Coefficient $s / \nabla^{2 / 3}$ for Planing Hulls . 129

NOTATION

AG	Longitudinal distance of center of gravity forward of transom (also referred to as LCG)
A_{I}	Open area of waterjet pump inlet
A_{J}	Jet area of waterjet pump
A_{p}	Projected planing bottom area
$A_{P} / \nabla^{2 / 3}$	Loading coefficient
$\widehat{\text { BM }}$	Height of metacenter above center of buoyancy
${ }^{\text {B PA }}$	Average breadth over chines
${ }^{\text {P }} \mathrm{PX}$	Maximum breadth over chines
BSCI	U.S. Navy weight identification system; Bureau of Ships Consolidated Index of Drawings, Materials and Services related to Construction and Conversion of Ships, February 1965
CG	Center of gravity
CODOG	Combination of diesel or gas turbine propulsion; gas turbine prime movers designed for maximum speed and auxiliary diesels designed for cruise speed
COGOG	Combination of gas turbine prime movers for maximum speed or auxiliary gas turbines for cruise speed
$C_{\text {A }}$	Beam loading coefficient $=\angle /\left(\operatorname{logBPX}{ }^{3}\right)=\nabla / B_{P X}{ }^{3}$
D	Propeller diameter or waterjet impeller diameter
EAR	Propeller expanded area ratio
$\mathrm{F}_{\mathrm{n} \nabla}$	Speed-displacement coefficient $=\mathrm{V} /\left(\mathrm{g}^{1 / 3}\right)^{1 / 2}$ Also referred to as volume Eroude number
g	Acceleration of gravity
$\overline{G M}$	Metacentric height; height of metacenter above CG
GRP	Glass reinforced plastic, i.e., fiberglass
H_{h}	Hull depth at midships; baseline to main deck
$\mathrm{H}_{1 / 3}$	Significant wave height
IHR	Inlet head recovery of waterjet pump
$\overline{\mathrm{KB}}$	Height from baseline to center of buoyancy
$\overline{\mathrm{KG}}$	Height frombaseline to center of gravity of ship (also referred to as VCG)
K_{T} / J^{2}	Propeller thrust loading

L/B	Hull length/beam ratio $=L_{P} / \mathrm{B}_{\mathrm{PX}}$
L_{P}	Projected chine length
$L_{\text {LA }}$	Overall length of ship
$\mathrm{L}_{\mathrm{p}} / \nabla^{1 / 3}$	Slenderness ratio
N	Rotational speed; RPM
NPSH	Net positive suction head of waterjet pump
OPC	Overall performance coefficient $=\mathrm{P}_{\mathrm{E}_{\mathrm{b}}} / \mathrm{P}_{\mathrm{D}}$
P/D	Propeller pitch ratio
P_{A}	Atmospheric pressure
P_{c}	Total brake power required at cruise speed
P_{d}	Total brake power required at design speed
$P_{\text {D }}$	Total power delivered at propellers or waterjets
P_{E}	Effective power
$P_{E_{b}}$	Effective power of bare hull
P_{H}	Static water pressure on rotating axis of propeller or waterjet pump
p_{V}	Vapor pressure
Q	Torque on propeller shaft
Q	Hass flow of waterjet pump $=A_{J} V_{J}=A_{I} V_{I}$
Q_{c}	Propeller torque load coefficient
R	Resistance
R/W	Resistance/weight ratio
$\mathrm{S} / \nabla^{2 / 3}$	Wetted area coefficient
$\mathrm{S}_{\text {s }}$	Suction specific speed of waterjet pump
SFC	Specific fuel consumption
T	Thrust
T	Draft at midships; baseline to waterline
V_{c}	Cruise (range) ship speed
V_{d}	Design (maximum) ship speed
$\mathrm{V}_{\text {I }}$	Average flow velocity into waterjet pump inlet
V_{J}	Jet velocity of pump at operating ship speed $=V_{J B}+\Delta V_{J}$

v_{JB}	Jet velocity of pump at bollard condition, i.e., zero ship speed
V_{S}	Operating ship speed
W	Total weight of ship = displacement
W_{1}	Weight of hull structures, BSCI Group 1
W_{2}	Weight of propulsion system, BSCI Group 2
W_{3}	Weight of electric plant, BSCI Group 3
W_{4}	Weight of nonmilitary communication and control, BSCI Group 4
W_{5}	Weight of auxiliary systems, BSCI Group 5
W_{6}	Weight of outfit and furnishings, BSCI Group 6
$\mathrm{W}_{\text {CE }}$	Weight of crew and effects, provisions, and water
W_{F}	Weight of fuel
W_{P}	Weight of payload
W_{P} / ∇_{P}	Payload density
X	Distance forward of transom
Y_{C}	Half-breadth at chine
Y_{K}	Half-breadth at keel
Y_{S}	Half-breadth at main deck
Z_{C}	Height of chine above baseline
Z_{K}	Height of keel above baseline
$\mathrm{Z}_{\mathrm{S}}{ }^{\text {d }}$	Height of main deck above baseline
1-t	Thrust deduction factor
1-w	Wake factor
β	Deadrise angle of hull bottom from horizontal
γ	Angle of hull sides from vertical
$\gamma_{\text {mat }}$	Density of structural material
Δ	Ship displacement $=\rho \mathrm{g} \nabla$
${ }^{\text {LT }}$	Full-load displacement in long tons
Δ / ∇_{h}	Vehicle density
ΔV_{J}	Increase in jet velocity due to inlet head recovery

Abstract

Documentation of a computer program for performing design feasibility studies of planing hulls is presented. The mathematical model is oriented to combatant craft but may also be applied to other types of planing ships with full-load displacement up to 1500 tons and speed-displacement coefficient $F_{n 7}$ up to 4. Options are available for structural materials of aluminum or steel or glass reinforced plastic, diesel or gas turbine prime movers with or without auxiliary engines of either type, and propellers on inclined saitsor waterjet pumps. Weight, volume, and vertical center of gravity for the major ship components, including loads, are estimated. Hull size may either be fized or optimized to meet design payload requirements.

ADMINISTRATIVE INFORMATION

ModiEications for the current program were authorized and funded by the Naval Sea Systems Comand, Detachment Norfolk (NAVSEADET Norfolk) Project Order 00016. The work was perfomed at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) under Work Unit 1-1524-718. INTRODUCTION

A computer program labeled PHFMOPT has been developed at DTNSRDC and utilized in numerous design feasibility studies by NAVSEADET Norfolk for combatant craft projects such as the Special Warfare Craft, Medium SWCM and Landing Craft LCM-9. The computer software has been revised and updated numerous times to keep abreast of the project requirements and state-of-the-art. This report provides a general description of the present mathematical model together with documentation for each module of the computer program in Appendix A. This program is operable on the Control Data Corporation 6000 Computers at DTNSRDC and has also been recently installed the CDC Cybernet Center in Reckuille, Md operating under NOS. Sample input and output are shown in Appendix B.

The planing hull feasibility model PHFNOPT is applicable for a wide range of planing-hull prototypes with slenderness ratio $L_{p} / \nabla^{1 / 3}$ from 4 to 10, speed-displacement coefficient $F_{n \nabla}$ from 0.5 to 4.0 , and displacement from 50 to 1500 tons. A comparison of the model with an actual patrol craft and an example of a design study utilizing the model has been presented in Reference 1.

* A complete listing of references is given on page 17.

Shaft angle from baseline
Appendage drag factor
Propulsive coefficient $=P_{E} / P_{D}$
Propeller efficiency
Viscosity of water
Water density
Propeller cavitation number based on advance velocity
Standard deviation
Stress limit of structural material
Waterjet impeller tip velocity cavitation number
Cavitation number based on resultant water velocity at 0.7 radius of propeller

Thrust load coefficient for propeller or waterjet
Displaced volume
Hull volume up to main deck
Volume of payload inside of hull and superstructure
Volume irside superstructure
Total volume $=\nabla_{h}+\nabla_{S S}$

GENERAL DESCRIPTION OF MODEL
Computer program PHFMOPT estimates the weight, volume, and vertical center of gravity VCG of major components for the empty ship plus the fuel load, crew, and provisions. Then, either (1) the resultant weight, volume, and VCG of the payload is computed for a hull of fixed size, or (2) the hull depth H_{h}, maximum chine beam $B_{P X}$, and/or displacement $\Delta_{L T}$ are optimized to meet design payload requirements for a ship of fixed length L_{P}. Computations may be made for several values of L_{P} to determine the optimum ship length.

Ship components for the U.S. Navy Bureau of Ships Consolidated Index BSCI Groups 1 through 6 are computed at the three-digit level. The data base for the model includes small patrol craft, hydrofoil craft, destroyers DD, and destroyer escorts $D E$ so that planing ships up to 1500 tons can be evaluated. A multiplier (K-factor) is input for each three-digit BSCI group which may be used to modify or eliminate weights and volumes derived from the general equations presented in Appendix A. A K-factor is also applied to the total of each single-digit group, essentially adding a designer's margin.

Input to the program is read by Subroutine READIN and consists of 54 punched data cards which contain offsets for the parent hull form and design constants. Data from the cards are immediately printed for use in checking input errors. In addition, one card for each design condition, containing the length I_{P} and initial values of $\Delta_{L T}, B_{P X}$, and H_{h}, is read by the executive routine PHFMOPT. A detailed description of the input and the printed output is presented in Appendix A. Output is controlled by Subroutine PRTOUT.

HULL GEOMETRY

The planing hull is represented by a hard-chine model as shown in Figure 1. Offsets input for the parent hull form are nondimensionalized in Subroutine PARENT. Offsets and hydrostatics for each new design condition of $L_{P}, B_{P X}$, and $\Delta_{L T}$ are computed by Subroutine NEWHUL. All parametric variations have the same deadrise as the parent, since the keel and chine offsets are proportioned by the average beam $B_{P A}$ and $B_{P X} / B_{P A}$ is held constant. The hull volume below the main deck ∇_{h} and the hull density
Δ / ∇_{h} are computed by Subroutine NEWVOL for each change in H_{h}. Slope of the hull sides is maintained whenever deck height is changed.

The general arrangement of the transverse bulkheads, platforms, and fuel tanks employed by the planing hull model is shown in Figure 2. Nine bulkheads positioned as shown are used for planing hulls over 70 tons and should be sufficient for a two-compartment ship aft and a three-compartment ship forward for most configurations. The number of bulkheads is reduced for smaller craft based on existing designs. The general arrangement used for the landing craft model is shown in Figure 3. For this special case, additional input parameters are required to define the well deck and ramps. A maximum of 15 bulkheads may be input, and a spacing of about 6 ft between bulkheads is used under the well deck.

STRUCTURES

The hull structures (BSCI Group 1) are computed in Subroutine STRUCT. The structural design procedure takes into account sea loads and effects of changes in hull length, beam, and depth. The design methodology is based on References 2, 3, and 4 and explained in detail in Reference 1 . Structures of either aluminum, steel, or glass reinforced plastic GRP may be computed. Two interchangeable Subroutines STRUCT are available, one for aluminum or steel hulls, the other for single skin or sandwich plate GRP hulls. Curves of structural weight data used by the math model are shown in Figures 4, 5, 6, 7, and 8.

A third Subroutine STRUCT is available for landing craft of aluminum or steel which accounts for the increased load on the well deck and ramps and changes in the internal arrangement.

RESISTANCE

Bare-hull resistance for the feasibility model is estimated from DTNSRDC Series 62 and 65 hard-chine planing hull data published in Reference 5. Mean values of resistance/weight ratio R / W as a function of $L_{\mathrm{P}} / \nabla^{1 / 3}$ and $\mathrm{F}_{\mathrm{n} \nabla}$ were computed from the 21 models of the two series with the longitudinal center of gravity LCG position ranging from $1 / 3$ to $1 / 2$ L_{P} forward of the transom. Mean values of wetted area coefficient $S / \nabla^{2 / 3}$ were obtained for the same data. Faired curves of the mean R / W for a
$100,000-1 b$ planing craft and mean $S / \nabla^{2 / 3}$ are presented in Figures 9 and 10.
Data from the faired curves have been incorporated in Subroutine PHRES (see Tables 1 and 2) so that the mean R / W can be interpolated for $L_{p} / \nabla^{1 / 3}$ from 4 to 10 at $F_{n \nabla}$ from 0 to 4 and scaled to the required ship size. Standard deviation σ of the base data from the mean values was also computed and faired as a function of $F_{n \nabla}$. A multiplier SDF may be used with σ to raise or lower the mean R / W data when attempting to match existing resistance data for a particular hull form.

Predicted R/W = Mean R/W-(SDF x σ)
Resistance of the appendaged hull is estimated by applying an appendage drag factor η_{a} to the bare-hull resistance. The factor η_{a} developed by Blount and Fox, Reference 6 , is applied only to hulls with propellers on inclined shafts. No increase in resistance is assumed for hulls fitted with waterjets.

Added resistance in rough water R_{aw} is predicted from an empirical equation given in Reference 7 which was developed by a regression of planing hull rough-water experimental data.

$$
\mathrm{R}_{\mathrm{aw}} / \Delta=1.3 \quad\left(\mathrm{H}_{1 / 3} / \mathrm{B}_{\mathrm{PX}}\right)^{0.5} \mathrm{~F}_{\mathrm{n} \nabla}\left(\mathrm{~L}_{\mathrm{P}} / \nabla^{1 / 3}\right)^{-2.5}
$$

THRUST

The feasibility model has the option for either propellers on inclined shafts or waterjet pumps. Thrust deduction (1-t) used for the propellers is 0.92 from Blount and Fox, Reference 6. Thrust deduction assumed for waterjets is 0.95 . Total thrust requirement $T=R_{t} /(1-t)$ where R_{t} is total resistance.

Subroutine PROPS is utilized to estimate the powering requirements for the ship at design and cruise speed when propellers are employed. If not input, the number of propellers is selected based on maximum power of prime movers available. Subroutine PROPS also determines propeller diameter if not specified, selecting the smallest propeller capable of producing the required thrust at both design and cruise speeds, based on an input constant for $\tau_{c} / \sigma_{0.7 R^{\prime}}$. A value of $\tau_{c} / \sigma_{0.7 R} \simeq 0.6$ corresponds to the 10 percent back cavitation criteria for Cawn-Burrill type propellers.

General equations for specific weight, rotational speed, and specific fuel consumption SFC have been developed for high speed diesels and second generation gas turbines. Data from the general equations may be modified by input constants to match a particular series of engines, or fixed weights and SFC's may be input to the program. Gear weights may be fixed or derived from a general equation developed by Mandel at Massachusetts Institute of Technology with appropriate constants for either single reduction or planetary gears. Propeller and waterjet weights are primarily a function of their size. Subsidiary propulsion system weights are given as a function of the total power of the prime movers.

Volumes required for the engine room, combustion air supply, and uptakes may be fixed inputs or obtained from the general equations based on existing diesel and gas turbine systems.

OTHER SYSTEMS

The electric plant (BSCI Group 3) components are computed in Subroutine ELECPL. The electric power requirementin kilowatts may be an input or computed as a function of the ship displacement.

The nonelectronic navigation equipment and interior communication system are established in Subroutine COMCON. The remainder of communication and control (BSCI Group 4) is considered part of the payload.

Auxiliary systems (BSCI Group 5) and the outfit and furnishings (BSCI Group 6) are computed in Subroutines AUXIL and OUTFIT. The general equations were primarily derived from DD and DE data. However, changes were made for aluminum components in lieu of steel, using $2 / 3$ the weight of steel where equal stress is required and $1 / 2$ the weight of steel where size is maintained.

LOADS

The fuel requirement is established in Subroutine POWER based on the SFC and range at either cruise speed or design speed, whichever dominates. A five percent margin is added for fuel which cannot be utilized. An additional five percent margin is added to the volume of the fuel tanks

Propeller open-water characteristics are derived as a function of pitch ratio P / D, expanded area ratio $E A R$, and number of blades Z from polynomials developed from the Wageningen B-Screw Series of airfoil section propellers, Reference 8 , or recent modifications of these polynomials for flat face, segmental section propellers such as the Gawn-Burrill Series, Reference 9. Propeller characteristics in the cavitation regime are derived from maximum thrust and torque load coefficient τ_{c} and Q_{c} developed as functions of cavitation numbers at the propeller 0.7 radius $\sigma_{0.7 R}$ in Reference 10.

Subroutine WJETS is used to estimate the power requirements with waterjet pumps. Waterjets of fixed size may be input, or the waterjets may be designed within the program using the approach given by Denny in Reference 11. The design pumps are assumed to operate at maximum input power and maximum rpm at the ship's design speed. A ratio of bollard jet velocity $V_{J B}$ to ship speed V_{S} about 2 will result in optimum propulsive efficiency; see Figure 3 of Reference 11. However at low design speeds, e.g., 20 knots, a value of $V_{J B} / V_{S}>2$ may be required in order to keep the size of the waterjet within reasonable bounds.

PROPULSION

Once the power estimates are made for design and cruise speeds, the propulsion (BSCI Group 2) components are calculated in Subroutine POWER. The following propulsion systems are available in the computer model:
(1) diesel prime movers,
(2) gas turbine prime movers,
(3) CODOG system -- gas turbine prime movers with auxiliary diesels,
(4) COGOG system -- gas turbine prime movers with auxiliary gas turbines.

There is always one prime mover for each propeller or waterjet. The prime movers are designed to operate at maximum power at the ship's design speed; the auxiliary engines operate at their maximum power at cruise speed.

The anxiliary engines may utilize the same propellers as the prime movers, or separate propellers muy be specified.
to allow for expansion. The fuel tanks are generally an integral part of the hull structure, but an option is available for separate fuel tanks when required.

The ship's complement may either be input or calculated in Subroutine CREWSS based on accommodations of numerous small and intermediate-sized warships. The crew concerned with the military payload is included in the total complement and not treated as part of the military payload. Weights and volumes of the crew and their effects based on U.S. Navy standard allowances, as well as personnel stores and potable water for the specified accommodations and days at sea, are computed in Subroutine LOADS.

The components of BSCI Groups 1 through 6 are combined and specified margins added in Subroutine TOTALS to obtain the empty ship weight, volume, and VCG. The difference. between the full-load displacement and the empty ship weight is termed the useful load, which includes the fuel, crew and provisions, and the payload. The payload consists of the armament (BSCI Group 7), the military portion of communication and control (Group 4), ammunition, and any special loads required for the ship's mission, such as the tanks carried by a landing craft. The computer model does not separate the various components of the payload.

OPTIMIZATION

Unless the hull size is fixed, the executive routine PHFMOPT iterates until the design payload specifications are met, or until a default condition occurs. The ship displacement is increased or decreased until the resultant payload weight W_{P} is equal to the input value for design payload. The beam of the hull is varied until the specified VCG of the design payload is obtained, maintaining the input metacentric height $\overline{G M}$. The hull depth is raised or lowered to obtain the design payload volume ∇_{P} (payload density $=W_{P} / \nabla_{P}$). A flow chart of the optimization process is presented in Appendix A.

Possible default conditions are as follows:
(1) $L_{p} / \nabla^{1 / 3}$ less than 4 or greater than 10 ,
(2) $F_{n \nabla}$ greater than 4 ,
(3) $\Delta_{L T}, B_{P X}$, or H_{h} not converging after 10 iterations for each variable. A default may occur if the initial values of $\Delta_{L T}, B_{P X}$, and H_{h} are not close to the optimums. Therefore, the program user may be wise to begin a new design with several fixed hull sizes to aid in the selection of initial values for the optimization process.

FINAL HULL
Weights, VCG's, and volumes for the final (or fixed) hull form are printed from Subroutine PRTOUT at the BSCI 3-digit level. Also output are offsets and hydrostatics for the final hull, speed-power predictions for a range of speeds, and some vertical acceleration predictions in various sea states based on empirical equations in Reference 12. A sample printout is shown in Appendix B.

Figure 1 - Geometry of Computer Model for Planing Hull

Figure 2 - General Arrangement of Typical Planing Hull

Figure 3 - General Arrangement of Typical Landing Craft

Figure 4 - Weight of Stiffened Plating as Function of Design Load

Figure 5 - Weight of Stiffened Plating for Hull Sides

Figure 6 - Hull Framing System Weights

Figure 7 - Propulsion Plant Foundation Weights

Figure 8 - Auxiliary and Other Equipment Foundation Weights

Figure 9 - Mean Values of Resistance/Weight Ratio from Series 62 and 65 Data

Figure 10 - Mean Values of Wetted Area Coefficient from Series 62 and 65 Data

REFERENCES

1. Hadler, J.B., et al., "Planing Hull Feasibility Model - Its Role in Improving Patrol Craft Design," The Royal Institution of Naval Architects, International Symposium on Small Fast Warships and Security Vessels, London (Mar 1978)
2. Heller, S.R. and M.H. Jasper, "On the Structural Design of Planing Craft," Trans. RINA, Vol. 102 (1961)
3. Allen, R.G. and R.R. Jones, "Consideration of the Structural Design of High Performance Marine Vehicles," paper presented to New York Metropolitan Section, SNAME (Jan 1977)
4. Heller, S.R. and D.J. Clark, "The Outlook for Lighter Structures in High Performance Marine Vehicles," Marine Technology, Vol. 11, No. 4 (Oct 1974)
5. Hubble, E.N., "Resistance of Hard-Chine, Stepless Planing Craft with Systematic Variation of Hull Form, Longitudinal Center of Gravity, and Loading," NSRDC Report 4307 (Apr 1974)
6. Blount, D.L. and D.L. Fox, "Small Craft Power Predictions," Marine Technology, Vol. 13, No. 1 (Jan 1976)
7. Hoggard, M. M., "Examining Added Drag of Planing Craft Operating in a Seaway," Paper presented to Hampton Road Section, SNAME (Nov 1979).
8. Oosterveld, M.W.C. and P. Van Oossanen, "Further Computer Analyzed Data of the Wageningen B-Screw Series," International Shipbuilding Progress Vol. 22 (Jul 1975).
9. Gawn, R.W.L. and L.C. Burrill, "Effect of Cavitation on the Performance of a Series of 16 Inch Model Propellers," Trans. INA, Vol. 99 (1957).
10. Blount, D.L. and D.L. Fox, "Design Considerations for Propellers in a Cavitating Environment," Marine Technology, Vol. 15, No. 2 (Apr 1978).
11. Denny, S.B. and A.R. Feller, "Waterjet Propulsor Performance Prediction in Planing Craft Applications," DTNSRDC Report SPD-0905-01 (Aug 1979).
12. Hoggard, M. M. and M. P. Jones, "Examining Pitch, Heave, and Accelerations of Planing Craft Operating in a Seaway," Paper presented at High-Speed Surface Craft Exhibition and Conference, Brighton (Jun 1980).

APPENDIX A
DOCUMENTATION OF SUBPROGRAMS

FLOW CHART OF EXECUTIVE ROUTINE PHFMOPT

NAME:
PURPOSE:

SUBPROGRAMS CALLED:

INPUT:

IOPT
PL L

DTONS

BPX

HDM

WPDES
vPDES

2PDES

DELDT

DELBX
DELHD
BXMIN

BXMAX

PROGRAM PHFMOPT
Executive routine for planing hull feasibility model. If hull size is fixed, estimate weight, volume, and vertical center of gravity VCG of major ship components and determine the resultant payload availability. If hull size is to be optimized, vary hull depth, beam, and/or displacement as specified until the design payload requirements are met.

READIN, PARENT, NEWHUL, CREWSS, POWER, NEWVOL, STRUCT, LOADS, ELECPL, COMCON, AUXIL, OUTFIT, TOTALS, YINTE, COSTS, PRTOUT
Via COMMON blocks and Card Set 29 See Subroutine READIN

Control for optimization of displacement $\Delta_{\text {LT }}$, maximum beam $B_{P X}$, and/or hull depth H_{h}, from Card 6
$L_{p} \quad=$ projected chine length of ship in $f t$, from Card 29
= initial value of displacement in long tons,* from Card 29
${ }^{B} \mathrm{PX}_{0}$
= initial value of maximum chine beam in ft, from Card 29
H_{h}
= initial value of hull depth at midships in ft, from Card 29
$W_{P}^{\prime} \quad=$ design payload weight in tons, from input Card 9
$=$ design payload volume in ft^{3}, from input Card 9
$=$ VCG of design payload in ft above main deck at midships, from Card 9
$=$ increment of displacement in tons, from Card 28
$=$ increment of B_{PX} in ft, from Card 28
$=$ increment of H_{h} in ft , from Card 28
$=\underset{\text { Card } 28}{\min } 2$ value of $B_{P X}$ in $f t$, from
$=$ maximum value of $B_{P X}$ in $f t$, from Card 28
*Weights in long tons will generally be referred to simply as "tons" in this report. 1 ton $=1$ long ton $=2240 \mathrm{lb}=0.9842$ metric tons

HDMIN HDMAX

OUTPUT:
WPLBS

PLDEN
ZPDES

L
J
I
NDT

NBX

NVD

DT (L)
$B X(J)$
$H_{\min }=$ minimum value of H_{h} in $f t$, from Card 28
$H_{\text {max }}=$ maximum value of H_{h} in $f t$, from Card 28
Via COMMON blocks
$\left(W_{P}\right)_{D} \quad=$ design payload weight in $1 b$ $=2240$ ($\mathrm{W}_{\mathrm{P}}^{1}$ in tons)
$\left(W_{P} / \nabla_{P}\right)_{D}=$ design payload density in $I b / f^{3}=2240 W_{P}^{\prime} / \nabla_{P}^{\prime}$
$\left(Z_{P}\right)_{D}=$ design payload VCG in $f t$ above main deck
$=$ input Z_{P}^{\prime}
Index for outer DO LOOP $L=1$,NDT
Index for middle DO LOOP $J=1$,NBX
Index for inner DO LOOP $I=1, N V D$
Number of displacements calculated in outer loop
If IOPT < 3, then NDT $=1$, and final $\Delta_{L T}=\Delta_{L T_{0}}$
Otherwise, $N D T=3$, and $\Delta_{L T}$ is optimized
Number of beams calculated in middle loop
$\left.\begin{array}{l}\text { If } I O P T<2 \\ \text { or IOPT }=4\end{array}\right\}$ then $N B X=1$, and final $B_{P X}=B_{P X}$
If $B_{P X} \leq B_{\text {min }}$, then $N B X=1$, and final $B_{P X}=B_{\min }$
If $B_{P X} \geq B_{\text {max }}$, then $N B X=I$, and final $B_{P X}=B_{\max }$
Otherwise, $N B X=3$, and $B_{P X}$ is optimized
Number of hull depths calculated in inner loop
$\left.\begin{array}{l}\text { If IOPT }<1 \\ \text { or IOPT }>3\end{array}\right\}$ then $N V D=1$, and final $H_{h}=H_{h}$
If $H_{h} \leq H_{\min }$, then NVD $=1$, and final $H_{h}=H_{\min }$
If $H_{h_{0}} \geq H_{\max }$, then NVD $=1$, and final $H_{h}=H_{\max }$
Otherwise, $N V D=3$, and H_{h} is optimized
$\Delta_{\text {LT }}=$ displacement of current hull
If NDT $=1$, then $\Delta_{L T}=\Delta_{L T}$
If NDT $=3$, then $\Delta_{L T}=\Delta_{L T}-d \Delta_{L T}, \Delta_{L T}$, $\Delta_{L T}+d \Delta_{L T}$
$B_{P X}=$ maximum chine beam of current hull
If $N B X=1$, then $B_{P X}=B_{P X}$ or $B_{\min }$ or $B_{\max }$
If $N B X=3$, then $B_{P X}=B_{P X_{0}}-d B_{P X}, B_{P X}$,

$$
\mathrm{B}_{\mathrm{PX}}^{\mathrm{o}}+\mathrm{dB}_{\mathrm{PX}}
$$

$H D(I)$
$\operatorname{PDEN}(\mathrm{I})$
2PL(J)

WPD (L)
HDM

PDENS
BPX

DTONS
$H_{h} \quad=$ hull depth at midships of current huli If NVD $=1$, then $H_{h}=H_{h_{0}}$ or $H_{\text {min }}$ or $H_{\text {max }}$ If NVD $=3$, then $H_{h}=H_{h_{0}}+d H_{h}, H_{h_{0}}, H_{h_{0}}-d H_{h}$ $W_{P} / \nabla_{P}=$ payload density of current hull
$Z_{P} \quad=V C G$ of payload for current hull
$W_{P} \quad=$ weight of payload for current hull
$H_{h} \quad=$ final hull depth in $f t$
If $N V D=3$, interpolate from the array of W_{P} / ∇_{P} versus H_{h} to obtain a new H_{h} which approximates the required $\left(W_{P} / \nabla_{P}\right)_{D}$. Iterate until the new
$H_{h_{0}}$ agrees with the old $H_{h_{0}}$ within one percent.
$W_{P} / \nabla_{P}=$ payload density of final hull
$B_{P X} \quad=$ final maximum chine beam in $f t$
If $N B X=3$, interpolate from the array of Z_{p} versus
$B_{P X}$ to obtain a new $B_{P X}$ which approximates the
required $\left(Z_{P}\right)_{D}$. Iterate until the new $B_{P X}$ agrees with the old $B_{P X}$ within one percent.
$\Delta_{\text {LT }}=$ final displacement in tons
If $N D T=3$, interpolate from the array of W_{P} versus $\Delta_{\text {LT }}$ to obtain a new $\Delta_{\text {LT }}$ which approximates the required $\left(W_{P}\right)_{D}$. Iterate until the new $\Delta_{L T}$ agrees with the old $\Delta_{L T}$ within one percent.
A maximum of 10 iterations is set on each loop. If the initial values of $\Delta_{L_{T}},{ }^{B_{P X_{0}}}$, and/or $H_{h_{0}}$ are too far from the design requirements, convergence may be unattainable with this optimization procedure. Therefore, it is well to run a matrix of fixed hulls (IOPT=0) first to aid in the selection of appropriate initial values.
See Subroutine, PRTOUT for complete output from final hull.

NAME :
PURPOSE:

CALIING SEQUENCE:
SUBPROGRAMS CALLED:

DATA REQUIRED:
PARENT
PL

BPX

DZS
NN
N
M
M40
M25
NTB
MTB (1)
MTB (2)
-
-
MTB (NTB)
XLP (I)

YC (I)
YS (I)
ZK (I)
ZC (I)
ZS (I)
YK (I)

SUBROUTINE READIN

Read input data from punched cards, and echo the input. Store data in COMMON blocks for use by other routines.
 CALL READIN
 OWKTQ, CAVKTQ

Via Punched Cards	Card	Columns
Identification for hull design	1	$1-50$
Projected chine length L_{P} of parent	2	$1-8$
form		$9-16$
Maximum chine beam $B_{P X}$ of parent form ΔZ_{S} of parent form, see Figure 1	$17-24$	

Total number of sections input $\leq 27 \quad 3 \quad 3-4$
Index of section at $X / L_{P}=1.0 \quad 7-8$
Index of section at $X / L_{P}=0.5 \quad 11-12$
Index of section at $X / L_{P}=0.6 \quad 15-16$
Index of section at $X / I_{P}=0.75 \quad 19-20$
Number of transverse bulkheads $\leq 15 \quad 4 \quad 3-4$
Indexes of Sections at which trans- 7-8
verse bulkheads are located, from
transnim to bow. Value of NTB must $11-12$
be 9 and values of MTB must be 1, 4,
$6,9,12,15,18,21,26$ for con-
ventional planing hulls, but may be varied for landing craft
Nondimensional longitudinal location $5(\mathrm{I}) \quad 1-8$ of section X / L_{P}

Half-breadth at chine Y_{C}9-16

Half-breadth at main deck $Y_{S} \quad 17-24$
Height of keel above baseline Z_{K}
25-32
Height of chine above baseline Z_{C}
33-40
Height of main deck $Z_{S}{ }^{\prime}-\Delta Z_{S}=Z_{S}$
41-48
Half-breadth at keel Y_{K}

Format for Card 1 is (5 A 10).
Format for Cards 3, 4, and 6 is (20 I 4).
Format for all other cards is (10 F 8.2).
Data read from each card is immediately echoed, i.e., printed on output page, for use in tracing errors.
Card Set 5 contains NN cards, one for each section, in order from transom to bow.
For conventional planing hulls, value of NN must be 27 and sections required are $X / L_{P}=0,0.025,0.05$, $0.075,0.1,0.15,0.2,0.25,0.3$, $0.35,0.4,0.45,0.5,0.55,0.6,0.65$, $0.7,0.75,0.8,0.85,0.875,0.9$, $0.925,0.95,0.975,1.0$, and $\mathrm{L}_{\mathrm{OA}} / \mathrm{L}_{\mathrm{P}}$ Values of $\mathrm{N}, \mathrm{M}, \mathrm{M} 40, \mathrm{M} 25$ are 26, 13, 15, 18. Sections for landing craft are not restricted.
Dimensions of offsets on Card Set 5 must be consistent with values on Card 2. The parent form is nondimensionalized before geometric variations are made.
The planing hull form is approximated by straight line segments as shown in Figure 1. The general arrangements used for conventional planing hulls and landing craft are shown in Figures 2 and 3, respectively.
Control for hull structural material 6 IMAT $=1$ for aluminum hull IMAT $=2$ for steel hull IMAT $=3$ for GRP single skin hull, with single skin bulkheads*
IMAT $=4$ for GRP single skin hull, with sandwich plate bulkheads*
IMAT $=5$ for GRP sandwich plate hull with sandwich plate bulkheads*

IMAT

[^0]Control for optimization of displacement 6
Δ, maximum beam $B_{P X}$, and hull depth H_{h};
length L_{P} is fixed in each case.
IOPT $=0$ if $\Lambda_{,} B_{P X}$, and H_{h} ara fixed.
IOPT $=1$ if Λ and $B_{P X}$ are fixed but
H_{h} is varied to mect required
payload density W_{P} / ∇_{P}.
IOPT $=2$ if Δ is fixed but
$B_{P X}$ is varied to meet required
VCG of payload Z_{P} and
H_{h} is varied to meet W_{P} / ∇_{P}.
IOPT $=3$ if Δ is varied to meet
required payload weight W_{P}
and $B_{P X}$ and H_{h} are varied to meet Z_{P} and W_{p} / ∇_{p}.
IOPT $=4$ if $B_{P X}$ and H_{h} are fixed but Δ is varied to meet W_{P}.
IOPT $=5$ if H_{h} is eixed but
Δ is varied to meet W_{P} and $B_{P X}$ is varied to meet Z_{P}.

Control for printed output 6
IPRT $=0$ for minimum output, major weight grours only. 2 paqes for each hull
IPRT $=1$ for complete 5 -page output per hull, including BSCI 3-digit level of weight and hull offsets

Control for type of engines 6

IPM $=2$ for gas turbine prime movers
IPM $=3$ for CODOG System, gas turbine" prime movers with auxiliary diesels
IPM $=4$ for COGOG System, gas turbine prime movers with auxiliary gas turbines

IPROP

ILC

IFRM

I HLLLL
XLWELL
MLBOWR
BWELL
BBOWR
BAFTR

ZWELL

ZAFTR

H13D
VCRS
CRANGE

Control for type of thrusters \quad Card Columns
$I P R O P=1$ for segmental section props (Gawn-Burxill type)
IPROP $=2$ for Newton-Rader type props (Data is questionabie - icse witk (rution)
$I P R O P=3$ for airfoil section propellers (Wageningen B-Screw type)
IPROP $=4$ for B-screw +ype, assum.ng ne crivitation
IPRCP $=5$ for insteriets
Control for type of vehicle $\quad 6 \quad 24$
ILC $=0$ for conventional planing hull ILC $=1$ for landing craft with well
Structural calculations for conventional planing hulls or landing craft are performed by interclanreable subroutines labeled STRUCT. Program users must ensure that the appropriate routine is loaded consistent with values of ILC and IMAT.
$\begin{array}{lll}\text { Control for fuel tanks } & 68\end{array}$
$I F T=0$ if fuel tanks are an integral part of the hull structure
IFT $=1$ for separate fuel tanks
Control for framing of GRP hulls 6
IFRM $=1$ for transverse framing
$I F R M=2$ for langitudinal framing

Length of bow ramp in $f t \quad 9-16$
Breadth of well deck in ft 17-24
Breadth of bow ramp in ft 25-32
Breadth of aft (drive-through) ramp 33-40 in ft
Height of well deck above baseline 41-48 in $f t$
Height of aft ramp above baseline 49-56 in ft

See arrangement of landing craft in Figure 3

Omit Card 6A when ILC $=0 \quad * * * * *$
Design (maximum) speed V_{d} in knots 7 1-8

Range at V_{d} in nautical miles $\quad 9-16$
Not required if cruise range is
dominant or if fuel weight is input
Significant wave height at V_{d} in ft 17-24
Cruise speed V_{c} in knots $\leq V_{d} \quad 25-32$
Range at V_{c} in nautical miles $33-40$

Additional loputs for CATAMABAN (IHULL = 2)

Card Columns

$V L C(1) \quad$ Array of ti spect-leigth ratios
$V L C(2) \quad V_{K} / \sqrt{L_{p}}$ where V_{K} is pecediaknots
6c. $1-8$
$9-16$
$72-80$

RFC(i) Array of interference droy factors $K F C(2)$ For catamarom correspording to
\vdots
RFC(10) values of V_{k} / L_{p} on $C_{\text {ard }} 6 C$.
G.D $\quad 1-8$
**** COnit Caris GB, 6C, and CD wher IHucL $=1+*+\cdots$

waterjets contains input for

of pump at design int horsepower Area of jet (A_{J}) in f_{t}^{2} of ship Bollard jet ${ }^{\text {j }}$ (K_{I}) at the velocity/ship speed \quad 12A \quad 1-8

$$
K_{1}=2.0 \text { for peak propulsive }
$$

Constant (K_{2}) for inlet head recovery (IHR); $K_{2}=1.0$ for maximum IHR; $K_{2}=0.0$ for no IHR

DH

$$
\begin{aligned}
& \text { where } \tau_{c} \geq \sigma_{T I P}+0.14 K_{3} \\
& \text { indicates cavitation; } K_{2}=
\end{aligned}
$$

TLC

$$
\begin{aligned}
& \text { Constant }\left(K_{3}\right) \text { for cavitation criteria } \\
& \text { where } \tau_{c} \geq \sigma_{T I P}+0.14 \mathrm{~K}_{3}
\end{aligned}
$$

axial flow; K_{3} ion; $K_{3}=0.0$ for
Diameter of $\mathrm{K}_{3} \simeq 1.0$ for mixed flow
impeller diameter (D); (h_{h})/
$\begin{array}{lll}\text { typical value ter }(D) \text {; } & 12 A & 33-40\end{array}$
Thrust load of $D_{h} / D=0.5$
the design point; not used c_{c}) at $12 \mathrm{~A} \quad 41-48$ when A_{J} is input; not used $\quad 12 \mathrm{~A} \quad 41-48$
Impeller tip velocity
number (σ
$\begin{array}{llll}\left.\text { generally } \sigma_{T I P}\right) \text { at design point; } & =0.06 & 12 \mathrm{~A} & 49-56\end{array}$
Note: If $\sigma_{T I P}=0.06$
then $\tau_{c} \leq \sigma_{T I P}+0.14 \mathrm{~K}_{3}=0.0$
to avoid cavitation $\underset{\operatorname{cic}}{c}+0.14 \mathrm{~K}_{3}=0.20$
Omit Card 12A

[^1]

[^2]| $*$ FWE | Weight in lb for each prime mover | 15 |
| :--- | :--- | :--- |$\quad 1-8$

[^3]| XL (1) | K_{J} | Multiplier for useful load; K_{U} must be 1.0 | 16 | 1-8 |
| :---: | :---: | :---: | :---: | :---: |
| XL (2) | K_{F} | Multiplier for fuel | | 9-16 |
| XL (3) | $\mathrm{K}_{\mathrm{L} 1}$ | Multiplier for crew and effects | | 17-24 |
| XL (4) | $\mathrm{K}_{\text {L6 }}$ | Multiplier for personnel stores | | 25-32 |
| XL (5) | ${ }_{\text {K }}$ 12 | Multiplier for potable water | | 33-40 |
| XL(6) | K_{P} | Multiplier for payload; K_{P} must be 1.0 | | 41-48 |
| XI (1) | K_{1} | Multiplier for total hull structure | 17 | 1-8 |
| XI (2) | $\mathrm{K}_{100 \mathrm{~A}}$ | Multiplier for hull bottom | | 9-16 |
| X1 (3) | K_{1008} | Multiplier for hull sides | | 17-24 |
| X1(4) | K_{101} | Multiplier for framing | | 25-32 |
| X1(5) | $\mathrm{K}_{103 \mathrm{~A}}$ | Multiplier for upper platforms | | 33-40 |
| X1(6) | $\mathrm{K}_{103 \mathrm{~B}}$ | Multiplier for lower platforms | | 41-48 |
| X1(7) | K 107 | Multiplier for main deck | | 49-56 |
| X1(8) | $\mathrm{K}_{114 \mathrm{~A}}$ | Multiplier for transverse bulkheads | | 57-64 |
| X1(9) | $\mathrm{K}_{114 \mathrm{~B}}$ | Multiplier for longitudinal bulkheads | | 65-72 |
| X1(10) | K_{111} | Multiplier for superstructure | | 73-80 |
| XI (11) | K_{112} | Multiplier for propulsion plant foundations | 18 | 1-8 |
| X1(12) | K_{113} | Multiplier for other foundations | | 9-16 |
| XI(13) | $\mathrm{K}_{\text {att }}$ | Multiplier for attachments | | 17-24 |
| X 2 (1) | K_{2} | Multiplier for total propulsion | 19 | 1-8 |
| X2 (2) | K_{201} | Multiplier for propulsion units | | 9-16 |
| X2(3) | K_{203} | Multiplier for shafting, bearings, propellers | | 17-24 |
| X2 (4) | $\begin{gathered} \mathrm{K}_{204}, \mathrm{M} \\ 205 \end{gathered}$ | Multiplíer for combustion air supply, uptakes | | 25-32 |

X2 (5)	K_{206}	Multiplier for propulsion control equipment		33-40
X2 (6)	K_{208}	Multiplier for circulating and cooling water system		41-48
X 2 (7)	K_{210}	Multiplier for fuel oil service system		49-56
X 2 (8)	K_{211}	Multiplier for lubricating oil system		57-64
X 2 (9)	$\begin{gathered} \mathrm{K}_{250} \\ 251 \end{gathered}$	Multiplier for repair parts, and operating fluids		65-72
X3 (1)	K_{3}	Multiplier for total electric plant	20	1-8
X3(2)	K_{300}	Multiplier for electric power generation		9-16
X3(3)	K_{301}	Multiplier for power distribution switchboard		17-24
X3(4)	$\mathrm{K}_{3}{ }^{\circ} \mathrm{F}$	Multiplier for power distribution system cables		25-32
X3(5)	K_{303}	Multiplier for lighting system		33-40
X4 (1)	K_{4}	Multiplier for total nonmilitary communication and control	21	1-8
X4(2)	K_{400}	Multiplier for nonelectronic navigation equipment		9-16
X 4 (3)	K_{401}	Multiplier for interior communication system		17-24
X5 (1)	K_{5}	Multiplier for total auxiliary system	22	1-8
X5 (2)	$\begin{gathered} \mathrm{K}_{500} \\ 502 \end{gathered}$	Multiplier for heating, air conditioning		9-16
X5 (3)	K_{501}	Multiplier for ventilation system		17-24
X5 (4)	K_{503}	Multiplier for refrigerating spaces		25-32
X5 (5)	K_{505}	Multiplier for plumbing installations		33-40

X5 (6)

X 5 (7)

X 5 (8)

X 5 (9)

X5 (10)

X5(11)

X5 (12)

X5 (13)

X5 (14)

X5 (15)
X5 (16)

X5 (19)
X5 (20)

X 6 (1)
$\mathrm{X6}$ (2)
X6 (3)

X6(4)

X6(5)
$\mathrm{K}_{506} \begin{aligned} & \text { Multiplier for firemain, } \\ & \text { flushing, sprinkling }\end{aligned}$
K_{507} Multiplier for fire extinguishing system
K_{508} Multiplier for drainage and ballast
K_{509} Multiplier for fresh water system
K_{510} Multiplier for scuppers and deck drains
K_{511} Multiplier for fuel and diesel . 23 oil filling
K_{513} Multiplier for compressed air system
K_{517} Multiplier for distilling $\quad 17-24$ plant
${ }^{\prime} \mathrm{K}_{518}$ Multiplier for steering $\quad 25$-32 systems
K_{519} Multiplier for rudders
K_{520} Multiplier for mooring, anchor, deck machinery
K_{521} Multiplier for stores handling
K_{528} Multiplier for replenishment 57-64 at sea
K_{550} Multiplier for repair parts
K_{551} Multiplier for operating $\quad 73-80$ fluids
K_{6} Multiplier for total outfit 24 1-8 and furnishing
K_{600} Multiplier for hull fittings 9-16
K_{601} Multiplier for boats, stowages, handling
K_{602} Multiplier for rigging and canvas
K_{603} Multiplier for ladders and grating

33-40

49-56

65-72 17-24

X6 (6)	$\mathrm{K}_{604} \begin{aligned} & \text { Multiplier for } \\ & \text { bulkheads }\end{aligned}$		41-48
X 6 (7)	K_{605} Multiplier for painting		49-56
X6 (8)	K_{606} Multiplier for deck covering		57-64
X6 (9)	K_{607} Multiplier for hull insulation		65-72
X6(10)	K_{608} Multiplier for storerooms, stowage, lockers		73-80
X6 (11)	K_{609} Multiplier for equipment for utility spaces	25	1-8
X6 (12)	K_{610} Multiplier for workshops		9-16
X6(13)	K_{611} Multiplier for galley, pantry, commissary		17-24
X6 (14)	K_{612} Multiplier for living spaces		25-32
X6 (15)	K_{613} Multiplier for offices, control center		33-40
X6 (16)	$\mathrm{K}_{614} \begin{aligned} & \text { Multiplier for medical-dental } \\ & \text { spaces }\end{aligned}$		41-48
$\operatorname{CKN}(1)$	Cost factor for hull structures $\operatorname{CKN}(1)=2.191$ for conventional aluminum hull $\operatorname{CKN}(1)=1.000$ for conventional steel hull	26	1-8
CKN (2)	Cost factor for propulsion CKN(2) $=1.000$ for most cases Program makes adjustment to general equations in case of diesel prime movers and/or waterjets		9-16
CKN (3)	Cost factor for electric plant $\operatorname{CKN}(3)=2.036$ for most cases		17-24
CKN (4)	Cost factor for communication and control $\operatorname{CKN}(4)=1.000$ for most cases		25-32
CKN (5)	Cost factor for auxiliary systems $\operatorname{CKN}(5)=1.528$ for most cases		33-40
$\operatorname{CKN}(6)$	Cost factor for outfit and furnishing $\operatorname{CKN}(6)=1.000$ for most cases		41-48
CKN (7)	Cost factor for payload $\operatorname{CKN}(7)=1.000$ for most cases		49-56

OPHRS	Operating hours per month	27	1-8
OPYRS	Total vehicle operating years, @ 15		9-16
XUNITS	Number of vehicles to be built		17-24
TIMED	Portion of time operating at maximum speed		25-32
TIMEC	Portion of time operating at cruise speed		33-40
FUELR	Cost of fuel per ton in dollars Note: TIMED + TIMEC $=1.0$		41-48
DELDT	Increment of displacement in tons for optimization routine if IOPT $=3$	28	1-8
DELBX	Increment of max beam $B_{P X}$ in ft for optimization routine if IOPT > 1		9-16
DELHD	Increment of hull depth H_{h} in ft for optimization routine if IOPT > 0		17-24
BXMIN	Minimum value of $B_{P X}$ in $f t$ If not restricted, make $B X M I N=0$		25-32
BXMAX	Maximum value of $B_{P X}$ in $f t$ If not restricted, make BXMAX very J.arge		$33-40$
HDMIN	Minimum value of H_{h} in $f t$ If not restricted, make $H D M I N=0$		41-48
HDMAX	Maximum value of H_{h} in $f t$ If not restricted, make HDMAX very large		49-56
PL	Ship projected chine length L_{P} in $f t$	29	1-8
DTONS	Initial value of displacement $\Delta_{L T}$ in long tons		9-16
BPX	Initial value of beam B_{PX} in ft		17-24
HDM	Initial value of hull depth H_{h} in ft		25-32
$\therefore \quad A 1=\mathrm{RWF}(1)$	Bare hull R/W at design speed		33-40
* A2 $=$ RWF (2)	Bare hull R/w at cruise speed		41-48
* A3=FVOLSS	Volume of superstructure in ft^{3}		49-56

Card Set 29 is actually read by the main routine PHFMOPT, but is included here for convenience, One card is read for each hull variation desired. Blank card is inserted at end to terminate program,

* Optional parameters to supersede corresponding values on Cards 7 and 11.

CONSTANTS:
RHO

HALF
TWO
FOUR
EIGHT
TWELVE
THIRD
THIRD2
NL
N1
N2
N3
N4

N5

N6

Set by DATA statements
Water density ρ in $1 b \times \sec ^{2} / f t^{4}$ $\rho=1.9905$ for sea water at 59 F Kinematic viscosity of water v in $\mathrm{ft}^{2} / \mathrm{sec}$ $v=1.2817 \times 10^{-5}$ for sea water at 59 F
Acceleration of gravity g in $f t / \mathrm{sec}^{2}$ $g=32.174$ at 45 deg north latitude $\rho / 2$
Density in $1 b / \mathrm{ft}^{3}=\rho \mathrm{g}$
Pounds per ton $=2240$
Multiplier to convert degrees to radians $=57.29578$
Multiplier to convert radians to degrees $=0.01745329$
0.0
1./2.
2.0
4.0
8.0
12.0
1./3.
2./3.
$6=$ dimension of arrays for loads
$14=$ dimension of arrays for structures, Group 1
$10=$ dimension of arrays for propulsion, Group 2
$6=$ dimension of arrays for electric plant, Group 3
$4=$ dimension of arrays for communication and control, Group 4
21 = dimension of arrays for auxiliary systems, Group 5
$17=$ dimension of arrays for outfit and furnishings, Group 6
First item in each array is total for the group. Last item in each array, except loads, is the margin. Intermediate Items are BSCI 3-digit groupings.

Arrays of numerical identification for items in Groups 1, 2, 3, 4, 5, 6 respectively, corresponding to BSCI codes in most cases. The margins are arbitrarily appended with 99.

Numbers 1., 2., indicate beginning of new line.
If auxiliary encines utilize segarate propellers, the deameterietc:
is printeg on a sep thate ilnte.

SUBROUTINE PRTOUT

Subroutines
where defined

WJETS

READIN
bollard jet velocity/
speed at design point
$K_{2} \quad=$ constant for inlet head recovery

READIN
$\mathrm{K}_{3}=\underset{ }{ } \quad \begin{gathered}\text { constant for } \tau \\ \\ \\ \text { cavitation criferia }\end{gathered} \quad \sigma_{T I P}$
READIN
DHD

TLC

STIP

Printeal for cither case:
IOPT
D_{h} / D
$=$ diameter of impeller hub/ diameter of impeller

READIN
$\begin{aligned} \tau_{\mathrm{c}} \quad= & \text { thrust load coefficient } \\ & \text { at design point }\end{aligned}$
$\begin{aligned} \tau_{\mathrm{c}} \quad= & \text { thrust load coefficient } \\ & \text { at design point }\end{aligned}$
READIN
= impeller tip velocity
READIN cavitation number at design point
3. DLBS \triangle

DAYS

OFF

CPO

CREW

ACC
GM
KM

KG

XCG

VOLH

$$
\sigma_{T I P_{d}}
$$

Control parameter for optimizatiun
$\Delta \quad=$ ship displacement in lb
Däys for provisions
Number of officers
Number of CPO's
Number of enlisted men
READIN
NEWHUL
READIN
READIN or
CREWSS
READIN or
CREWSS
READIN or CREWSS

READIN or CREWSS

READIN
NEWHUL

> Total accommodations
$\overline{G M}$
$\overline{\mathrm{KM}}$

$$
=\text { metacentric height in } f t
$$

= baseline to metacenter in ft
$\overline{K G}$
$=$ net VCG of ship in $f t$
$=\overline{\mathrm{KM}}-\overline{\mathrm{GM}}$
LCG/L $L_{P}=$ longitudinal center of gravity forward of

NEWHUL transom / ship length
$\nabla_{h} \quad=$ hull volume, up to main deck, in $f t^{3}$

NEWHUL
N

NEIVOL

VOLSS	$\begin{aligned} \nabla_{\text {ss }} \quad= & \text { volume enclosed by } \\ & \text { superstructure in } \mathrm{ft}^{3} \end{aligned}$	CREWSS
NTB	$\mathrm{n}_{\mathrm{tb}} \quad=\begin{aligned} & \text { number of transverse } \\ & \\ & \text { bulkheads } \end{aligned}$	STRUCT
IFRM	IFRM $=1$ or 2 for transversely or longitudinally framed GRP hull	READIN
4. MAT	Structural material:	READIN
	Aluminum \quad Mat $=1$	
	Steel \quad IMAT $=2$	
	$\operatorname{GRP}(\mathrm{A}-\mathrm{A}) \quad \operatorname{IMAT}=3$	
	$\operatorname{GRP}(\mathrm{A}-\mathrm{B}) \quad \mathrm{IMAT}=4$	
	$\operatorname{GRP}(\mathrm{B}-\mathrm{B}) \quad$ IMAT $=5$	
	A indicates single skin GRP	
	B indicates sandwich plate GRP	
	lst letter refers to the hull	
	2nd letter refers to the bulkheads	
WSFMIN	$\begin{aligned} \mathrm{S}_{\mathrm{min}}= & \text { minimum unit weight of } \\ & \text { plating in } 1 \mathrm{~b} / \mathrm{ft}^{2} \end{aligned}$	READIN
WST.OPE	$\begin{aligned} S_{p} \quad= & \text { slope of unit weight } \\ & \text { curve, Figure } 4 \end{aligned}$	READIN
DMAT	$\begin{aligned} \gamma_{\text {mat }}= & \text { density of structural } \\ & \text { material in } 1 \mathrm{~b} / \mathrm{ft}^{3} \end{aligned}$	READIN
Stress	$\begin{aligned} \sigma_{\text {limit }}= & \text { stress limit of material } \\ & \text { in } 1 \mathrm{~b} / \mathrm{in}^{2} . \end{aligned}$	READIN
CLOAD	$\begin{aligned} C_{\Delta} \quad & =\text { beam loading coefficient } \\ & =\Delta /\left(\rho \operatorname{g~B}_{\mathrm{PX}}{ }^{3}\right)=\nabla / \mathrm{B}_{\mathrm{PX}}{ }^{3} \end{aligned}$	PRTOUT
ᄃHULL	$n_{\text {Huils }}=$ number of hulls	READIN
XLOH	$L_{\text {cA }}=$ length overall inft	
BOA	BOA = besm ouerall in F	
xics	$L_{\text {cs }}=$ length , of	
BC. 5	BCS $=$ breadth $\}$ catamarm	
HCS	$H C s=$ height \int cross-structare	

Subroutines where defined

The following are printed for propellers:

$\operatorname{TWF}(1)$	$1-\mathrm{w}$	$=$ thrust wake factor	POWER
		$=$ torque wake factor	
$\operatorname{TDF}(1)$	$1-\mathrm{t}$	$=$ thrust deduction factor	POWER
$\operatorname{THLD}(1)$	$\mathrm{K}_{\mathrm{T}} / \mathrm{J}^{2}$	$=$ thrust loading coefficient	POWER
$\mathrm{TJ}(1)$	J	$=$ propeller advance coefficient	PRINTP
$\operatorname{EP}(1)$	η_{0}	$=$ propeller efficiency	PRINTP
$\operatorname{PC}(1)$	η_{D}	$=$ propulsive coefficient	PROPS

The following are printed for waterjets:

$\operatorname{TWF}(1)$	$1-w$	$=$ wake factor $=1.0$	POWER
$\operatorname{TDF}(1)$	$1-\mathrm{t}$	$=$ thrust deduction factor	POWER
$\mathrm{XJ}(1)$	J^{\prime}	$=$ effective advance cocfficient WJETS	

Notes: The letter C printed to the right of $\mathrm{K}_{\mathrm{T}} / \mathrm{J}^{2}$ indicates that the
Gawn-Burrill 10% back cavitation criteria is exceeded.
A star $*$ printed to the right of $\mathrm{K}_{\mathrm{T}} / \mathrm{J}^{2}$ indicates thrust limit
due to cavitation.
A star $*$ printed to the right of η_{0} indicates that the propeller
is operating at a J greater than maximum efficiency.

QC (1)

$$
\begin{aligned}
& Q^{\prime} \\
& S_{s} \\
& \tau_{\max }{ }^{-\tau_{c}}
\end{aligned}
$$

$=$ mass flow in gal/min $\times 10^{-3}$
$=$ suction specific speed $\times 10^{-3}$
= (maximum thrust load coefficient at cavitation point) (sctual thrust load coefficient); \therefore native value indicates cavitation

The following are printed for eft!. propellers or waterjets:
POO (I: ORC $=r$: 11 performance coefficient POrER
THRUST(: $T \quad=\quad \therefore$ thrust requirement in 1 b POWER
TORQUE (I) Q : Lorie in shafts POTVER
$\because(1) N$

EHP (1)
DIP (1)
F
F

BHP (1)
F_{B}
Sb. VKT(2)

6a. SPEED (I)
6 b .
-

Ene 5 b conte...: parameters for cruse sp....
i: same order $a:$ Ire 5 for design speed.
Line 5 b not $z=$ hated if crine speed same as design.
V_{K}
$=s p a$ in knots
READIN
Lines ba, 6b, etc, cor.:in same parameters as lines 5 for array of $s=$ ends input on Card 8 ,

7a. VMAX

Tb. VMAKA
$V_{\text {max }}=$ maximum speed in knots PRTOUT
Line 7acontains same parameters as lines $5 \& 6$ for speed attainable at maximum power of prime movers
$V_{\text {aus }}=\operatorname{appr}=x_{i m a t e}$ speed in knots petcut attainable withe ankiliang engines
Line 76 eixtains same parameters as
lines 5 to For conviti operating a
auxiliary engines only.

[^4]| PEA | $\mathrm{P}_{\mathrm{a}} \quad=\begin{aligned} & \text { maximum horsepower of } \\ & \\ & \text { each auxiliary engine } \end{aligned}$ | POWER |
| :---: | :---: | :---: |
| REA | $\begin{aligned} \mathrm{N}_{\mathrm{a}} \quad= & \text { speed of auxiliary } \\ & \text { engine in rpm } \end{aligned}$ | POWER |
| SFCC | ```SFC}\mp@subsup{C}{C}{}=\mathrm{ specific fuel consump- tion at cruise speed in lb/hp/hr``` | POWER |
| RANGEC | Range in nautical miles at cruise speed with full fuel load | POWER |
| SWA | $\begin{aligned} \mathrm{SW}_{\mathrm{a}} \quad= & \text { specific weight of } \\ & \text { auxiliary engines in } \\ & \mathrm{lb} / \mathrm{hp} \end{aligned}$ | POWER |
| WEA | $\begin{aligned} W_{a} \quad= & \text { weight of each auxiliary } \\ & \text { engine in } 1 b \end{aligned}$ | POWER |
| GRA | $\begin{aligned} m_{g_{a}} & = \\ & \text { engines ratio for auxiliary } \end{aligned}$ | POWER |
| WGA | $\begin{aligned} W_{g} \quad= & \text { weight of gears for each } \\ & \text { auxiliary engine in } 1 \mathrm{~b}\end{aligned}$
 If there are no auxiliary engines, only $V_{c}, S F C_{c}$, and Range c_{c} are printed on line 8 b and SFC_{c} and Range ${ }_{c}$ apply to the prime movers operating at cruise speed | POWER |
| WPLBS | $\begin{aligned} \left(W_{P}\right)_{D} \quad= & \text { design payload weight } \\ & \text { in } 1 b \end{aligned}$ | PHFMOPT |
| VPDES | $\begin{aligned} \left(\nabla_{P}\right)_{D} \quad= & \text { design payload volume } \\ & \text { in } \mathrm{ft}^{3} \end{aligned}$ | READIN |
| ZPDES | $\left(Z_{P}\right)_{D}=$ design payload VCG | READIN |
| PLDEN | $\begin{aligned} \left(W_{P} / \nabla_{P}\right)_{\mathrm{D}}= & \text { design payload density } \\ & \text { in } 1 \mathrm{~b} / \mathrm{ft}^{3} \end{aligned}$ | PHFMOPT |
| VDENS | $\begin{aligned} \Delta / \nabla_{\mathrm{h}} \quad= & \text { vehicle density in } \\ & l b / \mathrm{ft}^{3} \end{aligned}$ | NEWVOL |

Line $12 b$ gives weiqhts in $1 b$, correspording to line $12 a$. Line 12 c giees weights in tors.
Line 13 b gives VCi's intat above baseline, corresperdimptoline $13 a$.

1. TPARENT
2. DLBS

DTONS
PL
BPX
HM
HDM
DZS
KB

BM

KM

GM

KG

XLCG

3a. XLP (1)

XFT
ZS(1)
2C(1)
2K(1)
YS(1)
YC(1)
YK(1)

Iden	cation for hull design	READIN
Δ	= displacement in 1 b	NEWHUL
$\Delta_{\text {LT }}$	= displacement in tons	PHFMOPT
L_{p}	$=$ projected chine length in ft	PHFMO
${ }^{\text {P }}$ PX	= maximum chine beam in ft	PHFMO
T	$=$ draft at midships in ft	NEWHUL
H_{h}	$=$ hull depth at midships in ft	PHFMOPT
$\Delta \mathrm{S}_{\mathrm{S}}$	in ft (see Figure 1)	NEWVOL
$\overline{\mathrm{KB}}$	= vertical center of buoyancy above baseline in ft	NEWHUL
$\overline{\mathrm{BM}}$	= transverse metacenter above center of buoyancy in $f t$	NEWHUL
$\overline{\mathrm{KM}}$	= transverse metacenter above baseline in ft	NEWHUL
$\overline{G M}$	```= transverse metacentric height in ft```	READIN
$\overline{\mathrm{KG}}$	$=$ vertical center of gravity above baseline in ft	NEWHUL
$\overline{A G}$	$=$ longitudinal center of gravity forward of transom in $f t$	NEWHUL
y / L_{p}	= longitudinal location of section, nondimensionalized	READIN
X	```= distance of section forward of transom in ft```	PRTOUT
z_{S}	$=$ deck height in $f t$	NEWVOL
${ }^{2}$	= chine height in ft	NEWHUL
${ }^{2} \mathrm{~K}$	= keel height in ft	NEWHUL
Y_{S}	$=$ half-breadth at deck in ft	NEWVOL
Y_{C}	$=$ half-breadth at chine in ft	NEWHUL
Y_{K}	$=$ hálf-breadth at keel in $f t$	NYEWHUL

5. SEA STATE
6. H13-ET ss $\quad=$ sea state number
$\mathrm{H}_{1 / 3}$
$\begin{aligned}= & \text { significant wave height } \\ & \text { in } f t \text { corresponding to }\end{aligned}$ upper bound of sea state

7a. SPEED (1)
RW
$V_{\mathrm{K}} \quad=$ speed in knots $\mathrm{R} / \mathrm{W}=$ resistance-weight ratio from Savitsky equations
TRIM τ

CG ACC

BOW ACC
$a_{\text {BON }}$
${ }^{a} C G$
$=$ trim angle in degrees from Savitsky equations
$=$ average $1 / 10$ highest vertical accelerations at center of gravity in g 's
$=$ average $1 / 10$ highest PRTOUT vertical accelerations at $90 \% \mathrm{~L}_{\mathrm{OA}}$ forward of transom
$=$ fixed trim angle of 2.5 deg
PRTOUT
$=$ accelerations at center of gravity when trim is 2.5 deg
BOW ACC

PRTOUT
PRTOUT

READIN
PRTOUT

PRTOUT

PRTOUT
-
= bow accelerations when trim is 2.5 deg

$\operatorname{TANG}(I)$	$\tan \gamma=\left(Y_{S}-Y_{C}\right) /\left(Z_{S}-Z_{C}\right)$	
$\operatorname{CosG}(I)$	$\cos \gamma$	
$\operatorname{BETA}(I)$	β	$=$ deadrise angle in deg
$\operatorname{TANB}(I)$	$\tan \beta=\left(Z_{C}-Z_{K}\right) /\left(Y_{C}-Y_{K}\right)$	
$\operatorname{cosB}(I)$	$\cos \beta$	

NAME:
PURPOSE:
CALLING SEQUENCE:
SUBPROGRAM CALLED:
INPUT:
PL

BPX

NN

M

OFFSETS

DZS

2S(M)
OUTPUT:
AAP

BPA
BPXBPA
DZSZSM

I
YCBPA(I)
YKBPA(I)
ZCBPA(I)

2KBPA(I)

ZSZSM(I)
Gama (I)

SUBROUTINE PARENT
Nondimensionalize offsets of parent hull form
CALL Parent
SIMPUN
Via COMMON blocks

L_{P}	$=$projected chine length of parent form, from input Card 2
$\mathrm{~B}_{\mathrm{PX}} \quad$maximum chine beam of parent form, from input Card 2	

$n \quad=$ total number of sections, from input Card 3
m
= index of section at midships, from input Card 3
$Y_{K}, Z_{K}, Y_{C}, Z_{C}, Y_{S}, Z_{S}$ at each section X / L_{P}, from Card Set 5
ΔZ_{S} of parent, constant at all sections, from input Card 2
$Z_{S_{m}}=\left(\right.$ hull depth $-\Delta Z_{S}$) of parent at midships
Via COMMON blocks
$A_{p} \quad=$ projected planing bottom area of perent $=\int Y_{C} d X$
${ }^{\mathrm{B}_{P A}} \quad=$ mean beam over chine of parent $=A_{P} / L_{P}$ $\left(B_{P X} / B_{P_{A}}\right)$
$\left(\Delta \mathrm{Z}_{\mathrm{S}} / \mathrm{z}_{\mathrm{m}}\right)$
Index for DO LOOP $I=1$, NN
$\left(Y_{C} / B_{P A}\right)=$ nondimensional half-breadth at chine
$\left(Y_{K} / B_{P A}\right)=$ nondimensional half-breadth at keel
$\left(Z_{C} / B_{P A}\right)=\begin{aligned} & \text { nondimensional height of chine from } \\ & \text { baseline }\end{aligned}$
$\left(Z_{K} / B_{P A}\right)=$ nondimensional height of keel from baseline
$\left({ }_{S_{S}} / Z_{S_{m}}\right)=$ nondimensional deck height
$\gamma \quad=$ angle of hull sides from vertical in deg

NAME:
PURPOSE:

CALLING SEQUENCE: SUBPROGRAM CALLED:

INPUT:
PL

BPX

DTONS

GM

NN
Other
OUTPUT:
DLBS
VOL
RLB
SLR
BPA

AAP

APV
I
YC(I)

YK (I)

ZC(I)

2K (I)

GKC (I)

SUBROUTINE NEWHUL
Calculate offsets and hydrostatics for hull with new length, beam, and displacement from nondimensionalized parent form
CALL NEWHUL
SIMPUN, YINTX
Via COMMON blocks
$\begin{aligned} \mathrm{L}_{\mathrm{P}} \quad= & \text { projected chine length of new hull in } \mathrm{ft},\end{aligned}$
$\mathrm{B}_{\mathrm{PX}} \quad=\underset{\substack{\text { maximum chine } \\ \text { from PHFMOPT }}}{ }$, of new hull in ft ,
$\Delta_{\text {LT }}$. $=$ displacement of new tull in long tons, from PHFMOPT
$\overline{\mathrm{GM}}$
$=$ required metacentric height in ft, from Card 9
$n \quad=$ total number of sections, from Card 3
Nondimensional data from Subroutine PARENT
Via COMMON blocks
$\Delta \quad=$. displacement in $1 \mathrm{~b}=\Delta_{\mathrm{LT}} \times 2240$
$\nabla \quad=$ displaced volume in $\mathrm{ft}^{3}=\Delta / \rho \mathrm{g}$
$\mathrm{L} / \mathrm{B}=$ length-beam ratio $=L_{\mathrm{P}} / \mathrm{B}_{\mathrm{PX}}$
$\mathrm{L}_{\mathrm{p}} / \nabla^{1 / 3}=$ slenderness ratio
$B_{P A} \quad=$ average chine beam of new hull in $f t$ $=B_{P X} /\left(B_{P X} / B_{P A}\right)$
$A_{P} \quad=$ projected planing bottom area of new hull in ft
$=B_{P A} \times L_{P}$
$A_{P} / \nabla^{2 / 3}=$ loading coefficient of new hull
Index for DO LOOP $I=1$, NN
$Y_{C} \quad=$ new half-breadth at chine in $f t$
$=\left(Y_{C} / B_{P A}\right) \times B_{P A}$
$Y_{K} \quad=$ new half-breadth at keel in $f t$ $=\left(Y_{K} / B_{P A}\right) \times B_{P A}$
$Z_{C} \quad=$ new height at chine in ft $=\left(Z_{C} / B_{P A}\right) \times B_{P A}$
$Z_{K} \quad=$ new height at keel in $\mathrm{ft}=\left(\mathrm{Z}_{\mathrm{K}} / \mathrm{B}_{\mathrm{PA}}\right) \times \mathrm{B}_{\mathrm{PA}}$ All hulls have same deadrise angles B as parent
$G_{K C} \quad=$ half-girth of hull bottom in $f t$, keel centerline to chine $=Y_{K}+\left(Y_{C}-Y_{K}\right) / \cos R$
$Z_{W} \quad=$ height of still waterline above baseline in ft

Program calculates displacements at six arbitrary waterlines, and interpolates to obtain the waterline for the required displaced volume ∇. Only waterlines parallel to the baseline are considered.
AW (I)
AWZ (I)

AWX (I)

YW3(I)

VOLW
XCG
XLCG
$K B$

BM
$K M$

KG

HM
HT
HTM
CB
VOLSM (K) , ZSMZWL (K), ($K=1,6$)
$A_{W} \quad=$ total sectional area below waterline in ft
$M_{Z} \quad=$ moment of A_{W} about the baseline
Each section is divided into triangles and rectangles below the waterline to calculate A_{W} and M_{Z}.
$M_{X} / L_{P}=$ moment of A_{W} about the transom
$=A_{W} \times\left(X / L_{p}\right)^{W}$
$b^{3} \quad=$ half-breadth at waterline, cubed $=Y_{W}^{3}$
$\nabla \quad=$ check of displaced volume in $f t^{3}=\int A_{W} d X$ $\operatorname{LCG} / L_{P}=\int\left(M_{X} / L_{P}\right) d X / \int A_{W} d X$
LCG $=$ distance of center of gravity forward of transom in ft
$\overline{\mathrm{KB}} \quad=$ vertical center of buoyancy VCB above baseline in $f t$
$=\int M_{Z} d X / \int A_{W} d X$
$\overline{B M} \quad=$ vertical distance from $V C B$ to metacenter in ft
$=2 / 3 \int b^{3} d X / \int A_{W} d X$
$\overline{\mathrm{KM}} \quad=$ height of metacenter above baseline in ft
$=\overline{\mathrm{KB}}+\overline{\mathrm{BM}}$
$\overrightarrow{\mathrm{KG}} \quad=$ vertical center of gravity VCG above baseline in ft

$$
=\overline{\mathrm{KM}}-\overline{\mathrm{GM}}
$$

$T \quad=$ draft at midships in $f t=Z_{W}$
$T_{t} \quad=$ draft at transom in $f t=Z_{W}-Z_{K_{1}}$
T_{t} / T
$C_{B} \quad=$ block coefficient $=\nabla /\left(L_{P} B_{P X} T\right)$
Array of hull volumes calculated at six arbitrary deck heights Not used in current program, see Subroutine NEWVOL

NAME:
PURPOSE:

CALLING SEQUENCE:
INPUT:
HDM
Other
Other
Other
OUTPUT:
$2 S(M)$

DZS

I
ZS(I)
ZS(I)
YS(I)
GCS (I)

AS(I)
ZM(I)

VOLH

VOLSS
VOLT
VDENS

SUBROUTINE NEWVOL
Calculate enclosed volume and hull density for new hull depth
CALL NEWVOL
Via COMMON blocks
$\begin{aligned} & H_{h}= \text { new hull depth, keel to main deck at midships, } \\ & \text { in ft from PHFMOPT }\end{aligned}$
Keel and chine offsets for new hull from Subroutine
NEWHUL
Nondimensional deck offsets from Subroutine PARENT
Superstructure dimensions from Subroutine CREWSS
Via COMMON blocks
$Z_{S_{m}}=$ hull depth at midships $-\Delta Z_{S}$ in ft
$=H_{h} /\left[1+\left(\Delta Z_{S} / Z_{S_{m}}\right)\right]$
ΔZ_{S} of new hull in $f t=Z_{S_{m}} \times\left(\Delta Z_{S} / Z_{S_{m}}\right)$
Index of DO LOOP $I=1$, NN
$Z_{S}=$ deck height $-\Delta Z_{S}$ in $f t=\left(Z_{S} / Z_{S_{m}}\right) \times Z_{S_{m}}$
$Z_{S}{ }^{\prime}=$ new deck height in $f t-Z_{S}+\Delta Z_{S}$
$Y_{S}=$ new half-breadth at deck in $f t$

$$
=Y_{C}+\left(Z_{S}-Z_{C}\right) \tan \gamma
$$

$G_{C S}=$ girth of one side, chine to deck, in ft $=\Delta Z_{S}+\left(Z_{S}-Z_{C}\right) / \cos \gamma$
Sides maintain same slope γ as parent form.
$A_{S}=$ total sectional area, keel to deck, in $f t^{2}$
$C_{S}=$ height of centroid of A_{S} above baseline in $f t$ Each section is divided into triangles and rectangles to calculate A_{S} and C_{S}.
$\nabla_{h}=$ hull volume, up to main deck, in ft^{3}
$=\int A_{S} d X$
$\nabla_{s s}=$ volume enclosed by superstructure in ft^{3}
$\nabla_{\mathrm{T}}=$ total volume in $\mathrm{ft}^{3}=\nabla_{\mathrm{h}}+\nabla_{\mathrm{ss}}$
$\Delta / \nabla_{h}=$ vehicle density in $1 \mathrm{~b} / \mathrm{ft}^{3}$

```
\(Z_{S S}^{\prime}=\) height of centroid of superstructure above
        deck in ft
    \(Z_{S S}^{\prime}=6.0\) if \(H_{S S}=8.0 ; Z_{s s^{\prime}}{ }^{\prime}=9.0\) if \(H_{S S}=16.0\)
    \(Z_{S S}=\) superstructure centroid above baseline \(\overline{ }\)
        hull depth
        \(=\left(H_{h}+Z_{s s}{ }^{\prime}\right) / H_{h}\)
    \(A_{h}=\) area of profile up to main deck in \(f t \approx L_{P} \times H_{h}\)
    \(A_{S S}=\) area of profile of superstructure in \(f t\)
        \(=L_{s s} \times H_{s s}\)
\(Z_{P C}=\) height of profile centroid above baseline /
        hull depth
        \(=\left(0.5 \mathrm{~A}_{\mathrm{h}}+\mathrm{Z}_{s s} \mathrm{~A}_{s \mathrm{~s}}\right) /\left(\mathrm{A}_{\mathrm{h}}+\mathrm{A}_{s \mathrm{~s}}\right)\)
\(H_{m b}=\) height of machinery box, main engine room,
        in ft
        \(=\mathrm{H}_{\mathrm{h}}\)
```

NAME:
PURPOSE:

CALLING SEQUENCE:

INPUT:
DTONS
PL
ACC
CREW
CPO
OFF
FVOLSS

OUTPUT:
W
DMULT

NACCM

NACCS
ACC

CREW

CPO

OFF

SUBROUIINE CREWSS
Define ship's complement if not specified on input cards
Define superstructure dimensions
CALL CREWSS
Via COMMON blocks
$\Delta_{L T}=$ ship displacement in long tons, from PHFMOPT
$L_{P}=$ ship length in $f t$, from input Card 29
Total accommodations--optional input on Card 10
Number of enlisted men--optional input on Card 10
Number of CPO's--optional input on Card 10
Number of officers--optional input on Card 10
Volume of superstructure in $f t^{3}$--optional input on Card 11
Via COMMON blocks
$W=$ total ship weight in long tons $=\Delta_{L T}$
$M_{\Delta}=$ multiplier for items which vary with ship size

$$
=[\ln (W+90)-2.55] / 4.92 \text { for } W<2000
$$

$$
=1.0 \text { for } W \geq 2000
$$

Number of personnel concerned with military payload $\mathrm{NACCM}=0.052 \mathrm{~W}$ if $\mathrm{W} \leq 100$
$\mathrm{NACCM}=0.012 \mathrm{~W}+4$ if $\mathrm{W}>100$
Number of personnel for operation of ship $=0.035 \mathrm{~W}+4$
Total accommodations $=\mathrm{NACCM}+\mathrm{NACCS}$, rounded up unless ACC has been specified on Card 10
Number of enlisted men $=5 / 7 \times$ ACC unless CREW has been specified on Card 10
Number of CPO's $=1 / 7 \times$ ACC unless CREW has been specified on Card 10
Number of officers $=1 / 7 \times$ ACC unless CREW has been specified on Card 10
Note: CPO andfor OFF can be set to 0 by input card if CREW is specified greater than 0 . However, if CREW is set to 0 or blank space left on input card, then CREW, CPO, and OFF are calculated from above equations.

VOLSS
$\nabla_{s s}=$ volume enclosed by superstructure in ft^{3} If input value of $F V O L S S>0$, then $\nabla_{S S}=$ FVOLSS Otherwise, $\nabla_{\text {ss }}=70 \times \mathrm{W} \times \mathrm{M}_{\Delta}$ $H_{s s}=$ height of superstructure in $f t=8.0$ initially $B_{S S}=$ breadth of superstructure in $f t=B_{P A}$ $L_{S S}=$ length of superstructure in $f t=\nabla_{S S} /\left(H_{S S} \times B_{S S}\right)$ If $L_{s s}$ calculated is greater than $0.7 L_{P}$, increase $H_{s s}$ by increment of 8 ft , and recalculate $B_{s s}$ and $I_{s s}$.
$A_{S S}=$ profile area of superstructure in $f t^{2}$
$=\mathrm{L}_{\mathrm{ss}} \times \mathrm{H}_{\mathrm{ss}}$

NAME :
PURPOSE:

CALLING SEQUENCE:
INPUT:
IMAT

WSFMIN

WSLOPE

STRESS

DMAT

Other
OUTPUT:
A. GENERAL EQUATIONS PRES

* UNITWT
* THICKN
* DEPTHA
* DEPTHS

DPMIN

SUBROUTINE STRUCT (to be used when ILC=0 and IMAT<3) Calculate weights, volumes, and VCG's of major structures, Group 1, for conventional planing hull CALL STRUCT
Via COMMON blocks
Control for type of structural material, from input Card 6
IMAT $=1$ for aluminum
IMAT $=2$ for steel
$S_{\text {min }}=\underset{\text { from Card } 11}{ } \quad \underset{\text { ming }}{ } \quad$ of plating in $1 b / \mathrm{ft}^{2}$,
$S_{p} \quad=$ Slope of unit weight curves for stiffened plating as function of design load, from
Card 11
$\sigma_{1 \text { imit }}=\begin{aligned} & \text { Stress limit of material in } 1 b / i n .{ }^{2} \text {, from } 11\end{aligned}$
$\begin{aligned} & \gamma_{\text {mat }}= \\ & \text { density of structural material in } 1 \mathrm{~b} / \mathrm{ft}^{3} \text {, } \\ & \text { fard } 11\end{aligned}$
Hull geometry from Subroutines NEWHUL, NEWVOL, etc. Via COMMON blocks

[^5]B. PLATFORM DECXS

$$
=64\left(H_{t b}+4\right) / 144 \text { or }
$$
$52\left(\mathrm{H}_{\mathrm{ft}} \mathrm{N}\right) / 144$ whichever is greater
D. LONGITUDINAL BULKHEADS

NLB

WSF

$$
\begin{aligned}
n_{\ell b}= & \text { number of longitudinal bulkheads } \\
n_{\ell b}= & 0 \text { if hull depth is } 10 \mathrm{ft} \text { or less } \\
n_{\ell b}= & 1 \text { if midship chine beam is } 20 \mathrm{ft} \text { or less } \\
n_{\ell b}= & 2 \text { if midship chine beam is between } 20 \text { and } \\
& 30 \mathrm{ft} \\
{ }^{n_{\ell b}}= & 3 \text { if midship chine beam is greater than } \\
& 30 \mathrm{ft}
\end{aligned}
$$

Longitudinal bulkheads are equally spaced across breadth of hull; a single bulkhead is on centerline. Longitudinal bulkheads extend full length of hull below the lower platform deck. Bulkheads not on centerline are watertight; centerline bulkhead is not watertight.
$S_{l b} \quad=$ unit weight of non-centerline bulkheads in $1 \mathrm{~b} / \mathrm{ft}^{2}$
$=$ unit weight of lower platform deck (same design pressure)

WSFMIN

J
AREAP
WLB (J)

DLB

2LB(J)
WLBT
VLBT

2LBT
$S_{l b}=$ unit weight of centerline bulkhead in $l b / \mathrm{ft}^{2}$ $=S_{\text {min }}$ (design pressure $=0$, since not watertight)
Index for DO LOOP $J=1$, NLB
$A_{\ell b} \quad=$ area of longitudinal bulkhead in ft^{2}
$\mathrm{W}_{\text {lb }} \quad=$ weight of longitudinal bulkhead in 1 b $=A_{\ell b} \times S_{\ell b}$
$D_{l b} \quad=$ depth of longitudinal bulkhead web in $f t$
$\nabla_{l b} \quad=$ volume of longitudinal bulkhead in ft^{3} $=A_{\ell b} \times D_{l b}$
$Z_{\ell b} \quad=V C G$ of longitudinal bulkhead in $f t$
$\Sigma W_{l b}=\underset{ }{\text { in } 1 b} \begin{aligned} & \text { total }\end{aligned}$
$\Sigma \nabla_{l b}=$ total volume of all longitudinal bulkheads in ft^{3}
$\bar{z}_{\ell b}=$ net VCG of all longitudinal bulkheads in ft^{3} $=\Sigma\left(W_{l b} \times Z_{l b}\right) / \Sigma W_{l b}$
E. HULL BOTTOM - KEEL TO CHINE

$A_{b f}=$ area of forward 40 percent of bottom in $f t^{2}$ $=2 \int_{0.6 L_{P}}^{L_{P}} G_{K C} d X$

Aba $=$ area of aft 60 percent of bottom in ft^{2} $=2 \int_{0}^{0.6 L_{P}} G_{K C} d X$
WBOTT
vBott
2BOTT
ABOTTF

ABOTTA
$\mathrm{W}_{\mathrm{b}} \quad=$ weight of bottom plating in lb
$=\left(A_{b f} \times S_{b f}\right)+\left(A_{b a} \times S_{b a}\right)$
$\begin{array}{ll}\nabla_{b} & =\text { volume of bottom plating in } f t^{3}=W_{b} / \gamma_{\text {mat }} \\ Z_{b} & =\text { VCG of bottom plating in } f t\end{array}$
F. hull sides - Chine to main deck

WSF2

ASIDE

WSIDE
DSIDE
VSIDE
ZSIDE
G. MAIN DECK

WSF3

ADECK
DDECK
WDECK

PRES $\quad \begin{aligned} P_{d} & =\text { design pressure on main deck in } 1 \mathrm{~b} / \mathrm{in}^{2} .\end{aligned}$
 Aluminum hull: $S_{S}=2.4+0.022 \mathrm{~L}_{\mathrm{P}}$, if $\mathrm{L}_{\mathrm{P}} \leq 150 \mathrm{ft}$ $\mathrm{S}_{\mathrm{s}}=1.2+0.030 \mathrm{~L}_{\mathrm{p}}$, if $\mathrm{L}_{\mathrm{P}}>150 \mathrm{ft}$ Steel hull: $\quad S_{S}=5.5+0.0188 L_{P}$, for all L_{P} minimum value of S_{s} is $S_{m i n}$
$A_{s} \quad=$ area of both sides in $f t^{2}=2 \int_{0}^{L_{P}} G_{C S} d X$
$\mathrm{W}_{\mathrm{S}} \quad=$ weight of side plating in $\mathrm{lb}=\mathrm{A}_{\mathrm{S}} \times \mathrm{S}_{\mathrm{s}}$
$D_{s} \quad=$ depth of side plating web in $f t$
$\begin{array}{ll}\nabla_{s} & =\text { volume of side plating in } \mathrm{ft}^{3}=A_{s} \times D_{s}\end{array}$
$Z_{s} \quad=V C G$ of side plating in $f t$
$\mathrm{S}_{\mathrm{d}}=\begin{gathered}\text { unit weight of main deck in } \mathrm{lb} / \mathrm{ft}^{2} \text {, } \quad \text { Figure } 4\end{gathered}$
$A_{d}=$ area of main deck in $\mathrm{ft}^{2}=2 \int \mathrm{Y}_{\mathrm{S}} \mathrm{dX}$
$=$ depth of main deck web in $f t$
$=$ weight of main deck in $1 b=A_{d} \times S_{d}$

VDECK	$\nabla_{d} \quad=\text { volume of main deck in } \mathrm{ft}^{2}=A_{d} \times D_{d}$
ZDECK	$\mathrm{Z}_{\mathrm{d}}=$ VCG of main deck in ft
H. STRESS CALCULATION AT MIDSHIPS	
T1	$\begin{aligned} t_{1} & =\text { thickness of bottom plating in inches } \\ & =12 \mathrm{~S}_{\mathrm{ba}} / \gamma_{\text {mat }} \end{aligned}$
T2	$\begin{aligned} t_{2} & =\text { thickness of side plating in inches } \\ & =12 \mathrm{~S}_{\mathrm{s}} / Y_{\text {mat }} \end{aligned}$
T3	$\begin{aligned} t_{3} & =\text { thickness of main deck in inches } \\ & =12 \mathrm{~S}_{\mathrm{d}} / \gamma_{\text {mat }} \end{aligned}$
Y1	$\begin{aligned} \ell_{1} \quad & =\text { half length of bottom at midships in inches } \\ & =12 \mathrm{G}_{\mathrm{KC}}^{\mathrm{m}} \end{aligned}$
Y2	$\begin{aligned} \ell_{2} \quad & =\text { half length of sides at midships in inches } \\ & =12 \mathrm{C}_{\mathrm{CS}} \end{aligned}$
Y 3	$\begin{aligned} \ell_{3} \quad= & \text { efiective half length of deck at midships } \\ & \text { in inches } x(2 / 3)\left(12 Y_{s}\right) \end{aligned}$
A1	$\begin{aligned} A_{1} \quad= & \text { half area of bottom plating at midships } \\ & \text { in in. }{ }^{2}=t_{1} \ell_{1} \end{aligned}$
A2	$\begin{aligned} A_{2} \quad= & \text { hali area of side plating at midships in } \\ & \text { in. }^{2}=t_{2} \ell_{2} \end{aligned}$
A3	$\begin{aligned} A_{3}= & \text { half area of main deck at midships in } \\ & \text { in. }{ }^{2}=t_{n}, \end{aligned}$
21	$Z_{1} \quad=\text { VCG of } A_{1} \text { in inches }=12\left[Z_{K_{m}}+\frac{1}{2}\left(Z_{C}-Z_{K_{m}}\right)\right]$
Z2	
23	$\mathrm{Z}_{3} \quad=\text { VCG of } \mathrm{A}_{3} \text { in inches }=12 \times \mathrm{Z}_{\mathrm{S}_{\mathrm{m}}}$
222	$\begin{aligned} \mathrm{Z}_{22} & =\text { vertical height of sides in inches } \\ & =12\left({ }_{\mathrm{S}_{\mathrm{m}}}-\mathrm{Z}_{\mathrm{m}}\right) \end{aligned}$
ZNA	$\begin{aligned} \mathrm{Z}_{\mathrm{NA}} \quad= & \text { height of neutral axis at midships above } \\ & \text { keel in inches } \\ = & \left(\mathrm{A}_{1} Z_{1}+A_{2} Z_{2}+A_{3} Z_{3}\right) /\left(A_{1}+A_{2}+A_{3}\right) \end{aligned}$

$A_{b f}=$ area of forward 40 percent of bottom in $f t^{2}$ $=2 \int_{0.6 L_{P}}^{L_{P}} G_{K C} d X$
Aba = area of aft 60 percent of bottom in $f t^{2}$
$=2 \int_{0}^{0.6 L_{P}} G_{K C} d X$
WBOTT

VBott
ZBOTT
$W_{b} \quad=$ weight of bottom plating in 1 b
$=\left(A_{b f} \times S_{b f}\right)+\left(A_{b a} \times S_{b a}\right)$
$\begin{array}{ll}\nabla_{b} & =\text { volume of bottom plating in } f t^{3}= \\ Z_{b} & =V C G \text { of bottom plating in } f t\end{array}$
F. hUll Sides - Chine to main deck

WSF2

ASIDE
S_{s} Aluminum hull: $\mathrm{S}_{\mathrm{S}}=2.4+0.022 \mathrm{~L}_{\mathrm{P}}$, if $\mathrm{L}_{\mathrm{p}} \leq 150 \mathrm{ft}$ $\mathrm{S}_{\mathrm{s}}=1.2+0.030 \mathrm{~L}_{\mathrm{P}}, \quad \mathrm{i}\left\{\mathrm{L}_{\mathrm{P}}>150 \mathrm{ft}\right.$ Steel hull: $\quad S_{S}=5.5+0.0188 L_{P}$, for all L_{P} minimum value of S_{s} is $\mathrm{S}_{\text {min }}$
As $\quad=$ area of both sides in $\mathrm{ft}^{2}=2 \int_{0}^{L_{P}} G_{C S} d X$
$W_{S} \quad=$ weight of side plating in $l b=A_{S} \times S_{S}$
$D_{S} \quad=$ depth of side plating web in $f t$
$\begin{array}{ll}\nabla_{s} & =\text { volume of side plating in } \mathrm{ft}^{3}=A_{s} \times D_{s} \\ z_{s} & =\text { VCG of side plating }\end{array}$
$\mathrm{Z}_{\mathrm{s}} \quad=\mathrm{VCG}$ of side plating in ft
G. MAIN DECK

PRES
$\begin{aligned} \mathrm{P}_{\mathrm{d}} & =\text { design pressure on main deck in } 1 \mathrm{~b} / \text { in. } .\end{aligned}$
$\mathrm{S}_{\mathrm{d}}=\underset{\text { Figure } 4}{\underset{\text { unit }}{ }}$ weight of main deck in $\mathrm{lb} / \mathrm{ft}^{2}$,
$A_{d} \quad=$ area of main deck in $\mathrm{ft}^{2}=2 \int \mathrm{Y}_{\mathrm{S}} \mathrm{dX}$
D_{d}
W_{d}

VDECK	∇_{d}	$=$ volume of main deck in $\mathrm{ft}^{2}=\mathrm{A}_{\mathrm{d}} \times \mathrm{D}_{\mathrm{d}}$
ZDECK	Z_{d}	$=$ VCG of main deck in ft

H. STRESS CALCULATION AT MIDSHIPS

T1	t_{1}	$\begin{aligned} & =\text { thickness of bottom plating in inches } \\ & =12 \mathrm{~S}_{\mathrm{ba}} / \gamma_{\text {mat }} \end{aligned}$
T2	t_{2}	$\begin{aligned} & =\text { thickness of side plating in inches } \\ & =12 \mathrm{~S}_{\mathrm{s}} / \gamma_{\text {mat }} \end{aligned}$
T3	t_{3}	$\begin{aligned} & =\text { thickness of main deck in inches } \\ & =12 \mathrm{~S}_{\mathrm{d}} / \gamma_{\text {mat }} \end{aligned}$
Y1	ℓ_{1}	$\begin{aligned} & =\text { half length of bottom at midships in inches } \\ & =12 \mathrm{G}_{\mathrm{KC}}^{\mathrm{m}} \end{aligned}$
Y2	ℓ_{2}	$\begin{aligned} & =\text { half length of sides at midships in inches } \\ & =12 \mathrm{C}_{\mathrm{m}} \end{aligned}$
Y3	2_{3}	= effective half length of deck at midships in inchese(2/3) (12 Y_{s})
AI	A_{1}	= half area of bottom plating at midships in in. ${ }^{2}=t_{1} l_{1}$
A2	A_{2}	$=$ halr area of side plating at midships in $\text { in. }{ }^{2}=t_{2} \ell_{2}$
A3	A_{3}	$=$ half area of main deck at midships in $\text { in. }{ }^{2}=t_{3} \ell_{3}$
Z1	Z_{1}	$=\text { VCG of } A_{1} \text { in inches }=12\left[Z_{K_{m}}+\frac{1}{2}\left(Z_{C_{m}}-Z_{K_{m}}\right)\right]$
z2	Z_{2}	$=$ VCG of A_{2} in inches $=12\left[\mathrm{Z}_{\mathrm{C}_{\mathrm{m}}}+\frac{1}{2}\left(\mathrm{Z}_{\mathrm{S}_{\mathrm{m}}} \mathrm{Z}_{\mathrm{C}_{\mathrm{m}}}\right)\right]$
23	z_{3}	$=$ VCG of A_{3} in inches $=12 \times \mathrm{Z}_{\mathrm{S}_{\mathrm{m}}}$
222	z_{22}	$=$ vertical height of sides in inches $=12\left(\begin{array}{ll} \mathrm{Z}_{\mathrm{m}} & -\mathrm{Z}_{\mathrm{m}} \end{array}\right)$
ZNA	z_{NA}	$=$ height of neutral axis at midships above keel in inches $=\left(A_{1} Z_{1}+A_{2} Z_{2}+A_{3} Z_{3}\right) /\left(A_{1}+A_{2}+A_{3}\right)$

 \(I_{m}=\) sectional inertia in in. \({ }^{4}\)
 \(=2\left(A_{1} Z_{1}^{2}+A_{2} Z_{2}{ }^{2}+A_{3} Z_{3}{ }^{2}+A_{2} Z_{22}{ }^{2} / 12\right)\)
 \(-\left(A_{1}+A_{2}+A_{3}\right) Z_{N A}^{2}\)
 $S_{m} \quad=$ least section modulus in in. ${ }^{3}$
$\ddot{\sim} \quad=1 / Z_{N A}$ or $1 /\left(\mathrm{H}_{\mathrm{h}}-Z_{\mathrm{NA}}\right)$ whichever is smaller
$N_{B} \quad=$ design bow acceleration in $g^{\prime} s=7.55$
$\ddot{N}_{C G} \quad=$ design $C G$ acceleration in $g^{\prime} s=3.0$
$M_{b} \quad=$ bending moment at midships in in. $-1 b$
$=12 \mathrm{~L}_{\mathrm{P}} \Delta\left(128 \mathrm{~N}_{\mathrm{B}}-178 \mathrm{~N}_{\mathrm{CG}}-50\right) / 1920$
PSI

WSF1A

WSF3
$\sigma_{\text {max }}=$ maximum stress in $1 \mathrm{~b} / \mathrm{in}^{2}=\mathrm{M}_{\mathrm{b}} / \mathrm{S}$.
If $\sigma_{\text {max }} \leq \sigma_{1 \text { imit }}$, original plating thicknesses are OK
If $\sigma_{\text {max }}>\sigma_{\text {limit }}$ and $z_{N A}<0.5 \mathrm{H}_{\mathrm{h}}$, increase t_{3} by 0.02 in. and recalculate $\sigma_{\max }$

If $\sigma_{\max }>\sigma_{1 \text { imit }}$ and $Z_{\mathrm{NA}}>0.5 \mathrm{H}_{\mathrm{h}}$, increase t_{3} and
t_{1} by 0.02 in. and recalculate $\sigma_{\max }$
$S_{b a}=$ unit weight of aft bottom plating in $1 b / f^{2}$
$=t_{1} \gamma_{\text {mat }} / 12$ recalculated if t_{1} is increased
$S_{d}=$ unit weight of deck in $l b / f t^{2}$

$$
=\mathrm{t}_{3} \gamma_{\text {mat }} / 12 \text { recalculated if } \mathrm{t}_{3} \text { is increased }
$$

I. FRAMING - LONGITUDINAL AND TRANSVERSE

WFRAM

VFRAM
$\mathrm{W}_{\mathrm{fr}} \quad=$ total weight of framing in 1 b , Figure 6
Aluminum hull: $\mathrm{W}_{\mathrm{fr}}=0.70 \nabla_{\mathrm{h}}$
Steel hull: $\quad W_{f r}=2.1 \nabla_{h}$; if $\nabla_{h} \leq 3 \times 10^{4}$
$W_{f r}=1.1 \nabla_{h}+3 \times 10^{4}$;
$3 \times 10^{4}<\nabla_{h} \leq 1 \times 10^{5}$
$W_{f r}=0.93 \nabla_{h}+4.7 \times 10^{4}$;
if $\nabla_{h}>1 \times 10^{5}$
$\nabla_{f r}=$ volume of framing in ft^{3}
Aluminum hull: $\nabla_{f r}=0.06 \mathrm{~W}_{\mathrm{fr}}$
Steel hull: $\quad \nabla_{f r}=0.03 \mathrm{~W}_{\mathrm{fr}}$

ZFRAM

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{fr}} & =\text { VCG of framing in ft } \\
& =\text { centroid of } \nabla_{\mathrm{h}}
\end{aligned}
$$

J．SUMMARY OF STRUCTURES－－Group 1

W1（2）
Z1（2）
V1（2）
WI（3）

21（3）
vi（3）
W1（4）
Z1（4）
VI（4）
WI（5）

21（5）

W1（6）

21（6）
V1（6）
W1（7）
21（7）
V1（7）
NTB
$\begin{aligned} \mathrm{W}_{100 \mathrm{~A}} & =\text { weight of plating for hull bottom in tors } \\ & =\mathrm{W}_{\mathrm{b}} / 2240\end{aligned}$
$z_{100 A}=$ VCG of bottom plating $/$ hull depth $=Z_{b} / H_{h}$
$\nabla_{100 \mathrm{~A}}=$ volume of bottom plating in $\mathrm{ft}^{3}=\nabla_{b}$
$W_{100 B}=$ weight of plating for hull sides in tons $=W_{s} / 2240$
$Z_{100 B}=$ VCG of side plating $/$ hull depth $=Z_{s} / H_{h}$
$\nabla_{100 B}=$ volume of side plating in $\mathrm{ft}^{3}=\nabla_{\mathrm{s}}$
$\mathrm{W}_{101}=$ weight of framing in tons $=\mathrm{W}_{\mathrm{fr}} / 2240$
$Z_{101}=$ VCG of framing $/$ hull depth $=Z_{f r} / H_{h}$
$\nabla_{101}=$ volume of framing in $\mathrm{ft}^{3}=\nabla_{\mathrm{fr}}$
$\mathrm{W}_{103 \mathrm{~A}}=$ weight of upper platform in tons $=W_{\mathrm{PI}_{2}} / 2240$
$\begin{aligned} Z_{103 A} & =\text { VCG of upper platform } / \text { hull depth }\end{aligned}$ $=\mathrm{Z}_{\mathrm{pl}}^{2} 1 / \mathrm{H}_{\mathrm{h}}$
$\nabla_{103 \mathrm{~A}}=$ volume of upper platform in $\mathrm{ft}^{3}=\nabla_{\mathrm{pl}}^{2}$
$\begin{aligned} \mathrm{W}_{\text {103B }} & =\text { weight of lower platform in tons } \\ & =\mathrm{W}_{\mathrm{pl}_{1}} / 2240\end{aligned}$
$Z_{103 B}=$ VCG of lower platform $/$ hull depth $=Z_{p l_{1}} / H_{h}$
$\nabla_{103 B}=$ volume of lower platform in $\mathrm{ft}^{3}=\nabla_{\mathrm{p} 1_{1}}$
$\mathrm{W}_{107}=$ weight of main deck in tons $=\mathrm{W}_{\mathrm{d}} / 2240$
$Z_{107}=$ VCG of main deck $/$ hull depth $=Z_{d} / H_{h}$
$\nabla_{107}=$ volume of main deck in $\mathrm{ft}^{3}=\nabla_{d}$
$n_{t b}^{\prime} \quad=$ revised number of transverse bulkheads
$n_{t b}^{\prime}=1$ ，if $\Delta_{L T} \leq 10$
$n_{t b}^{\prime}=3.663 \ln \left(\Delta_{L T} / 8.1\right)$ ，if $10<\Delta_{L T}<70$
$n_{t} \dot{b}^{\prime}=9$ ，if $\Delta_{L T} \geq 70$
$\begin{aligned} \mathrm{W}_{114 \mathrm{~A}} & =\text { weight of trariverse bulkheads in tons } \\ & =\sum \mathrm{W}_{t b}\left(\mathrm{n}_{\mathrm{tb}}{ }^{\prime} / 9\right) / 2240\end{aligned}$
$Z_{114 A}=V C G$ of transverse bulkheads / hull depth $=\bar{z}_{t b} / H_{h}$
$\begin{aligned} \nabla_{114 \mathrm{~A}} & =\text { volume of transverse bulkheads in } \mathrm{ft}^{3} \\ & =\Sigma \nabla_{\mathrm{tb}}\left(\mathrm{n}_{\mathrm{tb}} / 9\right)\end{aligned}$
$\begin{aligned} \mathrm{W}_{114 \mathrm{~B}} & =\text { weight of longitudinal bulkheads in tons } \\ & =\sum \mathrm{W}_{\ell b} / 2240\end{aligned}$
$Z_{114 B}=V C G$ of longitudinal bulkheads $/$ hull depth $=\bar{z}_{\ell b} / H_{h}$
$\nabla_{114 \mathrm{~B}}=$ volume of longitudinal bulkheads in ft^{3} $=\Sigma \nabla_{\ell b}$
Subscripts are BSCI 3-digit code
The superstructure, foundations for propulsion and other equipment, and attachment are calculated in Subroutine TOTALS.

NAME:
PURPOSE:

CALLING SEQUENCE:
INPUT:
IMAT

IFRM

WSFMIN

WSLOPE

STRESS
DMAT

Other
OUTPUT:
A. GENERAL

PRES
UNITWT
B. PLATFORM DECKS

NPL

$$
\begin{aligned}
\mathrm{n}_{\mathrm{pl}} & = \\
& \text { number of platform decks, excluding } \\
& \text { main deck } \\
\mathrm{n}_{\mathrm{pl}} & =0 \text { if } \mathrm{H}_{\mathrm{h}} \text { is } 10 \mathrm{ft} \text { or less } \\
\mathrm{n}_{\mathrm{pl}} & =1 \text { if } \mathrm{H}_{\mathrm{h}} \text { is between } 10 \text { and } 20 \mathrm{ft} \\
n_{\mathrm{pl}} & =2 \text { if } \mathrm{H}_{\mathrm{h}} \text { is } 20 \mathrm{ft} \text { or greater }
\end{aligned}
$$

 $2 T B$ (J)
WTBJ
ZTBT
SUBRCUTINE STRUCT for GRP

$Z_{t b}=V C G$ of transverse bulkhead in $\mathrm{ft}=\mathrm{C}_{\mathrm{S}}$
$=$ centroid of section from Subroutine NEWVOL
$\Sigma W_{t b}=$ total weight of all transverse bulkheads in 1 b
$\bar{z}_{\mathrm{tb}}=$ net $\quad \mathrm{VCG}$ of all transverse bulkheads in ft $=\Sigma\left(Z_{t b} \mathrm{xW}_{\mathrm{tb}}\right) / \Sigma \mathrm{W}_{\mathrm{tb}}$
D. LONGITUDINAL BULKHEADS

E. HULL BOTTOM - KEEL TO CHINE
$P_{h h}=$ pressure due to hydrostatic head in $1 b / i n .{ }^{2}$
$=64\left(Z_{S_{m}}+4\right) / 144$
$\begin{aligned} G_{b} \quad= & \text { half-girth from keel to chine in ft.at } \\ & X / L_{P}=0.6\end{aligned}$
$N_{C G}=$ design acceleration at $C G$ in $g^{\prime} s=3.0$
$\begin{aligned} P_{b f}= & \text { design pressure on forward } 40 \text { percent of } \\ & \text { bottom in } 1 b / i n .2\end{aligned}$
$=9 \Delta\left(1+\ddot{N}_{C G}\right) /\left(2 G_{b} I_{P}\right) / 144$ or $P_{h h}$ if greater
PRESA

WSFIF

ABOTTF

ABOTTA

WBOTT

ZBOTT
F. HULI SIDES - CHINE TO MAIN DECK WSF2

$$
\begin{aligned}
\mathrm{S}_{\mathrm{s}} \quad= & \text { unit weight of side plating in } 1 \mathrm{~b} / \mathrm{ft}^{2}, \\
& \text { Figure } 5 \\
= & 1.4+0.0350 \mathrm{~L}_{\mathrm{P}} \text { for sandwich plate (IMAT=5) } \\
= & 2.3+0.0395 \mathrm{~L}_{\mathrm{p}} \text { for single skin (IMAT=3 or 4) } \\
& \text { (minimum value of } \mathrm{S}_{\mathrm{s}} \text { is } \mathrm{S}_{\text {min }} \text {) }
\end{aligned}
$$

ASIDE
$A_{S} \quad=$ area of both sides in $f t^{2}=2 \int_{0}^{L_{P}} G_{C S} d X$

WSIDE
ZSIDE
$W_{s} \quad=$ weight of side plating in $I b=A_{s} \times S_{S}$
$z_{s}=V C G$ of side plating in $f t$
G. MAIN DECK

WSF3

ADECK
WDECK
ZDECK
$S_{d}=$ unit weight of main deck in $\mathrm{lb} / \mathrm{ft}^{2}$, Figure 5
$=$ unit weight of side plating S_{s}
$A_{d}=$ area of main deck in $f t^{2}=2 \int Y_{S} d X$
$W_{d} \quad=$ weight of main deck in $I b=A_{d} \times S_{d}$
$\mathrm{Z}_{\mathrm{d}}=$ VCG of main deck in ft
H. FRAMING - TRANSVERSE OR LONGITUDINAL

WFRAM	$W_{\text {fr }}$	$\begin{aligned} & =\text { weight of framing in } 1 \mathrm{~b} \text {, Figure } 6 \\ & =0.75 \nabla_{\mathrm{h}} \text { for transverse framing (IFRM=1) } \\ & =1.20 \nabla_{\mathrm{h}} \text { for longitudinal framing (IFRM=2) } \end{aligned}$
ZFRAM	Z_{fr}	$=$ VCG of framing in $f t=$ centroid of ∇_{h}

I. STRESS CALCULATION AT MJDSHIPS

WFLE	$W_{\text {fie }}$	$\begin{aligned} & =\text { longitudinally effective framing weight in } 1 \mathrm{~b} \\ & =0.36 \mathrm{~W}_{\mathrm{fr}} \text { for transverse framing } \\ & =0.48 \mathrm{~W}_{\mathrm{fr}} \text { for longitudinal framing } \end{aligned}$
AFLE	$A_{f l e}$	$\begin{aligned} & =\text { longitudinally effective framing half-area } \\ & \text { in } \mathrm{ft}^{2} \end{aligned}$
A1P	$A_{1}{ }^{\prime}$	$\begin{aligned} & =W_{\text {fle }} / 1.40 / 2 \\ & =\text { effective half-area added to bottom at } \\ & \text { midship } \end{aligned}$
A3P	$A_{3}{ }^{\prime}$	$\begin{aligned} = & 0.80 \mathrm{~A}_{\mathrm{fle}} \text { for transverse framing } \\ = & 0.90 \mathrm{~A}_{\text {fle }} \text { for longitudinal framing } \\ = & \text { effective half-area added to deck at } \\ & \text { midship } \end{aligned}$
		$\begin{aligned} & =0.20 \mathrm{~A}_{\mathrm{fle}} \text { for transverse framing } \\ & =0.10 \mathrm{~A}_{\mathrm{fle}} \text { for longitudinal framing } \end{aligned}$

SUBROUTINE STRUCT for GRP

$K_{f}=$ constant to take care of weight in core of stiffeners which are not effective in strength
$=0.94$ for single skin, longitudinally framed
$=0.94 \times 0.90$ for sandwich plate, longitudinally framed
$=0.60$ for single skin, transversely framed
$\begin{aligned} &=0.60 \times 0.70 \text { for sandwich plate, transversely } \\ & \text { framed }\end{aligned}$
$t_{1}=$ thickness of bottom plating in inches
$=\left(12 S_{b a} / \gamma_{\text {mat }}\right) \times K_{f}$
$\mathrm{t}_{2}=$ thickness of side plating in inches
$=\left(12 \mathrm{~S}_{\mathrm{s}}\left(\gamma_{\text {mat }}\right) \times \mathrm{K}_{\mathrm{f}}\right.$
$t_{3}=$ thickness of main deck in inches
$=\left(12 \mathrm{~S}_{\mathrm{d}} / \gamma_{\text {mat }}\right) \times \mathrm{K}_{\mathrm{f}}$
$\ell_{1}=$ half length of bottom at midstips in inches
$=12 \mathrm{G}_{\mathrm{KC}}$
$\ell_{2}=$ half length of sides at midships in inches $=12 \mathrm{G}_{\mathrm{CS}}$
$\ell_{3}=$ effective half length of deck at midships in inches
$=(2 / 3)\left(12 Y_{s}\right)$
$A_{1}=\begin{aligned} & \text { half area of bottom plating at midships } \\ & \\ & \text { in in. }\end{aligned}$ $=t_{1} \ell_{1}+A_{1}{ }^{\prime}$
$A_{2}=$ half area of side plating at midships in in. ${ }^{2}$ $=t_{2} l_{2}$
$A_{3}=$ half area of main deck at midships in in. ${ }^{2}$ $=t_{3} l_{3}+A_{3}{ }^{\prime}$
$Z_{1}=V C G$ of A_{1} in inches $=12\left[Z_{K_{m}}+1 / 2\left(Z_{C_{m}}-Z_{K_{m}}\right)\right]$
$Z_{2}=$ VCG of A_{2} in inches $=12\left[Z_{C_{m}}+1 / 2\left(Z_{S_{m}}-Z_{m}\right)\right]$

SUBROUTINE STRUCT for GRP

23
Z22

ZNA

TM

WSF1A

WSF 3
J. VOLUME LOST

VI (1)
$z_{3} \quad=$ VCG of A_{3} in inches in $12 \times \mathrm{Z}_{S_{m}}$
$Z_{22}=$ vertical height of sides in inches
$=12\left(\mathrm{Z}_{\mathrm{S}_{\mathrm{m}}}-\mathrm{Z}_{\mathrm{C}}\right)$
$Z_{\mathrm{NA}}=$ height of neutral axis at midships above keel in inches

$$
=\left(A_{1} A_{1}+A_{2} Z_{2}+A_{3} Z_{3}\right) /\left(A_{1}+A_{2}+A_{3}\right)
$$

$I_{m}=$ sectional inertia in in. ${ }^{4}$
$=2\left(A_{1} Z_{1}{ }^{2}+A_{2} Z_{2}{ }^{2}+A_{3} Z_{3}{ }^{2}+A_{2} Z_{22}{ }^{2} / 12\right)$ $-\left(A_{1}+A_{2}+A_{3}\right) Z_{N A}^{2}$
$S_{m}=$ least section modulus in in. ${ }^{3}$
$=1 / Z_{\mathrm{NA}}$ or $1 /\left(\mathrm{H}_{\mathrm{h}}-Z_{\mathrm{NA}}\right)$ whichever is smaller
$\ddot{N}_{B} \quad=$ design bow acceleration in $g^{\prime} s=7.55$
$\ddot{N}_{C G}=$ design $C G$ acceleration in $g ' s=3.0$
$M_{b} \quad=$ bending moment at midships in in. -1 b
$=12 \mathrm{~L}_{\mathrm{P}} \Delta\left(128 \ddot{\mathrm{~N}}_{\mathrm{B}}-178 \ddot{\mathrm{~N}}_{\mathrm{CG}}-50\right) / 1920$
$\sigma_{\text {max }}=$ maximum stress in $1 b /$ in $^{2}=M_{b} / S_{m}$
If $\sigma_{\max } \leq \sigma_{\text {limit }}$, original plating thicknesses are $O K$ If $\sigma_{\text {max }}>\sigma_{1 \text { imit }}$ and $Z_{N A}<0.5 H_{h}$, increase t_{3} by
0.02 in. and recalculate σ

If $\sigma_{\text {max }}>\sigma_{\text {limit }}$ and $Z_{N A}>\max _{0.5} H_{h}$, increase t_{3} and
t_{I} by 0.02 in . and recalculate $\sigma_{\max }$
$S_{b a}=$ unit weight of aft bottom plating in $\mathrm{lb} / \mathrm{ft}^{2}$
$=t_{1} \sigma_{\text {mat }} / 12 / \mathrm{K}_{\mathrm{f}}$ recalculate if t_{1} is increased
$S_{d}=$ unit weight of deck in $1 b / f t^{2}$
$=t_{3} \sigma_{\text {mat }} / 12 / K_{f}$ recalculate if t_{3} is increased

$$
\begin{aligned}
\nabla_{1} & =\text { total volume of structure in } \mathrm{ft}^{3} \\
& =0.11 \nabla_{\mathrm{h}}+\left(\mathrm{W}_{\mathrm{fr}} / 43\right)
\end{aligned}
$$

SUBROUTINE STRUCT for GRP

ATOT
$A_{\text {tot }}=$ total area of hull side, bottom, main deck, platforms, and bulkheads

$$
\begin{aligned}
= & A_{s}+A_{b f}+A_{b a}+A_{d}+A_{p 1_{1}}+A_{p l_{2}} \\
& +\sum A_{t b}+\sum A_{\ell b}
\end{aligned}
$$

VSIDE
VBOTT
VDECK
VPL1
VPL2
VTBT
VLBT
VFRAM
K. SUMMARY OF STRUCTURES--Group 1

W1 (2)

W1 (3)

21(3)
V1 (3)
WI (4)
21(4)
V1 (4)
W1 (5)

21(5)

V1(5)
W1 (6)
$W_{100 A}=$ weight of plating for hull bottom in tons $=W_{b} / 2240$
$Z_{100 A}=V C G$ of bottom plating / hull depth $=Z_{b} / H_{h}$
$\nabla_{100 \mathrm{~A}}=$ volume of bottom plating in $\mathrm{ft}^{3}=\nabla_{b}$
$W_{100 B}=$ weight of plating for hull sides in tons

$$
=W_{S} / 2240
$$

$Z_{100 B}=$ VCG of side plating / hull depth $=Z_{s} / H_{h}$
$\nabla_{100 B}=$ volume of side plating in $f t^{3}=\nabla_{S}$
$\mathrm{W}_{101}=$ weight of framing in tons $=\mathrm{W}_{\mathrm{fr}} / 2240$
$\mathrm{Z}_{101}=$ VCG of framing / hull depth $=\mathrm{Z}_{\mathrm{fr}} / \mathrm{H}_{\mathrm{h}}$
$\nabla_{101}=$ volume of framing in $\mathrm{ft}^{3}=\nabla_{\mathrm{fr}}$
$W_{103 A}=$ weight of upper platform in tons
$=W_{\mathrm{pl}_{2}} / 2240$
$Z_{103 A}=V C G$ of upper platform / hull depth $=Z_{\mathrm{Pl}_{2}} / \mathrm{H}_{\mathrm{h}}$
$\nabla_{103 A}=$ volume of upper platform in $\mathrm{ft}^{3}=\mathrm{V}_{\mathrm{p} 1_{2}}$
$W_{103 B}=$ weight of lower platform in tons
$=\mathrm{W}_{\mathrm{pI}} 1 / 2240$

21(7)
v1(7)
NTB

W1 (8)

21(8)
v1 (8)

WI (9)

V1(9)
$Z_{103 B}=$ VCG of lower platform $/$ hull depth $=Z_{p 1_{1}} / H_{h}$
$Z_{103 B}=$ volume of lower platform in $\mathrm{ft}^{3}=\nabla_{\mathrm{p} 1_{1}}$
$\mathrm{W}_{107}=$ weight of main deck in tons $=\mathrm{W}_{\mathrm{d}} / 2240$
$Z_{107}=$ VCG of main deck $/$ hull depth $=Z_{d} / H_{h}$
$\nabla_{107}=$ volume of main deck in $\mathrm{ft}^{3}=\nabla_{\mathrm{d}}$
${ }^{n} \mathrm{tb}$ ' = revised number of transverse bulkheads
$n_{t b}{ }^{\prime}=1$, if $\Delta_{L T} \leq 10$
$n_{t b}^{\prime}=3.663 \ell_{\mathrm{n}}\left(\Delta_{\mathrm{LT}} / 8.1\right)$, if $10<\Delta_{\mathrm{LT}}<70$
$n_{t b}^{\prime}=9$, if $\Delta_{L T} \geq 70$
$W_{114 A}=$ weight of transverse bulkheads in tons
$=\Sigma \mathrm{W}_{\mathrm{tb}}\left(\mathrm{n}_{\mathrm{tb}}{ }^{\prime} / 9\right) / 2240$
$\mathrm{Z}_{114 \mathrm{~A}}=\mathrm{VCG}$ of transverse bulkheads / hull depth $=\bar{z}_{t b} / H_{h}$
$\nabla_{114 \mathrm{~A}}=$ volume of transverse bulkheads in ft^{3}
$=\Sigma \nabla_{t b}\left(n_{t b} / 9\right)$
$W_{114 \mathrm{~B}}=$ weight of longitudinal bulkheadis in tons
$=\Sigma \mathrm{W}_{\ell} / 2240$
$\mathrm{Z}_{114 \mathrm{~B}}=$ VCG of longitudinal bulkheads $/$ hull depth $=\bar{z}_{\ell b} / H_{h}$
$\nabla_{114 \mathrm{~B}}=$ volume of longitudinal bulkheads in ft^{3} $=\Sigma \nabla_{\ell b}$

Subscripts are BSCI 3-digit code
The superstructure, foundations for propulsion and other equipment, and attachment are calculated in Subroutine TOTALS.

NAME:
PURPOSE:

CALLING SEQUENCE:
INPUT:
IMAT

WSFMIN

WSLOPE
DMAT

XLWELL

XLBOWR
BWELL
BBOWR
BAFTR

ZWELL

ZAFTR

Other OUTPUT:
A. GENERAL EQUATIONS

Same as Subroutine STRUCT for conventional planing hulls.
B. GEOMETRY OF WELL AND RAMPS

XLAFTR
I
HWELL (I)

SUBROUTINE STRUCT (to be used when ILC=1 and IMAT<3)
Calculate weight, volumes, and VCG's of major
structures, Group 1, for landing craft with well
CALL STRUCT
Via COMMON blocks
IMAT $=1,2$ for structures of aluminum or steel, from Card 11
$S_{\min }=$ minimum unit weight of plating in $1 b / \mathrm{ft}^{2}$, from Card 11
$S_{p} \quad=$ slope of unit weight curves, from Card 11
$\gamma_{\text {mat }}=\begin{gathered}\text { density of structural material in } \\ \text { from Card } \\ \text { l } / \mathrm{ft}^{3} \text {, }\end{gathered}$ from Card 11
$L_{\text {well }}=$ length of well deck in ft, excluding aft ramp, from Card 6A
$L_{\text {bow }}=$ length of bow ramp in ft , from Card 6A
$\mathrm{B}_{\text {we11 }}=$ breadth of well deck in ft , from Card 6A
$B_{\text {bow }}=$ breadth of bow ramp in ft, from Card 6A
$B_{a f t}=$ breadth of aft (drive through) ramp in $f t$, from Card 6A
$z_{\text {well }}=\underset{\text { height of }}{\text { from Card } 6 \mathrm{~A}}$ well deck above baseline in ft ,.
$Z_{\text {aft }}=$ height of aft ramp above baseline in ft , from Card 6A
Hull geometry from Subroutines NEWHUL, NEWVOL, etc.
Via COMMON blocks
$L_{\text {aft }}=$ length of aft ramp in $f t=L_{P}-L_{\text {well }}$
Index for DO LOOP $I=1$, NN
$H_{\text {well }}=\underset{\text { in } f t}{\text { fepth }}$ from main deck to well deck or aft ramp
$=Z_{S}-Z_{\text {well }}$ if $x>L_{a f t}$
$=Z_{S}-Z_{\text {aft }}$ if $X \leq L_{a f t}$

AWELL (I)

VOLWE
C. PLATFORM DECKS
none
D. TRANSVERSE BULKHEADS

NTB	$\begin{aligned} \mathrm{n}_{\mathrm{tb}}= & \text { number of transverse bulkheads input } \leq 15 \\ & \text { may be adjusted later so that bulkheads are } \\ & \text { spaced about } 6 \mathrm{ft} \text { apart under well deck } \end{aligned}$
J	Index for DO LOOP $\mathrm{J}=1$, NTB
ZKS	$H_{t b}=$ height of bulkhead in $f t=Z_{S}-Z_{K}{ }_{2}$
PRES	$\begin{aligned} P_{t b}= & \text { design pressure on bulkhead in } 1 \mathrm{~b} / \mathrm{in} . \\ = & 64\left(\mathrm{H}_{\mathrm{tb}}+4\right) / 144 \\ & \text { no addition required for fuel tanks } \end{aligned}$
WSF	$S_{t b}=$ unit weight of transverse bulkhead, Figure 4
AP	$\begin{aligned} A_{t b} & =\text { area of transverse bulkhead in } \mathrm{ft}^{2} \\ & =A_{S}-A_{\text {well }} \end{aligned}$
DTB	$D_{t b}=\begin{gathered}\text { depth of } \\ \text { equation }\end{gathered}$
WTB (J)	$\begin{aligned} W_{t b} & =\text { weight of transverse bulkhead in } 1 \mathrm{~b} \\ & =A_{t b} \times S_{t b} \end{aligned}$
VTB	$\begin{aligned} \nabla_{t b} & =\text { volume of transverse bulkhead in } \mathrm{ft}^{3} \\ & =A_{t b} \times D_{t b} \end{aligned}$
2TB (J)	$\begin{aligned} z_{t b}= & \text { VCG of transverse bulkhead in } \mathrm{ft} \\ = & {\left[\left(\mathrm{A}_{\mathrm{S}} \times \mathrm{C}_{\mathrm{S}}\right)-\mathrm{A}_{\text {we } 11}\left(\mathrm{Z}_{\text {well }}+1 / 2 \mathrm{H}_{\text {well }}\right)\right] / } \\ & \left(\mathrm{A}_{\mathrm{S}}-\mathrm{A}_{\text {well }}\right) \end{aligned}$
WTBT	$\begin{aligned} & \Sigma \Delta_{t b}= \text { total weight of all transverse bulkheads } \\ & \text { in } 1 \mathrm{~b} \end{aligned}$
VTBT	$\begin{aligned} \Sigma \nabla_{t b}= & \text { total volume of all transverse bulkheads } \\ & \text { in } \mathrm{ft}^{3} \end{aligned}$
ZTBT	$\begin{aligned} \bar{z}_{t b} & =\text { net VCG of all transverse bulkheads in } \mathrm{ft} \\ & =\Sigma\left(W_{t b} \times Z_{t b}\right) / \Sigma W_{t b} \end{aligned}$

E. LONGITUDINAL BULKhEADS

NLB	$n_{\ell b}=$ number of longitudinal bulkheads $=$ number of propulsion units $n_{p r}-1$ Longitudinal bulkheads extend from transom to aft end of well deck and from bottom of hull up to bottom of aft ramp.
ZKS	$\begin{aligned} \mathrm{H}_{\ell b} & =\text { mean height of longitudinal bulkheads in } \mathrm{ft} \\ & \approx \mathrm{Z}_{\mathrm{aft}}-\mathrm{Z}_{\mathrm{K}_{2}} \end{aligned}$
PRES	$\mathrm{P}_{\mathrm{l} \mathrm{b}}=$ design pressure in $1 \mathrm{~b} / \mathrm{in} .^{2}=64\left(\mathrm{H}_{2}+4\right) / 144$
WSF	$S_{\ell b}=$ unit weight in $\mathrm{lb} / \mathrm{ft}^{2}$, Figure 4
ALBT	$\begin{aligned} \Sigma A_{\ell b} & =\text { total area of longitudinal bulkheads in } \mathrm{ft}^{2} \\ & =H_{\ell b} \times \mathrm{L}_{\mathrm{aft}} \times \mathrm{n}_{\ell b} \end{aligned}$
DLB	$D_{\ell b}=$ depth of longitudinal bulkhead web in ft
WLBT	$\begin{aligned} \Sigma \mathrm{W}_{l b} & =\text { total weight of longitudinal bulkheads in } 1 b \\ & =\sum_{l b} \times S_{l b} \end{aligned}$
VLBT	$\begin{aligned} \Sigma \nabla_{l b} & =\text { total volume of longitudinal bulkheads in } f t^{3} \\ & =\Sigma A_{l b} \times D_{l b} \end{aligned}$
ZLBT	$\begin{aligned} \bar{z}_{\ell b} & =\text { net VCG of longitudinal bulkheads in } \mathrm{ft} \\ & =z_{K_{2}}+\frac{1}{2} \mathrm{H}_{\ell \mathrm{b}} \end{aligned}$

F. hut.t. bottom - keei tu chine

Same as Subroutine STRUCT for regular planing hull
WBOTT
VBOTT
ZBOTT
$\mathrm{W}_{\mathrm{b}} \quad=$ weight of bottom plating in 1 b
$\nabla_{b} \quad=$ volume of bottom plating in $f t^{3}$
$Z_{b} \quad=$ VCG of bottom plating in $f t$
G. hull sides - Chine to main deck + walls of the well

WSF2 $S_{\text {so }}=$ unit weight of outer side plating, Figure 5
WSFMIN $\quad S_{S W}=$ unit weight of plating for well walls $=S_{\text {min }}$
ASIDE
$=$ area of both outer sides in ft^{2}
$=2 \int_{0}^{L_{P}} G_{C S} d X$

ASWELL
$A_{S W}=$ area of both sides of well in $f t^{2}$
$=2 \int_{0}^{L_{P}} H_{w e 11} d X$
DSIDE
WSIDE

VSIDE

ZSIDE
H. MAIN DECK

PRES

WSF3
ABWELL
AAFTR
ADECK

DDECK
WDECK
VDECK
ZDECK
$\begin{aligned} & \mathrm{P}_{\mathrm{d}}=\text { design pressure on main deck in lb/in. }{ }^{2} \\ &=64 \times 4 / 144\end{aligned}$
$S_{d}=$ unit weight of main deck, Figure 4
$A_{b w}=$ area of bottom of well in $\mathrm{ft}^{2}=L_{\text {we11 }} \times B_{\text {well }}$
$A_{b a}=$ area of bottom of aft ramp in $f t=L_{a f t} \times B_{a f t}$
$A_{d}=$ area of main deck in $f t^{2}$
$=2 \int_{0}^{L_{P}} Y_{S} d X-\left(A_{b w}+A_{b a}\right)$
$D_{d} \quad=$ depth of main deck web in ft
$W_{d} \quad=$ weight of main deck in $1 b=A_{d} \times S_{d}$
$\nabla_{d} \quad=$ volume of main deck in $\mathrm{ft}^{3}=A_{d} \times D_{d}$
$z_{d}=$ VCG of main deck in $f t$
I. STRESS CALCULATION AT MIDSHIPS

Not required for landing craft
J. WELL DECK, INCLUDING AFT DRIVE-THROUGH RAMP

PRES $\quad \begin{aligned} P_{w d} & =\text { design pressures on well deck in } 1 \mathrm{~b} / \mathrm{in}^{2}{ }^{2} \\ & =70.0\end{aligned}$
$S_{w d}=$ unit weight of well deck, Figure 4
K. BOW RAMP

WSF $\quad S_{b r}=$ unit weight of bow ramp in $l b / \mathrm{ft}^{2}$
Aluminum hull: $\mathrm{S}_{\mathrm{br}}=25.0$
Steel hull: $\quad S_{b r}=41.3$
ABOWR
$A_{b r}=$ area of bow ramp in $f t^{2}=L_{\text {bow }} \times B_{\text {bow }}$
$D_{b r}=$ depth of bow ramp in $f t$
$W_{b r}=$ weight of bow ramp in $1 b=A_{b r} \times S_{b r}$
$\nabla_{b r}=$ volume of bow ramp in $f_{t}{ }^{2}=A_{b r} \times D_{b r}$
$Z_{b r}=$ VCG of bow ramp in $f t=1.4 \times Z_{\text {well }}$

WDECKW
vDECKW
ZDECKW

$$
\begin{aligned}
& A_{w d}=\begin{aligned}
& \begin{aligned}
\text { SUBROUTINE STRUCT } \\
\text { for Landing Craft }
\end{aligned} \\
= & A_{b w}+A_{b a}
\end{aligned} \\
& D_{w d}=\text { depth of well deck web in } f t \\
& \begin{array}{l}
W_{w d}=\text { weight of well deck in } 1 b=A_{w d} \times S_{w d} \\
\nabla_{w d}=\text { volume of well deck in } f t^{3}=A_{w d} \times D_{w d}
\end{array} \\
& Z_{w d}=\text { VCG of well deck in } \mathrm{ft} \\
& =\left[\left(A_{b w} \times Z_{w e l l}\right)+\left(A_{b a} \times Z_{a f t}\right)\right] /\left(A_{b w}+A_{b a}\right)
\end{aligned}
$$

DBOWR
WBOWR
VBOWR
ZBOWR
L. FRaming - Longitudinal and transverse

Same as regular planing hull, except that volume of
well $\nabla_{\text {well }}$ is subtracted from hull volume ∇_{h}
$W_{f r}=$ total weight of framing in $1 b$, Figure 6
$=f\left(\nabla_{h}{ }^{\prime}\right)$ where $\nabla_{h}{ }^{\prime}=\nabla_{h}-\nabla_{\text {well }}$
VFRAM
ZFRAM
$\nabla_{\mathrm{fr}}=$ volume of framing in ft^{3}
$=0.06 \mathrm{~W}_{\mathrm{fr}}$ or $0.03 \mathrm{~W}_{\mathrm{fr}}$ for aluminum or steel
$Z_{f r}=V C G$ of framing in $f t$
M. SUMMARY OF STRUCTURES--Group 1

> WI (2)

WI (3)
W1(4)
W1(5)
W1 (6)
$W_{100 A}=$ weight of bottom plating in tons $=W_{b} / 2240$
$\begin{aligned} \mathrm{W}_{100 \mathrm{~B}}= & \text { weight of side plating, including walls of } \\ & \text { well, in tons }=\mathrm{W}_{\mathrm{s}} / 2240\end{aligned}$
$\mathrm{W}_{101}=$ weight of framing in tons $=\mathrm{W}_{\mathrm{fr}} / 2240$
$\mathrm{~W}_{107 \mathrm{~A}}=$ weight of bow ramp in tons $=\mathrm{W}_{\mathrm{br}} / 2240$
$\begin{aligned} \mathrm{W}_{107 B}= & \text { weight of well deck, including drive-through } \\ & \text { ramp, in tons }=W_{w d} / 2240\end{aligned}$

```
                                    SUBROUTINE, STRUCT
                                    for Landing Craft
                            \(W_{107 C}=\) weight of main deck in tons \(=W_{d} / 2240\)
                            \(n_{t b}{ }^{\prime}=\) reversed number of transverse bulkheads
                                \(=\left(L_{\text {well }} / 6.0\right)+2\)
                            \(W_{114 A}=\) weight of transverse bulkheads in tons
                            \(114 A=\sum W_{t b}\left(n_{t b}^{\prime} / n_{t b}\right) / 2240\)
\(W_{114 B}=\) weight of longitudinal bulkheads in tons
    \(=\Sigma \mathrm{W}_{1 \mathrm{~b}} / 2240\)
VCG/ \(H_{h}\) of structural components in same order as
Wl array
Volume in \(\mathrm{ft}^{3}\) of structural components in same order
as Wl and Zl arrays
The superstructure, foundations, and attachments are calculated in Subroutine TOTALS.
Subscripts are BSCI 3-digit code
```

NAME:
PURPOSE:

CALLING SEQUENCE: SUBROUTINES CALLED: INPUT:
voES

VARS
RANGED

RANGE

H13D

H13C

IPROP

IP

DIBS

PR

AUXNO
Other

FUEL

SUBROUTINE POWER

Estimate power requirements at design and cruise speeds. Calculate weights, volumes, and VCG's of major components of propulsion system, Group 2. Calculate fuel required for range specifications. CALL POWER

PARES, PRCOEF, SAVIT, PROPS, WJETS
Via COMMON blocks
$\mathrm{V}_{\mathrm{d}} \quad=$ design (maximum) speed in knots, from input Card 7
$\mathrm{V}_{\mathrm{c}} \quad=$ cruise speed in knots $\leq \mathrm{V}_{\mathrm{d}}$, from Card 7
Range $_{d}=$ range requirement at design speed in nautical miles, from Card 7
May be 0 if cruise range dominates
Range $_{c}=$ range requirement at cruise speed in nautical miles, from Card 7
$\mathrm{H}_{1 / 3}=\underset{\mathrm{d}}{ }=\underset{\text { maximum significant wave height in }}{ } \mathrm{ft}$ specified for operation of ship at V_{d},
$\begin{aligned} \mathrm{H}_{1 / 3}= & \text { :maximum significant wave height in } \mathrm{ft} \\ & \text { specified for operation of ship at } \mathrm{V}_{\mathrm{c}},\end{aligned}$
Control for type of thrusters, from Card 6
IPROP $=1$ for Gawn-Burrill type propellers
IPROP $=2$ for Newton-Rader type propellers
PROP $=3$ for Wageningen B-screw type propellers
IPROP $=4$ for B-scireuctype, assuring no cavitation
CRop $\dot{1} 5$ for wateriets type of engines, from Card 6
IP $=1$ for diesel prime movers
IBM $=2$ for gas turbine prime movers
IP $=3$ for CODOG system ($g i s$ turbines w/aukiliary diesels)
IPA $=4$ for COGOG system (gus turbines w/ain. Gus turbines)
$\Delta \quad=$ ship displacement in 1 b , from Subroutine NEWHUL
$n_{p r} \quad=$ number of prime movers $=$ number of thrusters, from input Card 12 or Subroutine PROPS
$n_{\text {aux }}=$ number of auxiliary engines, from Card 12
Various constants relating to engines and gears from input Cards 13, 14, and 15 ard 11.
$u_{f x}=$ fixed Fuel weight in tons, From Cord 9 (optional input)

OUTPUT:
A. POWER REQUIREMENTS AT DESIGN AND CRUISE SPEEDS

Note: $\quad \mathrm{R}_{\mathrm{aw}} / \Delta=1.3\left(\mathrm{H}_{1 / 3} / \mathrm{B}_{\mathrm{PX}}\right)^{0.5}\left(\mathrm{~L}_{\mathrm{P}} / \nabla^{1 / 3}\right)^{-2.5} \mathrm{~F}_{\mathrm{n} \nabla}$
$P_{S} \quad=$ total shaft power
RPM (I)
N
$=\underset{\text { speed of }}{ } \begin{aligned} & \text { minute }\end{aligned}$ thrusters in revolutions per
PC (I)
$\eta_{D} \quad=$ propulsive coefficient $=P_{E} / P_{D}$ For propellers: $P_{D}, P_{S}, N, \eta_{D}$ from Subroutine PROPS For waterjets: $P_{D}, P_{S}, N, \eta_{D}$ from Subroutine WJETS
B HP (I)
POO (I)
$P_{B} \quad=$ total brake power
ORC
= overall performance coefficient $=P_{E_{b}} / P_{D}$
TORQUE (I)

BHP (1)
BHP (2)
$\begin{array}{ll}P_{d} & =\text { total brakepower at } V_{d} \\ P_{c} & =\text { total brakepower at } V_{c}\end{array}$
B. PRIME MOVERS AND GEARS

PE
$\mathrm{P}_{\mathrm{e}} \quad=$ maximum brake power of each prime mover
$=\mathrm{P}_{\mathrm{d}} / \mathrm{n}_{\mathrm{pr}}$ (or value of PEmAX imper on Cinch 11)
TH
SSE

WE
$\begin{array}{ll}\mathrm{P}_{\mathrm{d}}{ }^{\prime} & =\text { total brake power of prime movers }=\mathrm{P}_{\mathrm{e}} \times \mathrm{n}_{\mathrm{pr}} \\ \mathrm{SW}_{\mathrm{e}} & =\text { specific weight of engines in } 2 \mathrm{~b} / \mathrm{hp}\end{array}$
Diesels: $\quad S_{e}=\operatorname{FM1}\left(25.1 / \mathrm{P}_{\mathrm{e}}{ }^{0.207}\right)$
Gas Turbines: $\quad S_{e}=F M 1\left(0.42+2.88 \times 10^{6} / \mathrm{P}_{\mathrm{e}}{ }^{2.67}\right)$
$W_{e} \quad=$ weight of each prime mover in $1 b$
$=S W_{e} \times P_{e}$ (or value of FWE input on Cordite)

RE

RD
GR
QI
$\begin{array}{ll}\ldots- & =S W_{e} \times P_{e} \quad \text { (or value of } F \\ & \\ N_{e} \quad & \text { speed of prime movers in rpm }\end{array}$

$\mathrm{N}_{\mathrm{d}} \quad=$ speed of thrusters at V_{d} in rpm
$\mathrm{m}_{\mathrm{g}} \quad=$ gear ratio $=\mathrm{N}_{\mathrm{e}} / \mathrm{N}_{\mathrm{d}}$ (ir GRENG input or Cirri 14 ,
$=$ gear weight factor $=\left(\mathrm{P}_{\mathrm{e}} / \mathrm{N}_{\mathrm{e}}\right)\left(\mathrm{m}_{\mathrm{g}}+1\right)^{3} / \mathrm{m}_{g}$
Note: Input values supersede general equations in proyion. when infant value is blank or 0.0 , general equation is used

$$
\begin{aligned}
W_{g} \quad= & \text { weight of gears for each prime mover } \\
& \text { in } 1 \mathrm{~b} \\
= & 16000\left(Q_{e} / K\right)^{0.9} \text { for single reduction }\left(\begin{array}{l}
\text { or Fur } \\
\text { Frons } \\
\text { Fears } \\
\text { Card } 15
\end{array}\right) \\
= & 9500\left(Q_{e} / K\right) \quad \text { for planetary gears } \quad \\
K \quad & \text { gear tooth factor input on Card } 14
\end{aligned}
$$

C. AUXILIARY ENGINES AND GEARS (By-pass if IPM < 3)
$P_{c} \quad=$ total horsepower of auxiliary engines
$=P_{c} \times n_{\text {alex }}$
$P_{a} \quad=$ horsepower of each auxiliary engine
$=P_{c} / n_{\text {aux }}$ (or fAmAX value an Card ill)
$\mathrm{SW}_{a}=\begin{aligned} & \text { Specific weight of auxiliary engines } \\ & \\ & \text { in } 1 b / h p\end{aligned}$
Diesels: $\quad S_{a}=\operatorname{FM} 2\left(25.1 / \mathrm{P}_{\mathrm{a}}^{0.207}\right)$
Gas Turbines: $\quad S W_{a}=\operatorname{FM} 2\left(0.42+2.88 \times 10^{6} / \mathrm{P}_{\mathrm{a}}^{2.67}\right)$
WEA

RA

RC
GRA
QB
WGA
$W_{a} \quad=$ weight of each auxiliary engine in $1 b$
$=S W_{a} \times P_{a}$ (or FWEA From Cord 15)
W_{a} from general equations may be superseded by
value of FWEA input on Card 15
$\mathrm{N}_{\mathrm{a}} \quad=$ speed of auxiliary engines in rpm Diesels: $\mathrm{N}_{\mathrm{a}}=$ FM $\left(2.09 \times 10^{4} \mathrm{p}_{\mathrm{a}}^{0.884} / \mathrm{W}_{\mathrm{a}}\right)$
Gas Turbines: $\mathrm{N}_{\mathrm{a}}=$ FM $\left(5.4 \times 10^{5} / \mathrm{P}_{\mathrm{a}}^{0.49}\right) \quad\binom{$ or RAMAX }{ From }.
$\mathrm{N}_{\mathrm{c}} \quad=$ speed of thrusters at V_{c} in rpm
${ }^{m_{g}}{ }_{a}$
$W_{G_{a}}$
= weight of gears for each auxiliary engine in 1 b
$=16000\left(Q_{a} / K\right)^{0.9}$ for single reduction $\quad\left(\begin{array}{cc}\text { or } F W 6 A \\ \text { gears } & \text { for } 15\end{array}\right)$
$=9500\left(Q_{a} / K\right) \quad$ for planetary gears
$=$ gear tooth factor input on Card 14
D. PROPELLERS, SHAFTING, BEARINGS, ETC. (By-pass if IPROP = 4)

NEG
SELL
WB

PROPDA EFT

EAR NPR

SHE
OD

SHOO

SHDI
WSW

WPRA

D $\quad=$ diameter of propeller in ft from Subroutine PROPS
EAR = propeller expanded area ratio input on Card 12
$W_{p r} \quad=$ weight of each propeller in $1 b$
$=\mathrm{D}^{3}$ (5.05 EAR + 3.3)
$\mathrm{L}_{\text {sh }} \quad=$ shaft length in ft from Subroutine PROPS
$Q_{s h} \quad=$ torque per shaft in $f t-1 b=Q$ at $V_{d} / n p r$
$S_{s} \quad=$ shear stress due to torsion in $1 b /$ in 2
$=14000$
$=$ shaft inner diameter/outer diameter initial value of 0.67 used for hollow shaft
$d_{0} \quad=$ outer shaft diameter in inches
$=\left[192 Q_{s h} /\left(\pi S_{s}\right) /\left(1-\zeta^{4}\right)\right]^{1 / 3}$
If $d_{0}<6$ inches, set $\zeta=0$ for solid shaft, and recalculate d_{0}
$=$ inner shaft diameter in inches $=\zeta d_{0}$
$=$ weight of each shaft in 1 b
$=3.396 \mathrm{~L}_{\text {sh }}\left(\mathrm{d}_{\mathrm{o}}{ }^{2}-\mathrm{d}_{\mathrm{i}}\right)^{2} \pi / 4$
$L_{\max }=\underset{\operatorname{in} \mathrm{ft}}{\operatorname{maximum}}$ length of unsupported shafting
$=178.5\left(\mathrm{~d}_{\mathrm{o}} / \mathrm{N}_{\mathrm{d}}\right)^{1 / 2}$
$n_{\text {deg }} \quad=\begin{gathered}\text { number of shaft segments } \\ \text { rounded up }\end{gathered} L_{\text {sh }} / L_{\text {max }}$
$L_{\text {eeg }} \quad=$ length of each segment in $\mathrm{ft}=\mathrm{L}_{\mathrm{sh}} / \mathrm{n}_{\text {se }}$
W_{b}
$=$ weight of coupling, bearings, etc. for each shaft in lb
$=n_{\text {eeg }}\left(0.00792 Q_{d}+5.0 d_{o} L_{s e g}\right)$
$D_{a}=$ diameter of auxiliary propeller in ft input on Lard 12
$W_{\text {fra }}=$ weight of each acct. prop in $1 b$
$=D_{a}^{3}(5.05 E A R+3.3)$

EFT

AU
WW

WJL

WJH

V2(3)

HPD

NPR

WSH

WB

D = diameter of waterjet impeller in ft from Subroutine WJETS
$A_{J}=$ area of jet in ft^{2} from Subroutine WJETS
$\begin{aligned} B_{w j} & =\text { breadth of each waterjet unit in } f t \\ & =1.10 \mathrm{D}\end{aligned}$
$\mathrm{I}_{\mathrm{wj}}=$ length of waterjet unit inside of hull, in ft
$H_{w j}=$ height of waterjet unit in ft
$\nabla_{w j}=$ internal volume required for waterjets in $f t^{3}$
$=\left[n_{p r} B_{w j}+c\left(I+n_{p r}\right)\right]\left[H_{w j}+c\right]\left[L_{w j}\right]$ where c is clearance of 1.5 ft around units
$V C G_{w j}=V C G$ of waterjets above baseline in $f t$ $=\mathrm{Z}_{\mathrm{K}_{1}}+0.5\left(\mathrm{Z}_{\mathrm{C}_{1}}-\mathrm{Z}_{\mathrm{K}_{1}}\right)+1.15 \mathrm{D}$
$P_{d}=$ maximum input horsepower per unit
$=\left(\mathrm{DHP}\right.$ at $\left.\mathrm{V}_{\mathrm{d}}\right) / \mathrm{n}_{\mathrm{pr}}$
$W_{w j}=$ weight of each complete waterjet unit in $1 b^{*}$ $=1.4 \rho A_{J}\left(b_{0} P_{d} e_{0}+b_{1} P_{d}{ }^{e_{l}}+b_{2} P_{d} e_{2}+b_{3} P_{d}{ }^{e_{3}}\right)$

$$
\text { where } \begin{aligned}
b_{0} & =-695241 . & e_{0}=-1.0556 \\
b_{1} & =4321.3 & e_{1}=-0.0556 \\
b_{2} & =1.2156 & e_{2}=0.9444 \\
b_{3} & =-0.0000395 & e_{3}=1.9444
\end{aligned}
$$

$W_{s h}=0\left\{\begin{array}{l}\text { Weight of shaftings, bearings, etc. } \\ \text { included in } W_{W j} ;\end{array}\right.$
$W_{b}=0 \int \begin{aligned} & \text { Factor of } 1.4 \text { in equation for waterjet } \\ & \text { weight takes care of steering-reversing } \\ & \text { gear. }\end{aligned}$
F. VOLUME REQUIRED FOR PROPULSION SYSTEM

VOLEA

VOLE2

VOLEA2
H. FUEL REQUIREMENT

SFCD

$$
\begin{aligned}
& \operatorname{SFC}_{\mathrm{d}} \quad=\text { specific fuel consumption of prime } \\
& \text { movers at design speed in } 1 \mathrm{~b} / \mathrm{hp} / \mathrm{hr} \\
& \text { Diesels: } \quad S_{d}=\operatorname{FM} 3\left[0.859-0.247 \log \mathrm{P}_{\mathrm{e}}\right. \\
& \left.+0.0309\left(\log P_{e}\right)^{2}\right] \\
& \text { Gas Turbines: } \quad S_{\mathrm{d}}=\operatorname{FM} 3\left[1.565-0.488 \log \mathrm{P}_{\mathrm{e}}\right. \\
& \left.+0.0501\left(\log \mathrm{P}_{\mathrm{e}}\right)^{2}\right]
\end{aligned}
$$

$\mathrm{SFC}_{\mathrm{d}}$ from general equations may be superseded by value of FSFCD input on Card 15.

SFCC

SFCC

FRD
FRC

HOURS

HOURSD

WF

WFDES
$\mathrm{SFC}_{\mathrm{C}}$
$=$ specific fuel consumption of prime movers at cruise speed in $\mathrm{lb} / \mathrm{hp} / \mathrm{hr}$ (by-pass if auxiliary engines are used)
Diesels: $\quad \quad \quad \operatorname{SFC} C_{C}=\operatorname{SFC}_{\mathrm{d}}\left[0.853 /\left(\mathrm{P}_{\mathrm{c}} / \mathrm{P}_{\mathrm{d}}\right)^{0.214}\right.$ $\left.+0.147\left(\mathrm{P}_{\mathrm{c}} / \mathrm{P}_{\mathrm{d}}\right)^{3}\right]$
Gas Turbines: $\quad \mathrm{SFC}_{\mathrm{c}}=\mathrm{SFC}_{\mathrm{d}}\left[\left(-0.181 \mathrm{P}_{\mathrm{e}}{ }^{0.11}+0.762\right)\right.$ $\left./\left(P_{c} / P_{d}\right)^{0.825}+0.377 \mathrm{P}_{\mathrm{e}}{ }^{0.0734}\right]$
$S F C_{c}$ = specific fuel consumption of auxiliary engines with maximum power at V_{c} in
$\mathrm{lb} / \mathrm{hp} / \mathrm{hr}$ $1 \mathrm{~b} / \mathrm{hp} / \mathrm{hr}$
Diesels:

$$
\begin{aligned}
\mathrm{SFC}_{c}= & \text { FM4 }\left[0.859-0.247 \log \mathrm{P}_{\mathrm{a}}\right. \\
& \left.+0.0309\left(\log \mathrm{P}_{\mathrm{a}}\right)^{2}\right]
\end{aligned}
$$

Gas Turbines: $\quad \mathrm{SFC}_{\mathrm{c}}=\mathrm{FM} 4\left[1.565-0.488 \log \mathrm{P}_{\mathrm{a}}\right.$ $\left.+0.0501\left(\log P_{a}\right)^{2}\right]$
SFC_{c} from general equations may be superseded by value of FSFCC input on Card•15.
FR_{d}
$=$ total fuel rate in $1 \mathrm{~b} / \mathrm{hr}$ at design speed
$=\operatorname{SFC} \times \mathrm{P}$ $=S E C_{d} \times P_{d}$
$\mathrm{FR}_{\mathrm{c}} \quad=$ total fuel rate at cruise speed in $1 \mathrm{~b} / \mathrm{hr}$ $=S F C_{c} \times P_{c}$
$H_{c} \quad=\begin{gathered}\text { operating time for } \\ \text { hours }\end{gathered}$ hours
$=$ Range $_{c} / V_{c}$
$H_{d} \quad=$ operating time for design speed range in hours
$=$ Range $_{\mathrm{d}} / \mathrm{V}_{\mathrm{d}}$
$W_{c} \quad=\quad$ fuel required for cruise speed range in $=H_{c} \times \mathrm{FR}_{\mathrm{c}} / 0.95 / 2240$
$W_{f_{d}} \quad=\frac{\text { fuel }}{} \quad$ tons \quad required for design speed range in
$=H_{d} \times \mathrm{FR}_{\mathrm{d}} / 0.95 / 2240$
$\begin{aligned} W_{f} \quad & =\text { weight of fuel in tons } \\ & =W_{f_{c}} \text { or } W_{f} \text {, whichever is greater }\end{aligned}$ Range ${ }_{c}$ or Range ${ }_{d}$ is recalculated based on the dominating fuel weight W_{f}.
$\mathrm{W}_{\mathrm{ft}} \quad=$ weight of fuel tanks in tons If $I F T=0$, then $W_{f t}=0$, since fuel tanks, are included with the hull structures.
If $\operatorname{IFT}=1$, then $W_{f t}=0.15 W_{f}$, for separate fuel tanks ($1.0 \mathrm{lb} /$ gallon of fuel)

NAME:
PURPOSE:

CALLING SEQUENCE:
INPUT:
FKW

W
hMB

HDM
PL
BPA
VOLT

OUTPUT:
PKW
W3 (2)

23(2)

W3(3)

23(3)

W3 (4)
$23(4)$
W3 (5)

23(5)

SUBROUTINE ELECPL

Calculate weights, volumes, and VCG's of the major components of the electric plant, Group 3
CALL ELECPL
Via COMMON blocks
$\begin{aligned} \mathrm{KW}= & \text { electric power in kilowatts, optional input } \\ & \text { on Card } 11\end{aligned}$
$\mathrm{W}=$ total ship weight in tons $=\Delta_{L T}$, from PHFMOPT
$H_{m b}=\begin{gathered}\text { height } \\ \text { NEWVOL }\end{gathered}$
$H_{h}=$ hull depth at midships in ft, from PHFMOPT
$\mathrm{L}_{\mathrm{P}}=\operatorname{ship}_{\text {Card } 29}$ projected chine length in ft , from input
$B_{P A}=\underset{\text { NEWHUL }}{ } \begin{aligned} & \text { average chine beam in ft, from Subroutine }\end{aligned}$
$\nabla_{\mathrm{T}}=$ total enclosed volume, including superstructure, in $f t^{3}$, from Subroutine NEWVOL
Via COMMON blocks
$\mathrm{KW}=$ ejectric power in kilowatts $=4.29 \times \mathrm{W}^{0.79}$ or value of FKW input on Card 11
$\begin{aligned} W_{300} & =\text { weight of electric power generation in tons }\end{aligned}$ $=0.352+0.0408 \mathrm{KW}$ if $\mathrm{KW} \leq 40$ $=1.8+0.0046 \mathrm{KW} \quad$ if $\mathrm{KW}>40$
$\begin{aligned} Z_{300} & =\text { VCG of electric power generation } / \text { hull depth } \\ & =(2.0+0.63 \mathrm{H})\end{aligned}$
$W_{301}=\underset{\text { tons }}{\text { weight }}$ of power distribution switchboard in $=0.0033 \mathrm{KW}$
$z_{301}=\begin{gathered}\text { VCG of power distribution switchboard } \\ \text { depth }\end{gathered}$ hull $=0.786 \mathrm{H}_{\mathrm{mb}} / \mathrm{H}_{\mathrm{h}}$
$\begin{aligned} \mathrm{W}_{302} & =\text { weight of power distribution system cables }\end{aligned}$ $=0.000085 \nabla_{\mathrm{T}}$
$Z_{302}=$ VCG of power cables $/$ hull depth $=0.699$
$W_{303}=$ weight of lighting system in tons $=0.0000265 \mathrm{~L}_{\mathrm{P}} \times \mathrm{B}_{\mathrm{PA}} \times \mathrm{H}_{\mathrm{h}}$
$Z_{303}=$ VCG of lighting system $/$ hull depth $=1.383$ No volume is added for electric plant assumed to be included in volume of main engine room.
Subscripts are BSCI 3-digit code

SUBROUTINE COMCON

Calculate weights, volumes, and VCG's of the nonmilitary components of communication and control, Group 4

CALIIIG SEQUENCE:
INPUT:
VOLT

PL

BPA

HDM
ZPC

OUTPUT:
W4 (2)

24(2)

V4(2)

W4 (3)

24(3)

V4 (3)

CALL COMCON
Via COMMON blocks
$\nabla_{\mathrm{T}} \quad=$ total enclosed volume, including superstructure, in ft^{3}, from Subroutine NEWBOL
$L_{p}=$ ship projected chine length in ft, from input Card 29
$B_{P A}=$ average chine beam in $f t$, from Subroutine NEWHUL
$\mathrm{H}_{\mathrm{h}} \quad=$ hull depth at midships in ft , from PHFMOPT
$Z_{P C}=\begin{aligned} & \text { centroid of profile above baseline } / \text { hull } \\ & \text { depth, from Subroutine NEWVOL }\end{aligned}$ depth, from Subroutine NEWVOL

Via COMMON blocks
$\begin{aligned} & W_{400}=\text { weight of non-electronic navigation equipment } \\ & \text { in tons }\end{aligned}$ $=0.0000035 \nabla_{T}$
$\begin{aligned} Z_{400} & =\text { VCG of navigation equipment } / \text { hull depth } \\ & =2.18 \mathrm{Z}_{\text {PC }}\end{aligned}$
$\begin{aligned} \nabla_{400} & =\text { volume of navigation equipment in } \mathrm{ft}^{3} \\ & =0.10 \nabla^{3}\end{aligned}$
$=0.10{ }^{7}$
$W_{401}=\underset{\substack{\text { weight } \\ \text { tons }}}{\text { of interior communication system in }}$
$=0.0000465 \mathrm{~L}_{\mathrm{P}} \mathrm{B}_{\mathrm{PA}} \mathrm{H}_{\mathrm{h}}$
$Z_{401}=$ VCG of communication system $/$ hull depth
$=0.786$
$\begin{aligned} \nabla_{401} & =\text { volume of communication system in } \mathrm{ft}^{3} \\ & =0.0036 \nabla\end{aligned}$
Remainder of communication and control is considered part of the payload.

NAME:

PURPOSE:

CALLING SEQUENCE:
INPUT:
VOLT
PL
BPA

HMB

HM H
$\mathrm{H} \quad=\underset{\text { NEWHUL }}{\text { draft }}$ at midships in ft, from Subroutine
DMULT

ZPC

ACC

DAYS
WF
w
OUTPUT:
A. GENERAL NOTATION
W denotes weight in long tons
Z denotes VCG / hull depth
∇ denotes volume in ft^{3}
Subscript is BSCI 3-digit code
B. HEATING AND AIR-CONDITIONING SYSTEMS

25(2)

$$
\begin{align*}
\mathrm{W}_{500,502} & =0.000036 \nabla_{\mathrm{T}} \tag{2}\\
\mathrm{z}_{500,502} & =1.271 \mathrm{Z}_{\mathrm{PC}}
\end{align*}
$$

C. VENTILATION SYSTEM

W5 (3)

$$
W_{501} \quad=0.000025 \nabla_{T}
$$

$25(3)$
$V 5(3)$
$\begin{array}{ll}Z_{501} & =1.528 Z_{P C} \\ \nabla_{501} & =0.03 \nabla_{T}\end{array}$
D. REFRIGERATING SPACES

$\mathrm{W} 5(4)$	W_{503}	$=\mathrm{M}_{\Delta}(0.26+0.0113 \mathrm{acc})$
$\mathrm{Z5}(4)$	Z_{503}	$=0.465$
$\mathrm{~V} 5(4)$	∇_{503}	$=0.69 \mathrm{acc} \times$ days

E. PLUMBING INSTALLATIONS

$\mathrm{W} 5(5)$	W_{505}	$=0.0267 \mathrm{acc}$
$\mathrm{Z} 5(5)$	Z_{505}	$=1.29 \mathrm{Z}_{\mathrm{PC}}$
$\mathrm{V} 5(5)$	∇_{505}	$=26.4 \mathrm{acc}+100.0$

F. FIREMAIN, FLUSHING, SPRINKLING

$\mathrm{W} 5(6)$	W_{506}	$=0.00004 \nabla_{\mathrm{T}}$
Z5 (6)	Z_{506}	$=0.6689$

G. FIRE EXTINGUISHING SYSTEM

$\mathrm{W} 5(7)$	W_{507}	$=0.0000131 \nabla_{\mathrm{T}}$
$\mathrm{Z} 5(7)$	Z_{507}	$=0.750$

H. DRAINAGE AND BALLAST

$\mathrm{W} 5(8)$	W_{508}	$=0.0000194 \nabla_{\mathrm{T}}$
$\mathrm{Z} 5(8)$	Z_{508}	$=0.292$
$\mathrm{~V} 5(8)$	∇_{508}	$=0.00438 \quad \nabla_{\mathrm{T}}$

I. FRESH WATER SYSTEM

$\mathrm{W} 5(9)$	W_{509}	$=0.023 \mathrm{acc}$
$\mathrm{Z} 5(9)$	Z_{509}	$=1.005 \mathrm{Z}_{\mathrm{PC}}$

J. SCUPPERS AND DECK DRAINS

$W 5(10)$	W_{510}	$=0.00000333 \nabla_{\mathrm{T}}$
$\mathrm{Z} 5(10)$		

K. FUEL AND DIESEL OIL FILLING

$W 5(11)$	W_{511}	$=0.0003 W_{F}$.
$25(11)$	Z_{511}	$=0.418$

L. COMPRESSED AIR SYSTEM

$W 5(12)$	W_{513}	$=0.0$
$Z 5(12)$	Z_{513}	$=0.0$

M. DISTILLING PLANT

W5 (13)	W_{517}	$=0.000848(15 \mathrm{acc})^{1.021}$
Z5(13)	Z_{517}	$=0.540$
V5 (13)	∇_{517}	$=H_{\mathrm{mb}}[160.0+0.0031(15 \mathrm{acc})]$

N. STEERING SYSTEMS

W5 (14)	W_{518}	$=0.001205 \mathrm{H} \mathrm{L}_{\mathrm{P}}$
25 (14)	Z_{518}	$=0.656$
V5 (14)	∇_{518}	$=0.2176 \mathrm{~B}_{\text {PA }} \mathrm{L}_{\mathrm{P}}$

0. RUDDERS
W5 (15)

Z5 (15) \quad| W_{519} | $=0.00313 \mathrm{H} \mathrm{L}_{\mathrm{P}}$ |
| :--- | :--- |

P. MOORING; TOWING, ANCHOR, DECK MACHINERY
W5 (16)
25(16)
V5(16)

$$
\begin{aligned}
W_{520} & =0.00002 \nabla_{\mathrm{T}} \\
\mathrm{z}_{520} & =0.702 \\
\nabla_{520} & =0.5 \mathrm{~W}
\end{aligned}
$$

V5(16)
Q. STORES HANDLING
W5 (17)
25(17)
V5(17)

$$
\begin{aligned}
\mathrm{W}_{521} & =0.00000865 \nabla_{\mathrm{T}} \\
\mathrm{Z}_{521} & =1.0 \\
\nabla_{521} & =0.00088 \nabla_{\mathrm{T}}
\end{aligned}
$$

R. REPLENISHMENT AT SEA

W5 (18)
Z5 (18)

$$
=0.0000025 \nabla_{\mathrm{T}}
$$

$$
=0.807
$$

V5 (18)

$$
\begin{aligned}
& W_{528} \\
& z_{528} \\
& \nabla_{528}
\end{aligned}
$$

$$
=0.00168 \nabla_{\mathrm{T}}
$$

S. REPAIR PARTS

W5 (19)

$$
\begin{aligned}
\mathrm{W}_{550}= & 0.0053\left(\mathrm{~W}_{500,502}+\mathrm{W}_{501}+\mathrm{W}_{503}+\mathrm{W}_{505}+\mathrm{W}_{506}+\mathrm{W}_{507}\right. \\
& \left.+\mathrm{W}_{509}+\mathrm{W}_{513}+\mathrm{W}_{517}+\mathrm{W}_{518}+\mathrm{W}_{520}\right)
\end{aligned}
$$

25(19)
V5 (19)
T. operating fliids W5 (20)
Z5 (20)
$z_{550}=0.5335$
$\nabla_{550}=0.004 \nabla_{T}$
$\mathrm{W}_{551}=0.04$ (Sum of all preceding Group 5 weights)
$\mathrm{Z}_{551}=0.9039$
Volumes of items not specified are assumed to either be negligible or included in the machinery box.
Weights and volumes from these general equations for the auxiliary systems may be changed or eliminated by appropriate multipliers (K-factors) input on Cards 22 and 23. The multiplications are performed in Subroutine TOTALS together with the sumation of all Group 5 weights.

NAME:
PURPOSE:

CALLING SEQUENCE:
INPUT:

VOLT	∇_{T}
VPR	$\nabla_{\text {Pr }}$
VF	∇_{F}
PL	L_{P}
BPA	$B_{P A}$
DMULT	M_{Δ}

ZPC $\quad \mathrm{Z}_{\mathrm{PC}}$
ACC acc

CREW crew

CPO
OFF
OUTPUT:
A. GENERAL NOTATION
W denotes weight in long tons
2 denotes VCG / hull depth
∇ denotes volume in ft^{3}
Subscript is BSCI 3-digit code
B. HULL FITTINGS

$\mathrm{W} 6(2)$	W_{600}	$=0.00034 \mathrm{~L}_{\mathrm{P}} \mathrm{B}_{\mathrm{PA}}$
$\mathrm{Z6}(2)$	Z_{600}	$=1.064$

C. BOATS, STOWAGES, AND HANDLING

$\mathrm{W} 6(3)$	W_{601}	$=0.02232 \mathrm{acc}$
$\mathrm{Z} 6(3)$	Z_{601}	$=1.248$

D. RIGGING AND CANVAS

$\mathrm{W} 6(4)$	W_{602}	$=0.005$ (sum of all Group 6 weights)
Z6(4)	Z_{602}	$=2.15 \mathrm{Z}_{\mathrm{PC}}$

E. Ladders and grating
w6 (5)
Z6(5)
W_{603}
$=0.000032 \mathrm{M}_{\Delta}\left(3 \nabla_{\mathrm{pr}}+\nabla_{\mathrm{T}}\right)$
Z_{603}
$=0.469$
v6(5)
∇_{603}
$=0.10 M_{\Delta}\left(\nabla_{T}-\nabla_{p r}-\nabla_{F}\right)$
F. NONSTRUCTURAL BULKHEADS AND DOORS
W6 (6)
26(6)
W_{604}
Z_{604}
$=0.0000209 \mathrm{M}_{\Delta} \nabla_{T}$

$$
\begin{aligned}
\mathrm{W}_{605} & =0.00003348 \mathrm{~V}_{\mathrm{T}} \\
\mathrm{Z}_{605} & =0.958 \mathrm{Z}_{\mathrm{PC}}
\end{aligned}
$$

W6 (7)
26(7)
H. DECK COVERING

W6 (3)
26(8)

$$
\begin{aligned}
\mathrm{W}_{606} & =0.0000368 \nabla_{\mathrm{T}} \\
\mathrm{Z}_{606} & =1.331 \mathrm{Z}_{\mathrm{PC}}
\end{aligned}
$$

I. hULL INSULATION

$\mathrm{W} 6(9)$	W_{607}	$=0.00022 \nabla_{\mathrm{T}}$
$\mathrm{z6}(9)$	Z_{607}	$=1.271 \mathrm{z}_{\mathrm{PC}}$

J. STOREROOMS, STOWAGE, AND LOCKERS

W6 (10)	W_{608}	$=0.0688 \mathrm{acc}$
$26(10)$	Z_{608}	$=0.633$
V6(10)	∇_{608}	$=1.125 \mathrm{acc}$

K. EQUIPMENT FOR UTILITY SPACES

W6(11)	W_{609}	$=0.01 \mathrm{acc}$
Z6(11)	Z_{609}	$=0.728$
V6(11)	∇_{609}	$=0.552 \mathrm{acc}$

L. EQUIPMENT FOR WORKSHOPS

W6(12)

$$
\begin{aligned}
& W_{610}=2.0+0.000005 \nabla_{\mathrm{T}}, \\
&=0.00001165 \nabla_{\mathrm{T}}, \text { if } \nabla_{\mathrm{T}} \geq 300,000 \\
&<300,000
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{z}_{610}=1.207 \mathrm{z}_{\mathrm{PC}} \\
& \nabla_{610}=8.0\left(100.0+0.00025 \nabla_{\mathrm{T}}\right), \\
&=8.0\left(0.000585 \nabla_{\mathrm{T}}\right) \quad, \text { if } \nabla_{\mathrm{T}} \geq 300,000 \\
& \nabla_{\mathrm{T}}<300,000
\end{aligned}
$$

M. GALLEY, PANTRY, SCULLERY, COMMISSARY

W6(13)	W_{611}	$=0.01833 \mathrm{acc}$
26(13)	Z_{611}	$=1.45 \mathrm{Z}_{\mathrm{PC}}$
$\mathrm{V} 6(13)$	∇_{611}	$=29.6 \mathrm{acc}$

N. LIVING SPACES

W6(14)
$\begin{aligned} \mathrm{W}_{612}= & 0.03693 \text { (Crew }+1.55 \text { CPO's }+4.35 \text { officers) } \\ & +0.00529 \text { (Crew }+4.17 \text { CPO's }+6.36\end{aligned}$ +0.00529 (Crew +4.17 CPO's +6.36
26(14)
V6(14)

$$
\begin{aligned}
& z_{612} \\
& \nabla_{612}
\end{aligned}
$$

$$
=1.32 \mathrm{Z}_{\mathrm{PC}}
$$

$$
=8.0[19.8 \text { (Crew }+1.55 \text { CPO's }+2.75
$$

$$
\text { officers) }+140.0+4.46 \text { (Crew }+3.36 \text { CPO's }
$$

$$
+4.68 \text { officers)] }
$$

0. OFFICERS, CONTROL CENTER

$\mathrm{W} 6(15)$	W_{613}	$=0.02 \mathrm{acc}$
$\mathrm{Z6}(15)$	Z_{613}	$=1.538 \mathrm{Z}_{\mathrm{FC}}$
$\mathrm{V} 6(15)$	∇_{613}	$=149.3 \mathrm{~W}_{613}$

P. MEDICAL - DENTAL SPACES

W6(16)
26(16)
v6(16)

$$
\begin{array}{ll}
\mathrm{W}_{614} & =0.0035 \mathrm{acc} \\
\mathrm{Z}_{614} & =1.38 \mathrm{Z}_{\mathrm{PC}} \\
\nabla_{614} & =149.3 \mathrm{~W}_{614} \\
\text { Volumes of items not specified are assumed to be } \\
\text { neg1igible. }
\end{array}
$$

Weights and volumes from these general equations for the outfit and furnishings will be multiplied by appropriate K-factors input on Cards 24 and 25. These multiplications and summations of all Group 6 weights are performed in Subroutine TOTALS.

NAME:
PURPOSE:

CALLING SEQUENCE:
INPUT:
WF

HDM
ACC

DAYS
XL array
OUTPUT:
WL (2)
ZL(2)

VL(2)
WL(3)

2L(3)
VL (3)
WL (4)

2L(4)
VL(4)

WL (5)

2L(5)

SUBROUTINE LOADS
Calculate weights, volumes, and VCG's of the fuel load, crew and effects, personnel stores, and potable water
CALL LOADS
Via COMMON blocks
$W_{F}=$ weight of fuel in tons to meet range requirement(s), from Subroutine POWER
$H_{h}=$ hull depth at midships in ft, from PHFMOPT
acc $=$ total accommodations, from Card 10 or Subroutine CREWSS
days $=$ number of days for provisions, from Card 10
K-factors for the loads, from card 16
Via COMMON blocks
$W_{F} \quad=$ weight of fuel in tons
$Z_{F}=$ VCG of fuel / hull depth, see Figure 2
$Z_{F}=$ centroid of midship section $C_{S_{m}} / H_{h}$ if $H_{h} \leq 10.0$
$\mathrm{Z}_{\mathrm{F}}=\left(\mathrm{H}_{\mathrm{h}}-8.0\right) / \mathrm{H}_{\mathrm{h}}$ if $10.0<\mathrm{H}_{\mathrm{h}} \leq 20.0$
$Z_{F}=\left(H_{h}-16.0\right) / H_{h}$ if $H_{h}>20.0$
$\nabla_{\mathrm{F}}=$ volume of fuel in $\mathrm{ft}^{3}=42.96 \times \mathrm{W}_{\mathrm{F}} \times 1.05$
$\begin{aligned} W_{L 1} & =\text { weight of crew and personnel effects in tons } \\ & =0.120 \times \mathrm{acc}\end{aligned}$
$Z_{\text {L1 }}=$ VCG of crew and effects $/$ hull depth $=0.732$
$\nabla_{\mathrm{L} 1}=$ volume of crew and effects in ft^{3}
$=0.344 \times \mathrm{acc}$
$W_{\text {L6 }}=$ weight of personnel stores in tons $=0.00284 \times$ acc \times days
$Z_{\text {L6 }}=$ VCG of personnel stores $/$ hull depth $=0.536$
$\nabla_{\text {L6 }}=$ volume of personnel stores in ft^{3}
$=(1.05 \times$ acc \times days $)+\left(0.265 \times\right.$ acc $^{1 / 2} \times$ days $)$
$+\left(4.38 \times\right.$ acc $^{1 / 2}{ }^{1}$ days $\left.^{1 / 2}\right)+(0.4 \times$ days $)+8.0$
$W_{\text {L12 }}=$ weight of potable water in tons
$=0.1485 \times$ acc \quad (40 gal per man)
$Z_{\text {L12 }}=$ VCG of potable water $/$ hull depth $=0.138$
$\nabla_{\mathrm{L} 12}=$ volume of potable water in $\mathrm{ft}^{3}=5.35 \times \mathrm{acc}$ Weights and volumes of loads from the preceding general equations are multiplied by appropriate $K-$ factors input on Card 16. Normally the K values are 1.0. VCG's are not affected by the multipliers.
$W_{C E}=$ total weight of crew and provisions in tons $=W_{L 1}+W_{L 6}+W_{L 12}$
$Z_{C E}=$ net VCG of crew and provisions / hull depth $=\left(W_{L 1} Z_{L 1}+W_{L 6} Z_{L 6}+W_{L 12} Z_{L 12}\right) /$
$\left(W_{L 1}+W_{L 6}+W_{L I 2}\right)$
$\begin{aligned} \nabla_{C E} & =\text { volume of crew and provision in } \mathrm{ft}^{s} \\ & =\nabla_{\mathrm{L}}+\nabla_{\mathrm{L}}+\nabla_{\mathrm{L}}\end{aligned}$

NAME:
PURPOSE:

CALLING SEQUENCE: INPUT:
W
VOLT
KG
HDM
HMB
ZPC
ZSS
VOLSS
W1 array
Z1 array
V1 array
W2 array
Z2 array
V2 array
W3 array
Z3 array
V3 array
W4 array
Z4 array
V4 array
W5 array
Z5 array
V5 array

SUBROUTINE TOTALS

Calculate remaining weights for Groups 1 through 6 and apply multipliers from input Cards 17 through 25. Calculate margins and totals for each weight group. Calculate weight, volume, and VCG of the resultant useful load and the payload.
CALL totals
Via COMMON blocks
W_{T}
$=$ total ship weight, full load, in tons $=$ $\Delta_{\text {LT }}$ from PHFMOPT
∇_{T} $=$ total volume of ship, including superstructure, in ft^{3}, from Subroutine NEWVOL
$\overline{K G}$
$=$ net VCG of ship in ft, from Subroutine NEWHUL
H_{h}
H_{mb}
= hull depth at midships in ft, from PHFMOPT
$=$ height of machinery box in ft, from Subroutine NEWVOL
$z_{\text {PC }} \quad=$ centroid of hull profile above baseline $/$ H_{h}, from Subroutine NEWVOL
Z_{ss}
$\nabla_{\text {ss }}$
$=\begin{aligned} & \text { VCG of superstructure } / H_{h} \text {, from Subroutine } \\ & \text { NEW/OL }\end{aligned}$
$=$ volume enclosed by superstructure in ft^{3},
from input Card 10 or Subroutine CREWSS
$\left.\begin{array}{l}\text { Weight in tons } \\ \text { VCG's / hull depth }\end{array}\right\}$ Structural components, Group 1, Volumes in $\mathrm{ft}^{3} \quad$ from Subroutine STRUCT

Weight in tons VCG's / hull depth Propulsion components, Group 2, Volumes in ft^{3} from Subroutine POWER
Weight in tons
VCG's / hull depth Electric plant components, Volumes in ft^{3} Group 3, from Subroutine ELECPL

Weight in tons
VCG's / hull depth Non-military communication and VCG's / hull depth $\begin{aligned} & \text { Nontrol components, Group } 4\end{aligned}$
Volumes in $\mathrm{ft}^{3} \quad$ from Subroutine COMCON
Weight in tons
VCG's / hull depth Auxiliary systems, Group 5, Volumes in ft^{3}. from Subroutine AUXIL

```
\(\left.\begin{array}{ll}\text { array } & \begin{array}{l}\text { Weight in tons } \\ \text { array } \\ \text { array }\end{array} \\ \text { VCG's } / \text { hull depth } \\ \text { Volumes in } \mathrm{ft}^{3}\end{array}\right\} \begin{aligned} & \text { Outfit and furnishings, Group 6, } \\ & \text { from Subroutine OUTFIT }\end{aligned}\)
array
array
array
array
array
array
array
WF
ZF
VF
WCE
ZCE
VCE
Group 1
Group 3 from input Cards 17 through 25. Weight
Group 4 and. volumes from the general equations
Group 5 will be multiplied by the corresponding
Group 6 K-factor
Weight in tons
\(\left.\begin{array}{l}\text { VCG's / hull depth } \\ \text { Volume in } \mathrm{ft}^{3}\end{array}\right\}\) fuel load, from Subroutine LOADS
Weight in tons total of crew and effects,
VCG's / hull depth personnei stores, and potable
Volume in \(\mathrm{ft}^{3} \quad\) water from Subroutine LOADS
Via COMMON blocks
A. PROPULSION--Group 2
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \mathrm{Z2(2)} \\
& \text { etc. }
\end{aligned}
\] & \[
\begin{aligned}
z_{201} & =z_{206}=z_{209}=z_{210}=z_{211}=z_{250,251} \\
& =\text { vCG of machinery box } / \text { hull depth }=0
\end{aligned}
\] \\
\hline 22(3) & \[
\begin{aligned}
z_{203}= & \text { VCG of shafting, bearings, and propellers } / \\
& \text { hull depth } \\
= & 0.0, \text { propellers assumed at baseline, if } \\
& \text { IPROP }<3
\end{aligned}
\] \\
\hline L & \begin{tabular}{l}
\(=\) VCG of waterjets \(/ H_{h}\), if IPROP \(=3\) \\
Index for DO LOOP \(L=2,9\)
\end{tabular} \\
\hline W2 (L) & Weights in tons of propulsion components from general equations in Subroutine POWER multiplied by corresponding K -factors from input Card 19 \\
\hline 22 (L) & VCG's / hull depth of propulsion components from general equations. Not affected by K-factors \\
\hline V2 (L) & Volumes in \(\mathrm{ft}^{3}\) of propulsion components from general equations multiplied by corresponding K -factors \\
\hline W2 (10) & ```
W
    = (K}\mp@subsup{2}{2}{-1.0) (sum of weights of propulsion
        components)
``` \\
\hline Z2 (10) & \[
\begin{aligned}
Z_{2 \mathrm{~m}} & =\text { VCG of margin } / \text { hull depth } \\
& =\text { net VCG ratio of all propulsion components }
\end{aligned}
\] \\
\hline V2(10) & \(\nabla_{2 m}=\) volume margin for propulsion \(=0.0\) \\
\hline
\end{tabular}
```

$\begin{aligned} & W_{2}=\text { total weight of propulsion, including margin, } \\ & \text { in tons }\end{aligned}$ $z_{2}=$ net VCG of propulsion / hull depth $\nabla_{2}=$ total volume of propulsion in $\mathrm{ft}^{3}$
B. ELECTRIC PLANT--Group 3

L
$\left.\begin{array}{l}\text { W3(L) } \\ \text { Z3(L) } \\ \text { V3(L) }\end{array}\right\}$
W3 (6)

23(6)

V3(6)
W3(1)

23(1)
V3(1)
C. COMMUNICATION AND CONTROL--Group 4 (Non-military)

Index for $D O$ LOOP $L=2,5$

Card 20
$\mathrm{W}_{3 \mathrm{~m}}=$ weight margin for electric plant in tors components)
$Z_{3 m}=$ VCG of margin / hull depth $=$ net of all components
$W_{3}=$ total weight of electric plant, including margin in tons
$Z_{3}=$ net VCG of electric plant / hull depth
$\nabla_{3}=$ total volume of electric plant in $\mathrm{ft}^{3}$

L	Index for DO LOOP L = 2,3
W4 (L)	Weight in tons, VCG's / hull depth, volumes in $\mathrm{ft}^{3}$
24(L)	of non-military communication and control components.
V4(L)	Weights and volumes multiplied by K -factors from Card 21
W4 (4)	$\begin{aligned} \mathrm{W}_{4 \mathrm{~m}}= & \text { weight margin in tons } \\ = & \left(\mathrm{K}_{4}-1.0\right) \text { (Sum of non-military weight } \\ & \text { components) } \end{aligned}$
24(4)	$\mathrm{Z}_{4 \mathrm{~m}}=$ VCG of margin $/$ hull depth $=$ net of components
V4(4)	$\nabla_{4 \mathrm{~m}}=$ volume margin $=0.0$
W4 (1)	$\mathrm{W}_{4}=$ total weight of non-military communication and control, including margin in tons
24(1)	$\mathrm{Z}_{4}=$ net VCG / hull depth
V4 (1)	$\nabla_{4}=$ total volume in $\mathrm{ft}^{3}$

W4 (4)

L	Index for DO LOOP L = 2,3
W4 (L)	Weight in tons, VCG's / hull depth, volumes in $\mathrm{ft}^{3}$
24(L)	of non-military communication and control components.
V4(L)	Weights and volumes multiplied by K -factors from Card 21
W4 (4)	$\begin{aligned} \mathrm{W}_{4 \mathrm{~m}}= & \text { weight margin in tons } \\ = & \left(\mathrm{K}_{4}-1.0\right) \text { (Sum of non-military weight } \\ & \text { components) } \end{aligned}$
24(4)	$\mathrm{Z}_{4 \mathrm{~m}}=$ VCG of margin $/$ hull depth $=$ net of components
V4(4)	$\nabla_{4 \mathrm{~m}}=$ volume margin $=0.0$
W4 (1)	$\mathrm{W}_{4}=$ total weight of non-military communication and control, including margin in tons
24(1)	$\mathrm{Z}_{4}=$ net VCG / hull depth
V4 (1)	$\nabla_{4}=$ total volume in $\mathrm{ft}^{3}$

V4(4)
W4 (1)
24 (1)
V4(1)
Weight in tons, VCG's / hull depth, volumes in $\mathrm{ft}^{3}$ of electric plant components. Weights and volumes
from general equations multiplied by K -factors from $=\left(K_{3}-1.0\right)$ (Sum of weights of electric plant
$\nabla_{3 \mathrm{~m}}=$ volume margin for electric plant in $\mathrm{ft}^{3}=0.0$
D. AUXILIARY SYSTEMS--Group 5

L Index for DO LOOP $L=2,20$
$\left.\begin{array}{l}\text { W5(L) } \\ \text { Z5(L) } \\ \text { V5(L) }\end{array}\right\} \quad \begin{aligned} & \text { Weight in tons, VCG's / hull depth, volumes in } f t^{3} \\ & \text { of auxiliary systems. Weights and volumes from } \\ & \text { general equations multiplied by K-factors from } \\ & \text { Cards } 22 \text { and } 23\end{aligned}$
$\begin{aligned} & \mathrm{W}_{55}=\text { weight margin in tons }\end{aligned}$
Z5(21)
v5(21)

W5 (1)
$25(1)$
V5(1)
$\nabla_{5 \mathrm{~m}}=$ volume margin in $\mathrm{ft}^{3}$
$=0.06$ (Sum of all auxiliary system volumes)
$\begin{aligned} \mathrm{W}_{5} & =\begin{array}{c}\text { total weight of auxiliary systems, including } \\ \\ \text { margin, in tons }\end{array}\end{aligned}$
$Z_{5}=$ net VCG of auxiliary systems / hull depth
$\begin{aligned} \nabla_{5}= & \text { total volume of auxiliary system, including } \\ & \text { margin, in } \mathrm{ft}^{3}\end{aligned}$
E. OUTFIT AND FURNISHINGS--Group 6

L Index for DO LOOP $\mathrm{L}=2,16$
$\left.\begin{array}{l}\left.\begin{array}{l}\text { W6(L) } \\ \text { Z6(L) } \\ \text { V6(L) }\end{array}\right\} \\ \text { W6(17) }\end{array}\right\}$

26(17)
v6(17)
W6(1)
26(1)
V6(1)

Weight in tons, VCG's / hull depth, volumes in $\mathrm{ft}^{3}$ of outfit and furnishings. Weight and volumes multiplied by K-factors from Cards 24 and 25
$W_{6 m}=$ weight margin in tons
$=\left(K_{6}-1.0\right)$ (Sum of all outfit and furnishings weight)
$\mathrm{Z}_{6 \mathrm{~m}}=$ VCG of margin / hull depth $=$ net of components
$\nabla_{6 m}=$ volume margin in $\mathrm{ft}^{3}$
$=0.06$ (Sum of all outfit and furnishings volume)
$\begin{aligned} W_{6}= & \text { total weight of outfit and furnishings, includ- } \\ & \text { ing margin, in tons }\end{aligned}$
$z_{6}=$ net VCG of outfit and furnishings / hull depth
$\nabla_{6}=$ total volume of outfit and furnishings, including margin, in $\mathrm{ft}^{3}$
F. STRUCTURES--Group I

W1 (10)
21(10)
V1(10)
WI (11)

21(11)
v1(11)

W1 (12)

21(12)
V1(12)
W1 (13)

21(13)

V1(13)
$W_{111}=$ Weight of superstructure in tons $=\nabla_{\text {ss }} / 2240$
$Z_{111}=$ VCG of superstructure $/$ hull depth $=Z_{\text {ss }}$
$\nabla_{111}=$ volume of structural materials for superstructure, assumed negligible
$\begin{aligned} \mathrm{W}_{112}= & \text { weight of foundations for propulsion plant in } \\ & \text { tons, Figure } 7\end{aligned}$
Aluminum Hull $\} \begin{aligned} & \mathrm{W}_{112}=0.04911 \mathrm{~W}_{2},\end{aligned} \quad, \begin{aligned} & \text { if } W_{2} \leq 10.0 \\ & \mathrm{~W}_{112}=0.1785+0.03125 \mathrm{~W}_{2}, \\ & \text { if } W_{2}>10.0\end{aligned}$
Steel or GRP $\left\{\begin{array}{l}W_{112}=0.06371 W_{2},\end{array} \quad\right.$ if $W_{2} \leq 5.5$
$Z_{112}=$ VCG of propulsion plant foundation / hull depth $=0.15$
$\nabla_{112}=$ volume of propulsion foundations, assumed negligible
$W_{113}=\begin{aligned} & \text { weight of foundations for auxiliary and other } \\ & \text { equipment in tons, Figure } 8\end{aligned}$ Aluminum hull: $W_{113}=0.03884 W_{A} \quad\left(W_{A}=W_{3}+W_{5}+W_{6}\right)$
$\left.\begin{array}{ll}\text { Steel or } \\ \operatorname{GRP} \text { hull }\end{array}\right\} \begin{array}{ll}W_{113}=0.05179 W_{A}, & \text { if } W_{A} \leq 10.0 \\ W_{113}=0.1295+0.03884 W_{A}, & \text { if } W_{A}>10.0\end{array}$
$Z_{113}=$ VCG of other foundations $/$ hull depth $=0.78$
$\nabla_{113}=$ volume of other foundations, assumed negligible
$W_{\text {att }}=$ weight of attachments in tons
Aluminum or Steel: $W_{a t t}=0.05 \times$ total structures
GRP hulls: $\quad W_{a t+}=0.02 \times$ total structures
$z_{\text {att }}=$ VCG of attachment $/$ hull depth
att $=$ net of other components
$\nabla_{a t t}=$ volume of attachments, assumed negligible
The attachments, which encompass several BSCI codes, are arbitrarily designated 198 in this program.

L
$\left.\begin{array}{l}\text { W1 (L) } \\ \text { Z1(L) } \\ \text { V1(L) }\end{array}\right\}$
W1 (14)

21(14)
V1(14)
W1 (1)

21(1)
V1(1)
G. EMPTY SHIP

WE1

ZEI

VE1

$$
\begin{aligned}
& W_{E}= \text { weight of empty ship, less fixed payload items, } \\
& \text { in tons } \\
&= W_{1}+W_{2}+W_{3}+W_{4}+W_{5}+W_{6} \\
& Z_{E}= \text { VCG of empty ship } / \text { hull depth } \\
&=\left(W_{1} Z_{1}+W_{2} Z_{2}+W_{3} Z_{3}+W_{4} z_{4}+W_{5} Z_{5}+W_{6} Z_{6}\right) / W_{E} \\
& \nabla_{E}= \text { volume of empty ship in } f t^{3} \\
& \nabla_{1}+\nabla_{2}+\nabla_{3}+\nabla_{4}+\nabla_{5}+\nabla_{6}
\end{aligned}
$$

H. MOMENTS

ZKG

WZKG
WZE1 $\quad W_{E} Z_{E}=$ empty ship weight moment
I. USEFUL LOADS

WU $=$
WL (1)
Index for DO LOOP $\mathrm{L}=2,13$
Weight in tons, VCG's / hull depth, volumes in $\mathrm{ft}^{3}$ of structural components. Weights and volumes from general equations multiplied by K -factors from Cards 17 and 18

$$
\begin{aligned}
\mathrm{W}_{1 \mathrm{~m}}= & \text { weight margin for structures in tons } \\
= & \left(\mathrm{K}_{1}-1.0\right) \text { (Sum of weights of structural } \\
& \text { components) }
\end{aligned}
$$

$Z_{\text {lm }}=$ VCG of margin $/$ hull depth $=$ net of components
$\nabla_{1 \mathrm{~m}}=$ volume margin for structures $=0.0$
$W_{1}=$ total weight of structures, including margin, in tons
$Z_{1}=$ net VCG of structures / hull depth
$\nabla_{1}=$ total volume of structures in $\mathrm{ft}^{3}$

WZKG

$$
\begin{aligned}
\mathrm{W}_{\mathrm{U}}= & \text { useful load in tons }=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{E}} \\
= & \text { total of fuel, crew and effects, personnel } \\
& \text { store, potable water, and payload }
\end{aligned}
$$

K. WEIGHT FRACTIONS

$\mathrm{R}(1)$	$\mathrm{W}_{1} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(2)$	$\mathrm{W}_{2} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(3)$	$\mathrm{W}_{3} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(4)$	$\mathrm{W}_{4} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(5)$	$\mathrm{W}_{5} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(6)$	$\mathrm{W}_{6} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(7)$	$\mathrm{W}_{\mathrm{E}} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(8)$	$\mathrm{W}_{\mathrm{U}} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(9)$	$\mathrm{W}_{\mathrm{CE}} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(10)$	$\mathrm{W}_{\mathrm{F}} / \mathrm{W}_{\mathrm{T}}$
$\mathrm{R}(11)$	$\mathrm{W}_{\mathrm{P}} / \mathrm{W}_{\mathrm{T}}$

VCG / hULL DEPTH RATIOS

$G(1)$	$Z_{1}$
$G(2)$	$Z_{2}$
$G(3)$	$Z_{3}$
$G(4)$	$Z_{4}$
$G(5)$	$Z_{5}$
$G(6)$	$Z_{6}$
$G(7)$	$Z_{E}$
$G(8)$	$Z_{U}$
$G(9)$	$Z_{C E}$
$G(10)$	$Z_{F}$
$G(11)$	$Z_{P}$

M. VOLUME FRACTIONS

1
S(1)
S(2)
S(3)
S(4)
S(5)
1
S(6)
$s$ (7)
S(8)
S(9)
S(10)
S(11)
$\nabla_{1} / \nabla_{\mathrm{T}}$
$\nabla_{2} / \nabla_{\mathrm{T}}$
$\nabla_{3} / \nabla_{\mathrm{T}}$
$\nabla_{4} / \nabla_{\mathrm{T}}$
$\nabla_{5} / \nabla_{\mathrm{T}}$
$\nabla_{6} / \nabla_{\mathrm{T}}$
$\nabla_{\mathrm{E}} / \nabla_{\mathrm{T}}$
$\nabla_{\mathrm{U}} / \nabla_{\mathrm{T}}$
$\nabla_{\mathrm{CE}} / \nabla_{\mathrm{T}}$
$\nabla_{\mathrm{F}} / \nabla_{\mathrm{T}}$
$\nabla_{\mathrm{P}} / \nabla_{\mathrm{T}}$

## 1

]


1

NAME:
PURPOSE:

CALLING SEQUENCE:
INPUT:
CKN array

OPHRS
OPYRS
XUNITS
TIMED

TIMEC

FUEIR
OUTPUT:
C(1)
C(2)
C(3)
C(4)
C(5)
$c$ (6)
C(7)
C(8)
C(9)
C(10)
C(11)
C(12)
C(13)
C(14)
C(15)
C(16)

SUBROUTINE COSTS
Estimate base cost of ship by major weight groups. Also estimate life costs of ship

CALL COSTS
Via COMMON blocks
Cost factors for weight Groups 1 through 6 and payload input on Card 26
Operating hours per month, from input Card 27
Total vehicle operating years, from Card 27
Number of vehicles to be built, from Card 27
Portion of time operating at maximum speed, from Card 27
Portion of time operating at cruise speed, from Card 27
Cost of fuel in dollars per ton, from Card 27
via COMMON blocks
$C_{1}=$ cost of structures
$C_{2}=$ cost of propulsion
$C_{3}=$ cost of electric plant
$C_{4}=$ cost of non-military communication and control
$C_{5}=$ cost of auxiliary systems
$C_{6}=$ cost of outfit and furnishings
$C_{7}=$ cost of empty ship $=C_{1}+C_{2}+C_{3}+C_{4}+C_{5}+C_{6}$
$\mathrm{C}_{8}=$ cost of payload
$\mathrm{C}_{9}=$ base cost of first unit $=\mathrm{C}_{7}+\mathrm{C}_{8}$
$C_{10}=$ average cost of XUNITS
$C_{11}=$ life cost of personnel pay and allowances
$C_{12}=$ life cost of maintenance
$C_{13}=$ life cost of operations, except energy
$C_{14}=$ life cost of major support
$C_{15}=$ life cost of fuel
$C_{16}=$ total life cost
$=C_{10}+c_{11}+c_{12}+C_{13}+c_{14}+c_{15}$
Cost estimates are in millions of FY 77 dollars.

The cost equations used are based on statistics developed under the ANCVE project and are not for public release.

Cost data from this program should be used only for comparative purposes, i.e., percentage change from some parent configuration, and not as absolute cost figures.

NAME:
PURPOSE:

CALLING SEQUENCE:
SUBPROGRAMS CALLED:
INPUT:
DLBS
FNV
SLR
DCF
SDF

OUTPUT:
RLBS

PROCEDURE:
XFNV array
ZSLR array
YRWM matrix

YWSR matrix

SD array

RWM

$$
\begin{aligned}
\mathrm{R}_{\mathrm{b}} \quad= & \text { bare-hull, smooth-water resistance in } 1 \mathrm{~b} \\
= & \Delta(\text { mean } \mathrm{R} / \mathrm{W}-\mathrm{SDF} \times \sigma) \\
= & \text { standard deviation of Series } 62-65 \text { data } \\
& \text { from mean } \mathrm{R} / \mathrm{W}
\end{aligned}
$$

SUBROUTINE PHRES
Estimate the bare-hull, smooth-water resistance of a hard-chine planing hull from synthesis of Series 62 and 65 experimental data

CALL PHRES (DLBS, FNV, SLR, DCF, SDF, RLBS)
DISCOT, YINTX, C1DSF
$\Delta \quad=$ ship displacement in 1 b
$\mathrm{F}_{\mathrm{n} \nabla}=$ speed-displacement coefficient $\mathrm{V} /\left(\mathrm{g}^{1 / 3}\right)^{1 / 2}$
$\mathrm{L}_{\mathrm{P}} / \nabla^{1 / 3}=$ slenderness ratio
$\mathrm{C}_{\mathrm{A}} \quad=$ correlation allowance; may be 0
Standard deviation factor
SDF $=0.0$ corresponds to mean resistance-weight $\mathrm{R} / \mathrm{W}$ curves derived from Series 62 and 65 data
$S D F=1.645$ corresponds to minimum $R / W$ curves SDF can be used to approximate the resistance curves for a particular hull form

Tabulated values of $F_{n \nabla}$ from 0.0 to 4.0
Tabulated values of $L_{P} / \nabla^{1 / 3}$ from 4.0 to 10.0
Tabulated values of mean $R / W$ as $f\left(F_{n \nabla}, L_{p} / \nabla^{1 / 3}\right)$
for $100,000-1 b$ planing craft derived from Series 62 and 65 experimental data. See Table 1 and Figure 9
Tabulated values of mean wetted area coefficients S/ $\nabla^{2 / 3}$ from Series 62 and 65 hulls. See Table 2 and Figure 10
Tabulated values of standard deviation $\sigma$ as $f\left(F_{n \nabla}\right)$ See Table 1 and Figure 9
$\mathrm{R} / \mathrm{W}$ for $100,000-1 \mathrm{~b}$ planing craft interpolated from YRWM matrix of mean $R / W$ values at input $F_{n \nabla}$ and $L_{\mathrm{P}} / \nabla^{1 / 3}$
$S / \nabla^{2 / 3}$ interpolated from YWSR matrix at input $F_{n \nabla}$
and $L_{p} / \nabla^{1 / 3}$
Subroutine DISCOT used for the double interpolation $\sigma$ interpolated from $S D$ array at input $F_{n} \nabla$ Function YINTX used for single interpolation $\begin{aligned}(\mathrm{R} / \mathrm{W})_{\mathrm{m}}= & \text { corrected } \mathrm{R} / \mathrm{W} \text { for } 100,000-1 \mathrm{~b} \text { planing craft } \\ = & \text { (mean } \mathrm{R} / \mathrm{W} \text { interpolated) }-(\mathrm{SDF} \times \sigma \text { inter- } \\ & \text { polated) }\end{aligned}$
$\Delta_{m} \quad=$ displacement of $100,000-1 b$ planing craft
$\lambda \quad=$ linear ratio of actual ship to $100,000-1 b$ craft
$=\left(\Delta / \Delta_{m}\right)^{1 / 3}$
$V_{m} \quad=$ speed of $100,000-1 b$ craft in $\mathrm{ft} / \mathrm{sec}$
$=19.32$ (input $\mathrm{F}_{\mathrm{n} \nabla}$ )
$V_{s} \quad=$ speed of actual ship in $\mathrm{ft} / \mathrm{sec}=\mathrm{V}_{\mathrm{m}} \lambda^{1 / 2}$
$L_{m} \quad=$ length of $100,000-1 b$ craft in $f t$
$=11.6014$ (input $\mathrm{L}_{\mathrm{P}} / \nabla^{1 / 3}$ )
$\mathrm{L}_{\mathrm{s}} \quad=$ length of actual ship in $\mathrm{ft}=\mathrm{L}_{\mathrm{m}} \lambda$
$R_{n_{m}}=R_{\text {Reynolds number of } 100,000-1 b \text { craft }}$ $=V_{m} L_{m} / \nu_{m}$
$R_{n_{s}}=$ Reynolds number of actual ship $=V_{s} L_{s} / \nu_{s}$
$C_{F_{m}} \quad=\begin{aligned} & \text { Schoenherr frictional resistance coefficient } \\ & \text { for } 100,000-1 b \text { craft }\end{aligned}$
$C_{F_{s}}=\underset{\text { for actual ship }}{ } \quad$ frictional resistance coefficient Function CIDSF used to obtain Schoenherr frictional
resistance coefficients
$S_{m}=$ wetted area of $100,000-1 b$ craft in $\mathrm{ft}^{2}$ $=134.5925 \mathrm{~S} / \nabla^{2 / 3}$
$S_{S} \quad=$ wetted area of actual ship in $\mathrm{ft}^{2}=\mathrm{S}_{\mathrm{m}} \lambda^{2}$
$R_{m} \quad=$ resistance of $100,000-1 b$ craft in $1 b$
$=(R / W)_{m} \Delta_{m}$

CTM

CR

CTS

RLBS

VIS

VISM

RHO2

RHO2M

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{T}}=\text { total resistance coefficient of } 100,000-1 b \\
& =R_{m} /\left(V_{m}^{2} S_{m} \rho_{m} / 2\right) \\
& C_{R}=\text { residual resistance coefficient }=C_{T_{m}}-C_{F_{m}} \\
& C_{T}=\text { total resistance coefficient of actual ship } \\
& { }_{s}=C_{F_{S}}+C_{R}+C_{A} \\
& R_{b}=\text { resistance of actual ship in } 1 b \\
& =C_{T_{S}} V_{S}^{2} S_{S} \rho_{S} / 2 \\
& \begin{aligned}
v_{s}= & \text { kinematic viscosity for actual ship, input } \\
& \text { via COMMN }
\end{aligned} \\
& \nu_{\mathrm{m}}=\text { kinematic viscosity for tabulated data }= \\
& 1.2817 \times 10^{-5} \\
& \rho_{s} / 2=\begin{array}{l}
1 / 2 \text { water density for actual ship, input via } \\
\text { COMMON }
\end{array} \\
& \rho_{\mathrm{m}} / 2=1 / 2 \text { water density for tabulated data }=1.9905 / 2
\end{aligned}
$$

TABLE 1 - MEAN VALUES OF RESISTANCE/WETGHT RATIOS FOR 100,000 -POUNDS PLANING CRAFT
From Series 62 and 65 Experimental Data Published in NSRDC Report 4307
with LCG Ranging from $1 / 3$ to $1 / 2 L_{P}$ Forward of Transom

$\begin{gathered} \text { N } \\ \text { 心 } \end{gathered}$	$\begin{gathered} \text { SPEED } \\ \text { (KNOTS) } \\ \hline \end{gathered}$	$F_{n}$	$\begin{gathered} \mathrm{I}_{\mathrm{P}}(\mathrm{FT}) \\ 46.4 \\ \mathrm{I}_{\mathrm{p}} / \mathrm{N}^{1 / 3} \\ 4.0 \end{gathered}$	52.2 4.5	58.0 5.0	63.8 5.5	69.6 6.0	75.4 6.5	81.2 7.0	87.0 7.5	92.8 8.0	104.4 9.0	116.0 10.0	Standard   Deviation   0
	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.7000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5.72	0.50	0.0120	0.0100	0.0085	0.0075	0.0070	0.0065	0.0060	0.0057	0.0055	0.0050	0.0045	0.0065
	8.59	0.75	0.0420	0.0345	0.0280	0.0235	0.0200	0.0170	0.0150	0.0135	0.0125	0.0110	0.0100	0.0080
	11.45	1.00	0.1050	0.0875	0.0715	0.0580	0.0480	0.0405	0.0350	0.0305	0.0270	0.0220	0.0190	0.0089
	14.31	1.25	0.1800	0.1420	0.1140	0.0940	0.0795	0.0675	0.0585	0.0510	0.0450	0.0360	0.0305	0.0095
	17.17	1.50	0.1980	0.1550	0.1255	0.1065	0.0930	0.0815	0.0730	0.0660	0.0600	0.0500	0.0425	0.0100
	20.03	1.75	0.1995	0.1602	0.1350	0.1165	0.1025	0.0910	0.0820	0.0755	0.0700	0.0610	0.0530	0.0106
	22.89	2.00	0.1900	0.1630	0.1430	0.1275	0.1135	0.1020	0.0930	0.0855	0.0795	0.0705	0.0630	0.0112
	25.76	2.25	0.1775	0.1642	0.1505	0.1375	0.1260	0.1150	0.1060	0.0985	0.0915	0.0815	0.0745	0.0121
	28.62	2.50	0.1690	0.1645	0.1575	0.1475	0.1375	0.1280	0.1200	0.1125	0.1060	0.0950	0.0880	0.0132
	31.48	2.75		0.1620	0.1610	0.1550	0.1480	0.1405	0.1330	0.1270	0.121 .0	0.1110	0.1040	0.0148
	34.34	3.00			0.1610	0.1590	0.1565	0.1520	0.1465	0.1415	0.1365	0.1280	0.1205	0.0170
	37.20	3.25				0.1590	0.1595	0.1600	0.1585	0.1560	0.1530	0.1465	0.1400	0.0199
	40.06	3.50					0.1610	0.1665	0.1695	0.1700	0.1700	0.1670	0.1620	0.0231
	42.93	3.75						0.1735	0.1795	0.1825	0.1840	0.1850	0.1830	0.0266
	45.79	4.00							0.1890	0.1930	0.1960	0.2005	0.2030	0.0300

TABLE 2 - mean values of wetted area coefficient s/ ${ }^{2 / 3}$ for planing hulls From Series 62 and 65 Experimental Data Published in NSRDC Report 4307 with LCG Ranging from $1 / 3$ to $1 / 2 L_{p}$ Forward of Transom

岩	$\mathrm{F}_{\mathrm{n} \nabla}$	$\left\lvert\, \begin{gathered}\mathrm{L}_{\mathrm{p}} / \mathrm{V}^{1 / 3} \\ 4.0 \\ ----\end{gathered}\right.$	4.5	$\underline{5.0}$	$\xrightarrow{5.5}$	6.0	6.5	$\xrightarrow{7.0}$	7.5	$\xrightarrow{8.0}$	9.0	10.0
	0.00	5.80	6.15	6.50	6.85	7.20	7.55	7.90	8.25	8.60	9.30	10.00
	0.50	5.95	6.33	6.70	7.07	7.43	7.77	8.09	8.42	8.75	9.42	10.10
	0.75	5.99	6.38	6.77	7.15	7.50	7.85	8.18	8.50	8.82	9.48	10.15
	1.00	5.99	6.40	6.80	7.20	7.57	7.90	8.23	8.56	8.88	9.54	10.21
	1.25	5.92	6.37	6.80	7.22	7.60	7.93	8.27	8.61	8.93	9.60	10.28
	1.50	5.76	6.29	6.78	7.21	7.60	7.95	8.30	8.65	8.97	9.65	10.34
	1.75	5.51	6.16	6.72	7.17	7.59	7.94	8.29	8.67	9.00	9.70	10.41
	2.00	5.20	5.97	6.59	7.08	7.54	7.92	8.27	8.65	9.01	9.75	10.48
	2.25	4.76	5.70	6.41	6.97	7.46	7.85	8.23	8.62	9.01	9.78	10.55
	2.50	4.20	5.37	6.18	6.81	7.35	7.75	8.15	8.56	8.99	9.80	10.62
	2.75		4.95	5.89	6.60	7.17	7.61	8.04	8.48	8.94	9.80	10.68
	3.00			5.55	6.35	6.94	7.42	7.89	8.37	8.85	9.79	10.75
	3.25				6.06	6.65	7.17	7.68	8.21	8.73	9.76	10.80
	3.50					6.30	6.87	7.43	8.01	8.58	9.71	10.85
	3.75						6.53	7.10	7.75	8.37	9.62	10.88
	4.00							6.70	7.40	8.10	9.50	10.90

NAME:

PURPOSE:

CALLING SEQUENCE:

SUBPROGRAM CALLED:
INPUT:
DISPL
LCG

VCG
VFPS
beam

BETA

TANB
COSB
SInB
HW
WDCST

RHO
VIS
AG
DELCF
OUTPUT:
R
TD
NT
CLM

SUBROUTINE SAVIT
Estimate the bare-hull, smooth-water resistance and trim for a hard-chine planing hull using Savitsky's equations for prismatic planing surfaces CALL SAVIT (DISPL, LCG, VCG, VFPS, BEAM, BETA, TANB, COSB, SINB, HW, WDCST, RHO, VIS, AG, DELCF, R, TD, NT, CLM, GDB)
CIDSF
$\begin{aligned} \Delta= & \text { ship displacement in } 1 \mathrm{~b} \\ \overline{\mathrm{AG}}= & \text { distance of center of gravity } \\ & \text { transom in } \mathrm{ft}\end{aligned}$
$\overline{K G}=$ distance of
$\mathrm{V}=$ speed in $\mathrm{ft} / \mathrm{sec}$
$b=$ beam in ft

- = maximum chine beam $B_{P X}$ in Program PHFMOPT
$\beta=$ deadrise angle in degrees
$=$ deadrise at midships $\beta_{\mathrm{m}}$ in Program PHFMOPT
$\tan \beta$
$\cos \beta$
$\sin \beta$
$\mathrm{H}_{\mathrm{W}}=\underset{\text { height }}{\text { in } \mathrm{ft}}$ of center of wind drag above baseline
$C_{D_{W}^{\prime}}^{\prime}=$ horizontal wind force in $1 \mathrm{~b} / \mathrm{V}^{2}$
$\rho=$ water density in $1 b \times \sec ^{2} / f t^{4}$
$\nu=$ kinematic viscosity of water in $f t^{2} / \mathrm{sec}$
$g=$ acceleration of gravity in $f t / \mathrm{sec}^{2}$
$C_{A}=$ correlation allowance; may be 0

$$
\begin{aligned}
R_{b} & =\text { bare hull, smooth-water resistance in } 1 \mathrm{~b} \\
\tau & =\text { trim angle in degrees }
\end{aligned}
$$

Number of iterations to obtain trim angle
$\begin{aligned} \lambda= & \text { mean wetted length-beam ratio } L_{m} / b \\ & \text { not used by Program PHFMOPT }\end{aligned}$
$\overline{\mathrm{AP}}=$ longitudinal center of pressure, distance forward of transom, in ft not used by Program PHFMOPT
PROCEDURE:

TD

CV
CLM

CLO

CLB

XK

XC

GDB

CLD

VM

RE

CF
$\tau=$ trim angle of planing surface from horizontal in deg first approximation of $\tau=4 \mathrm{deg}$
$C_{V}=$ speed coefficient $=V /(g b)^{1 / 2}$
$\lambda=$ mean wetted length-beam ratio
$=L_{m} / b=\left(L_{K}+L_{C}\right) / 2 b$
$C_{L}=$ lift coefficient for flat surface
$=\tau^{1.1}\left(0.012 \lambda^{1 / 2}+0.0055 \lambda^{5 / 2} / C_{V}{ }^{2}\right)$
$C_{L}=$ lift coefficient for deadrise surface
$=\Delta /\left[v^{2} b^{2} \rho / 2\right]=C_{L_{0}}-0.0065 C_{L_{0}} 0.6$
$\mathrm{C}_{\mathrm{L}_{0}}^{-}$and $\lambda$ obtained by Newton-Raphson iteration
first approximations: $\quad C_{L_{0}}=0.085 ; \lambda=1.5$
$L_{K}=$ wetted keel length in $f t$
$=b[\lambda+\tan \beta /(2 \pi \tan \tau)]$
$L_{C}=$ wetted chine length in $f t=2 b \lambda-L_{K}$
$L_{K}-L_{C}=(b \tan B) /(\pi \tan \tau)$
$\overline{A P}=$ longitudinal center of pressure forward of transom in $f t$
$=b \lambda\left[0.75-1 /\left(5.21 C_{V}^{2} / \lambda^{2}+2.39\right)\right]$
$C_{L}=$ dynamic component of lift coefficient
$=0.012 \lambda^{1 / 2} \tau^{1.1}$
$\mathrm{V}=$ mean velocity over planing surface in ft/sec
$=V\left[1-\left(C_{L_{d}}-0.0065 B C_{L_{d}} 0.6\right) /(\lambda \cos \tau)\right] 1 / 2$
$R_{n}=$ Reynolds number for planing surface
$=V_{m} b \lambda / \nu$
$C_{F}+C_{A}=\begin{aligned} & \text { Schoenherr frictional resistance co- } \\ & \\ & \\ & \\ & \text { efficient as } f\left(R_{n}\right) \text { plus correction }\end{aligned}$

DFX
TAN
THETA
LM

DIM
RE

RE
$C F$

$$
C F
$$

$$
S X
$$

DSX

DUX

$$
\begin{aligned}
D_{F}= & \text { viscous force due to whetted surface, parallel } \\
& \text { to the planing surface, in } 1 \mathrm{~b} \\
= & \left(C_{F}+C_{A}\right)(\rho / 2)\left(V_{m}^{2}\right)\left(b^{2} \lambda / \cos \beta\right) \\
C_{K}= & 1.5708\left(1-0.1788 \tan ^{2} \beta \cos \beta-0.09646\right. \\
& \left.\tan \beta \sin ^{2} \beta\right)
\end{aligned}
$$

DWI

DIX

PBX

$$
\begin{aligned}
& C_{K_{1}}=C_{K} \tan \tau / \sin \beta \\
& a_{1}=\frac{\left[\sin ^{2} \tau\left(1-2 C_{K}\right)+C_{K}^{2} \tan ^{2} \tau\left(1 / \sin ^{2} B-\sin ^{2} \tau\right)\right]^{1 / 2}}{\cos \tau+C_{K} \tan \tau \sin \tau} \\
& \tan \phi=\left(a_{1}+C_{K_{1}}\right) /\left(\begin{array}{ll}
1-a_{1} & C_{K_{1}}
\end{array}\right) \\
& \theta=\begin{aligned}
\theta & \text { angle between outer spray edge and keel in } \\
& \text { radians }
\end{aligned} \\
& =\arctan (\tan \phi \cos \beta) \\
& \begin{aligned}
\Delta \lambda= & \text { effective increase in length-beam ratio du } \\
& \text { to spray } \\
= & {[\tan \beta /(\pi \tan \tau)-1 /(2 \tan \theta)] /(2 \cos \theta) }
\end{aligned} \\
& R_{n_{s}}=\text { Reynolds number for spray } \\
& =\mathrm{V} b /(3 \cos \beta \sin \theta) / v \\
& \mathrm{C}_{\mathrm{F}_{\mathrm{S}}}=\underset{\text { for spray drag }}{\text { for }} \text { frional resistance coefficient } \\
& D_{S}=\begin{aligned}
& \text { viscous force due to spray drag, parallel to } \\
& \text { the planing surface, in } 1 b
\end{aligned} \\
& =C_{F_{S}}(\rho / 2)\left(V^{2}\right)\left(b^{2} \Delta \lambda / \cos \beta\right)
\end{aligned}
$$

$$
\begin{aligned}
& =C_{D_{W}}^{\prime} V^{2} / \cos \tau \\
& D_{T}=\underset{\text { in }}{ } \quad \underset{\text { to }}{ } \text { drag force parallel to planing surface } \\
& =D_{F}+D_{S}+D_{W} \\
& \mathrm{P}_{\mathrm{T}}=\begin{array}{r}
\text { total } \\
\text { in } 1 \mathrm{~b}
\end{array} \\
& =\Delta / \cos \tau+\Gamma_{T} \tan \tau
\end{aligned}
$$

R
$e_{P}=\begin{aligned} & \text { moment arm from center of pressure to } \\ & \\ & \text { center of gravity in } f t\end{aligned}$
$=\overline{A G}-\overline{A P}$
$f_{F}=\begin{gathered}\text { moment arm from center of viscous force to } \\ \\ \text { center of gravity in } f t\end{gathered}$
$=\overline{\mathrm{KG}}-(\mathrm{b} \tan \beta / 4)$
$\mathrm{f}_{\mathrm{V}}=$ moment arm from center of wind drag to center：of gravity in $f t$
$=\overline{K G}-H_{N T}$
$\Sigma M=$ sum of moments about $C G$ in $f t-1 b$
$=P_{T} e_{P}+\left(D_{F}+D_{S}\right) F_{F}+D_{W} f_{W}$
Iterate with small changes in $\tau$ until $\Sigma M \leq 0.001 \Delta$
Number of iterations requircd to obtain equilibrium trim；maximum of 15 iterations
$R_{h}=$ total horizontal resistance force in $I b$
$=D_{T} \cos \tau+P_{T} \sin \tau$

NAME:
PURPOSE:

CALLING SEQUENCE:
SUBPROGRAMS CALLED:
INPUT:
FNV
OUTPUT:
TDF

ADF

TwF
REFERENCE:

PROCEDURE:

FV array TDF

TW array
AD array

$$
x-2+2+0
$$

$$
F=05
$$

$F_{n \nabla}=0.5$	1.0	1.5	2.0	2.5	3.0	3.5	4.0
$1-t=0.92$	0.92	0.92	0.92	0.92	0.92	0.92	0.92
$1-w=1.05$	1.06	1.04	0.99	0.97	0.975	0.98	0.975
$\eta_{a}=0.951$	0.943	0.942	0.934	0.925	0.913	0.900	0.885

NAME：
PURPOSE：

REFERENCE：

CAILING SEQUENCE：
INPUT：

```
Control for type of propellers
 = 1 for Gawn-Burrill type
 (flat face, segmental sections)
 = 3,4 for Wageningen B-Screw type
 (airfoil sections)
 =2 For N⿰w⿻丷木t⿱⿰㇒一大口
 PD P/D = propeller pitch/diameter ratio (0.6 to 1.6)
 EAR = propeller expanded area ratio (0.5 to 1.1)
 = number of propeller blades (3 to 7)
```

OUTPUT：
N
JT

KT

KQ

$$
\begin{aligned}
\mathrm{n}_{\mathrm{J}}= & \text { number of } \mathrm{J} \text { values generated -- max of } 60 \\
\mathrm{~J} \quad= & \text { array of propeller advance coefficients in } \\
& \text { ascending order from } \left.(\mathrm{J}=0) \text { to ( } \mathrm{J} \text { at } \mathrm{K}_{\mathrm{T}} \approx 0\right) \\
& \text { in increments of } 0.025 \text { if } \mathrm{P} / \mathrm{D}<1.2 \\
& \text { in increments of } 0,050 \text { if } \mathrm{P} / \mathrm{D}>1.2 \\
= & \text { array of open-water thrust coefficients } \\
\mathrm{K}_{\mathrm{T}} \quad= & £(\mathrm{P} / \mathrm{D}, \mathrm{EAR}, \mathrm{Z}, \mathrm{~J}) \\
\mathrm{K}_{\mathrm{Q}} \quad= & \text { array of open-water torque coefficients } \\
= & \mathrm{f}(\mathrm{P} / \mathrm{D}, \mathrm{E} R \mathrm{R}, \mathrm{Z}, \mathrm{~J})
\end{aligned}
$$

$K_{T}$ and $K_{Q}$ developed from equation in above references for airfoll section propellers．For Gawn－Burrill type propellers（IPROP＝1）the equations are modified to produce slightly higher $K_{T}$ and $K_{Q}$ than $B$－Screw Series．


GENERAL NOTATION FOR PROPELLERS:

$\mathrm{V}_{\text {A }}$	$=$ propeller speed of advance
n	$=$ rate of revolution
D	= propeller diameter
T	$=$ thrust
Q	$=$ torque
$\rho$	= water density
Po	$=$ pressure at center of propeller $=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{H}}-\mathrm{PV}$
J	$=$ advance coefficient $=V_{A} /\left(\begin{array}{l}\text { d }\end{array}\right)$
$\mathrm{K}_{\mathrm{T}}$	$=$ thrust coefficient $=T /\left(\rho n^{2} D^{4}\right)$
$K_{Q}$	$=$ torque coefficient $=Q /\left(\rho n^{2} D^{5}\right)$
$\mathrm{K}_{\mathrm{T}} / \mathrm{J}^{2}$	$=$ thrust loading $=T /\left(\rho D^{2} V_{A}{ }^{2}\right)$
$K_{Q} / J^{2}$	$=$ torque loading $=Q /\left(\rho D^{3} V_{A}{ }^{2}\right)$
$K_{Q} / J^{3}$	$=$ power loading $=Q \mathrm{n} /\left(\rho D^{2} \mathrm{~V}_{\mathrm{A}}{ }^{3}\right)$
$\sigma$	$\begin{aligned} & =\text { cavitation number based on advance velocity } \\ & =p_{0} /\left(1 / 2 \rho V_{A} 2\right) \end{aligned}$
$\mathrm{V}_{0.7} \mathrm{R}^{2}$	$\begin{aligned} & =\text { velocity } 2 \text { at } 0.7 \text { radius of propeller } \\ & =V_{A}{ }^{2}+(0.7 \pi n D)^{2}=V_{A}^{2}\left(J^{2}+4.84\right) / J^{2} \end{aligned}$
$\sigma_{0.7 R}$	$\begin{aligned} & =\text { cavitation number based on } V_{0.7 R} \\ & =\mathrm{P}_{0} /\left(1 / 2 \rho \mathrm{~V}_{\left.0.7 \mathrm{R}^{2}\right)}=\sigma \mathrm{J} /\left(\mathrm{J}^{2}+4.84\right)\right. \end{aligned}$
$A_{P}$	$\begin{aligned} & =\text { projected area of propeller } \\ & =\left(\pi D^{2} / 4\right) \text { EAR }(1.067-0.229 \mathrm{P} / \mathrm{D}) \end{aligned}$
$\tau_{c}$	$\begin{aligned} & =\text { thrust load coefficient } \\ & =T /\left(1 / 2 \rho A_{\vec{r}} V_{0} \cdot 7 R^{2}\right) \\ & =K_{T} /\left[1 / 2\left(A_{\mathrm{P}} / D^{2}\right)\left(J^{2}+4.84\right)\right] \end{aligned}$
$Q_{C}$	$\begin{aligned} & =\text { torque load coefficient } \\ & =Q /\left(1 / 2 \rho D A_{P} V_{0.7 R}{ }^{2}\right) \\ & =K_{Q} /\left[1 / 2\left(A_{P} / D^{2}\right)\left(J^{2}+4.84\right)\right] \end{aligned}$

MAXIMUM THRUST AND TORQUE LOADS:
Blount and Fox (see reference) give equations for maximum thrust and torque load coefficients in a cavitating environment based on regression of experimental data for the three propeller series used herein.

$\tau_{c_{m}}$	$=$ maximum thrust load coefficient
	$=a \sigma_{0.7 \mathrm{R}}$ (transition region)
	$=\tau_{c_{x}}($ fully cavitating region)
	$=$ maximum torque load coefficient
$Q_{c_{m}}$	$=c \sigma_{0.7{ }^{d}}$ (transition region)
	$=Q_{c_{x}}$ (fully cavitating region)

OUTPUT:
T1

$a$	$=1.2$	$\frac{\text { IPROP }}{1}$
$a$	$=0.703+0.25 \mathrm{P} / \mathrm{D}$	2
a	$=1.27$	3

T2
$\mathrm{b}=1.0$
$\mathrm{b}=0.65+0.1 \mathrm{P} / \mathrm{D}$
$\mathrm{b} \quad=1.0+0.1 \mathrm{P} / \mathrm{D}$
Q1
$\begin{array}{ll}c & =0.200 \mathrm{P} / \mathrm{D} \\ c & =0.240 \mathrm{P} / \mathrm{D}-0.12 \\ \mathrm{c} & =0.247 \mathrm{P} / \mathrm{D}-0.0167\end{array}$
c $\quad=0.247 \mathrm{P} / \mathrm{D}-0.0167 \quad 2$
Q2
$\begin{array}{ll}\mathrm{d} & =0.70+0.31 \mathrm{EAR}^{0.9} \\ \mathrm{~d} & =0.50+0.165 \mathrm{P} / \mathrm{D}\end{array}$
3
1


${ }^{\tau}{ }_{c_{x}}$	$=0.0725 \mathrm{P} / \mathrm{D}-0.0340 \mathrm{EAR}$
${ }^{\tau}{ }^{c_{c}}{ }_{x}$	$=0.0833 \mathrm{P} / \mathrm{D}-0.0142 \mathrm{EAR}$
${ }^{c_{x}}$	0.0
$Q_{c_{x}}$	$\left.=\underset{/ \operatorname{EAR}^{1 / 3}}{[0.0185}(P / D)^{2}-0.0166 \mathrm{P} / \mathrm{D}+0.00594\right]$
$Q^{Q_{x}}$	$=0.0335 \mathrm{P} / \mathrm{D}-0.024 \mathrm{EAR}^{1 / 2}$
$Q_{c_{x}}$	$=0.0$

RMAX
k
Since full 0.8
refer fullal data (see Figures 5 and 6 of transition region less than thrust and torque in the the propeller series data, the factor $k$ is applied to $\tau_{c_{m}}$ and $Q_{c_{m}}$ in the transition region. The factor $k$ is not applied to $\tau_{c_{x}}$ and $Q_{c_{x}}$.

APD2	$A_{p} / D^{2 / 2}$	$=$ Constant for calculation of $\tau_{c}$ and $Q_{c}$
J	J	= advance coefficient from input array
$\left.\begin{array}{l} \text { OPEN WATER } \\ K T \quad K Q \end{array}\right\}$	$\left.\begin{array}{l}\mathrm{K}_{\mathrm{T}_{0}} \\ \mathrm{~K}_{0}\end{array}\right\}$	= input values of open-water   thrust and torque coefficients
SIGMA	$\sigma$	$=$ cavitation number from input array
KT	$\mathrm{K}_{\mathrm{T}}$	$=$ thrust coefficient as $f(J, \sigma)$   $=K_{T_{0}}$ or $K_{\mathrm{T}_{\mathrm{m}}}$, whichever is smaller
	$\mathrm{K}_{\mathrm{T}_{\mathrm{m}}}$ $\tau_{\mathrm{c}_{\mathrm{m}}}$	$\begin{aligned} &= \tau_{c_{m}}\left(1 / 2 A_{p} / D^{2}\right)\left(J^{2}+4.84\right) \\ &=\left(k \text { a } \sigma_{\left.0.7 R^{b}\right) \text { or }\left(\tau_{c_{x}}\right),}\right. \\ & \text { whichever is greater } \end{aligned}$
LC		$=1$ character identifier for propelier cavitation   $C$ indicates more than $10 \%$ back cavitation for Gawn props: $\tau_{c}>0.494 \sigma_{0.7 R} 0.88$   * indicates thrust 1 imit due to cavitation $\mathrm{K}_{\mathrm{T}}=\mathrm{K}_{\mathrm{T}}$
KQ	$\mathrm{K}_{\mathrm{Q}}$	$=$ torque coefficient as $f(J, \sigma)$   $=K_{Q_{0}}$ or $K_{Q_{m}}$, whichever is smaller
	$\mathrm{K}_{\mathrm{Q}_{\mathrm{m}}}$	$=Q_{C_{m}}\left(1 / 2 A_{p} / D^{2}\right)\left(J^{2}+4.84\right)$
	$Q_{C_{m}}$	$\begin{aligned} &=\left(k c \sigma_{0.7} d\right) \text { or }\left(Q_{c_{x}}\right), \\ & \text { whichever is greater } \end{aligned}$
		$\mathrm{K}_{\mathrm{T}}$ and $\mathrm{K}_{\mathrm{Q}_{\mathrm{m}}}$ generated by Function TQMAX

NAME: FUNCTION TQMAX


Variables: $a, b, c, d, \tau_{c_{x}}, Q_{c_{x}}, k, 1 / 2 A_{p} / D^{2}$ generated by Subroutine CAVKTQ
OUTPUT:
TQMAX

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{T}} \text { or } \mathrm{K}_{\mathrm{Q}_{\mathrm{m}}} \text { depending on value of } \mathrm{i} \\
& \begin{aligned}
\tau_{c_{m}} & =\text { maximum thrust load coefficient } \\
& =0
\end{aligned} \\
& =k a \sigma_{0.7 R} \text {, or } \tau_{c_{x}} \text { if greater } \\
& K_{T_{m}}={ }^{\tau} c_{m}\left(1 / 2 A p / D^{2}\right)\left(J^{2}+4.84\right) \\
& Q_{c_{m}} \quad=\text { maximum torque load coefficient } \\
& =k c \sigma_{0.7 R}{ }^{\mathrm{C}} \text {, or } Q_{C_{x}} \text { if greater } \\
& K_{Q_{m}}=Q_{C_{m}}\left(1 / 2 A_{p} / D^{2}\right)\left(J^{2}+4.84\right)
\end{aligned}
$$



PERFORMANCE AT SPECIFIC J:

JTP	$\mathrm{J}_{\mathrm{T}}$	$=$	input advance coefficient
KTP	$\mathrm{K}_{\mathrm{T}}$	$=$	thrust coefficient at $\mathrm{J}_{\mathrm{T}}$ open-water thrust coefficient interpolated from input array of $\mathrm{K}_{\mathrm{T}_{0}}$ versus J , or maximum thrust coefficient in cavitating regime $\mathrm{K}_{\mathrm{T}}$ calculated by Function TQMAX, whichever is smaller.
KQP	$K_{Q}$	$=$ $=$	torque coefficient at $J_{T}$ open-water value interpolated from $K_{Q_{O}}$ vs $J$, or maximum cavitation value $K_{Q_{m}}$ calculated from TQMAX, whichever ${ }^{2}$ is smaller

PERFORMANCE AT SPECIFIC LOADING:


OUTPUT:
\(\left.\begin{array}{lll}JTP \& J_{T} \& =final advance coefficient <br>
KTP \& K_{T} \& =final thrust coefficient <br>
K Q P \& K_{Q} \& =final torque coefficient <br>
E P \& n_{0} \& =propeller efficiency <br>

\& =J_{T} K_{T} /\left(2 \pi K_{Q}\right)\end{array}\right\}\)| at propeller |
| :--- |
| performance |
| point |
| specified by |
| PCOEF and |
| SIGMA |

TAUC	${ }^{\text {c }}$	$=$ thrust load coefficient   $=K_{T} /\left[\frac{1}{2}\left(A_{P} / D^{2}\right)\left(J^{2}+4.84\right)\right]$
SIG7	${ }_{0} 0.7 \mathrm{R}$	= cavitation number based on velocity   at 0.7 radius of propeller
		$=\sigma \mathrm{J}^{2} /\left(\mathrm{J}^{2}+4.84\right) \quad 4.84=(0.7 \pi)^{2}$
XSIG7	$4.94 \sigma_{0.7 \mathrm{R}}^{0.88}$	= term representing $10 \%$ back cavitation line for Gawn-Burrill propeller series
LT		$=1$ character identifier for propeller cavitation
		* indicates thrust limit due to cavitation: $\mathrm{K}_{\mathrm{T}}=\mathrm{K}_{\mathrm{T}}$
		C indicates more than $10 \%$ back cavitation for Gawn-Burrill propellers, but less than thrust limit cavitation
		$\tau_{c}>0.494 \sigma_{0.7 R}^{0.88}$

NAME
PURPOSE:

CALLING SEQUENCE:
SUBPROGRAMS CALLED:
INPUT:
PROPNO

PROPDI

AUXNO
PROPDA
PEMAX

PL
HT
NV
VKT (I)

TWF (I)
THRUST(I)
$\operatorname{EHP}$ (I)
APD2
TCDES

CONSTANTS:
PRA
PRV

## SUBROUTINE PROPS

Estimate powering requirements for ship at design and cruise speeds with propellers on inclined shafts. Select appropriate number of propellers and/or propeller diameter, if not already specified CALL PROPS
YINTX, PRINTP
Via COMMON blocks
$\begin{aligned} n_{p r} & =\begin{array}{l}\text { number of propellers--optional input on } \\ \text { Card } 12 .\end{array} \\ D_{\text {in }}= & \text { propeller diameter in inches--optional input } \\ & \text { on Card } 12\end{aligned}$
$n_{\text {aux }}=$ number of auxiliary propulsion units for
$D_{C}=$ cruise speed operation, from input Card 12
G
$\mathrm{P}_{\mathrm{e}}=$ diameter of aukilary, from input Card 12
mamum horsepower of eech prime mover, Cirdi/2
$\mathrm{e}_{\text {max }}=$ maximum horsepower
$L_{P}=$ ship length in $f t$, from input Card 29
$H_{t}=\underset{N E W H U L}{\text { draft }}$ at transom in $f t$, from Subroutine
Number of speeds, from Subroutine POWER
$V_{K}=$ ship speed in knots, from Subroutine POWER $=$ design speed $V_{d}$, cruise speed $V_{c}$ when $I=1,2$
1-w $=$ thrust wake factor, from Subroutine PRCOEF
$\begin{aligned} T= & \text { total shaft-line thrust in } 1 \mathrm{~b} \text {, from } \\ & \text { Subroutine POWER }\end{aligned}$
$P_{E}=$ total effective power, from Subroutine PowEP
$\frac{1}{2} A_{p} / D^{2}=$ propeller constant, from Subroutine CAVFTQ $\left(\tau_{c} / \sigma_{0.7 R}\right)^{*}=$ constant for sizing propeller, from Card 12
$=0.6$ for Cawn-Burrill $10 \%$ back cavitation
criteria

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{A}}=\text { atmospheric pressure in } 1 \mathrm{~b} / \mathrm{ft}^{2}=2116 \\
& \mathrm{p}_{\mathrm{V}}=\text { vapor pressure in } 1 \mathrm{~b} / \mathrm{ft}^{2}=36
\end{aligned}
$$

PR

EEMAX
ORC output:

PRSHP

NPR

I
VA (I)

SIG (I)
tLMAX

DM
$p_{H}=\operatorname{static}_{\mathrm{lb} / \mathrm{ft}^{2}}$ water pressure at propeller center in
$=\rho g h_{p r}$
$h_{p r}=\begin{gathered}\text { depth of propeller center below waterline } \\ \text { in } f t\end{gathered}$
$=H_{t}+0.75 \mathrm{D} \approx 1.5 \mathrm{H}_{\mathrm{t}}$, if D not defined
$\varepsilon_{\max }=$ maximum shaft angle in degrees $=15$
Preliminary estimate of $n_{D}=0.55$
$P_{B_{0}}=$ preliminary estimate of total brake horsepower $0=0.55 \mathrm{P}_{\mathrm{E}}$ at design speed
$n_{p r}=$ number of prime movers $=$ number of propellers
$=P_{B} / P_{e} \quad$ (rounded up)
or value max specified on input Card 12
Limits: $4 \leq n_{p r} \leq 2$
Index for DO LOOP $I=1$, NV
$V_{A}=$ speed of advance of propeller in $f t / s e c$
$=1.6878 \mathrm{Y}_{\mathrm{K}}(1-\mathrm{w})$
$\sigma=$ cavitation number $=\left(p_{A}+p_{H}-p_{V}\right) /\left(\frac{1}{2} \rho V_{A}^{2}\right)$
$\left(\mathrm{K}_{\mathrm{T}} j^{\prime}\right)^{*}=$ upper I imit on thrust loading
$=\frac{1}{2}\left(A_{P} / D^{2}\right) \quad \sigma\left(\tau_{c} / \sigma_{0.7 R}\right)^{*}$
$D_{\min }$
$=$ diameter in inches of smallest propeller capable of producing required thrust at current speed
$=12\left[\mathrm{~T} / \rho \mathrm{V}_{\mathrm{A}}^{2} \mathrm{n}_{\mathrm{po}}\left(\mathrm{K}_{\mathrm{T}} / \mathrm{J}^{2}\right)^{*}\right]^{1 / 2}$
$n_{p o}=$ number of propellers in operation
$=\eta_{p r}$ at design speed
$=n_{p r}$ at cruise speed, if no auxiliary engine
$=\mathrm{n}_{\text {aux }}$ at cruise speed, if $\mathrm{n}_{\text {aux }}>0$
$D_{i n}=$ final propeller diameter in inches
$=1.05 \mathrm{D}_{\text {min }}$ at design speed
or $1.05 \mathrm{D}_{\text {min }}$ at cruise speed, whichever if larger
or value specified on input Card 12
$X_{s h}=$ longitudinal distance from transom to point where shafting enters hull in $f t=0.2 \mathrm{~L}_{\mathrm{P}}$
$X_{s f}=$ longitudinal distance from transom to forward end of shafting in $f t=0.3 L_{P}$

CRUD

DMAX

PRN

DINMAX

DFT
XSA

D75
$=$ chord length of rudder in ft
$=0.03464 \mathrm{~L}_{\mathrm{P}} / \mathrm{n}_{\mathrm{pr}} 1 / 2$
Trailing edge of rudder assumed flush with transom
Projected area of each rudder $=0.0016 \mathrm{~L}_{\mathrm{P}}^{2} / \mathrm{n}_{\mathrm{pr}}$ $=4 / 3 C_{r}{ }^{2}$
$D_{\text {max }}=$ maximum propeller diameter in inches, limited by $\varepsilon_{\max }$ and 0.25 D tip clearance
$=12\left(\mathrm{X}_{\mathrm{sh}}-\mathrm{C}_{\mathrm{r}}\right) \tan \varepsilon_{\max } 10.75$ (1+tan $\left.\varepsilon_{\max }\right)$
If $D_{\text {in }}>D_{\text {max }}, n_{p r}$ is increased and $D_{i n}$ is recalculated, unless $\mathrm{n}_{\mathrm{pr}}$ is a fixed input value or up to the limit of 4
$n_{p r}=$ final number of propellers, prime movers
$D_{\text {max }}=$ maximum propeller diameter in inches, limited by hull breadth over chines at transom
$=12\left(2 \mathrm{Y}_{\mathrm{C}_{1}}\right) /\left[\mathrm{n}_{\mathrm{pr}}+0.25\left(\mathrm{n}_{\mathrm{pr}}-1\right)\right]$
If $D_{\text {in }}>D_{\max }$, set final $D_{\text {in }}=D_{\max }$
$D \quad=$ final propeller diameter in $f t=D_{i n} / 12$
$X_{s a}=$ longitudinal distance from transom to aft end of shafting at propeller centerline
$\begin{aligned}= & 0.75 \mathrm{D}+\mathrm{C}_{r}, \text { assuming } 0.25 \mathrm{D} \text { from rudder to } \\ & \text { propeller }\end{aligned}$
$H_{s a}=$ height from aft end of shafting to hull in ft
$=0.75 \mathrm{D}$, assuming 0.25 D propeller tip clearance


* When carkiliary preprelleng used with i-ukiliary eitgines, fropellar dinmeter $D=$ PROpDA (infut on (art12) is used for ciruse speeir colculations.

NAME:	SUBROUTINE WJETS
PURPOSE:	Design waterjet pumps capable of producing reauired thrust at design and cruise speeds and estimated powering requirements. Select appropriate number of waterjets if not already specified.
REFERENCE:	Denny, S.B. and A.R. Feller, "Waterjet Propulsor Performance Prediction in Planing Craft Applications," DTNSRDC Report SPD-0905-01 (Aug 1979)
CALLING SEQUENCE:	CALL WJETS
SUBPROGRAMS CALLED:	YINTE
INPUT:	Via COMMON blocks
PROPNO	$\begin{aligned} n_{p r}= & \text { number of prime movers }=\text { number of waterjet } \\ & \text { pumps -- optional input on Card } 12 \end{aligned}$
AUXNO	$n_{\text {aux }}=$ number of auxiliary propulsion units for   cruise speed operation from input Card
PEMAX	$\begin{aligned} \mathrm{P}_{\mathrm{max}}= & \text { maximum horsepower of each prime mover, from } \\ & \text { Card } 12 \text {; required if } \mathrm{n}_{\mathrm{pr}} \text { not specified } \end{aligned}$
PROPDI	$\begin{aligned} \mathrm{D}_{\text {in }}= & \text { impeller diameter in inches }- \text { optional } \\ & \text { input on Card } 12 \end{aligned}$
AJET	$A_{j}=\begin{aligned} \text { area of jet in } & f t^{2}-\text { optional input on } \end{aligned}$
XK1	$\begin{aligned} \mathrm{K}_{\mathrm{I}}= & \text { bollard jet velocity/ship speed at design } \\ & \text { point, input from Card } 12 \mathrm{~A} \end{aligned}$
XK2	$\begin{aligned} \mathrm{K}_{2}= & \text { constant for inlet head recovery } I H R \text {, from } \\ & \text { Card } 12 \mathrm{~A} \end{aligned}$
XK 3	$\begin{aligned} \mathrm{K}_{3}= & \text { constant for } \tau_{\mathrm{c}} \text { vs. } \sigma_{\text {TIP }} \text { cavitation criteria, }, ~ \end{aligned}$
DHD	$\begin{aligned} \mathrm{D}_{\mathrm{h}} / \mathrm{D}= & \text { diameter of impeller hub/diameter of } \\ & \text { impeller, input from Card } 12 \mathrm{~A} \end{aligned}$
TLC	$\begin{aligned} { }^{\tau} c_{d}= & \text { thrust load coefficient at design point, } \\ & \text { from Card } 12 \mathrm{~A} \text {; not used if } A \text { is input } \end{aligned}$
STP	$\begin{aligned} \sigma_{\mathrm{TIP}}= & \text { impeller tip velocity cavitation number at } \\ & \text { design point, from Card } 12 \mathrm{~A} \end{aligned}$
HT	$H_{t}=\underset{N E W H U L}{ } \quad d^{d r a f t} \text { at transom in } f t \text {, from Subroutine }$
NV	Number of speeds, from Subroutine POWER
$\mathrm{VKI}(\mathrm{I})$	$\begin{aligned} V_{K} & =\text { ship speed in knots, from Subroutine POWER } \\ & =\text { design speed } V_{d} \text {, cruise speed } V_{c} \text {, when } I=1,2 \end{aligned}$

THRUST(I)

CONSTAN"S:
PRA
PRV
PRH

OPC
RHO
GA
OUTPUT:
PRSHP

NPR
$\operatorname{VFPS}(1)$
$\operatorname{VFPS}(2)$
THI (1)
THI (2)

VJB

DVJ
vJ

Q
$\mathrm{T}=$ total thrust required in 1 b , from Subroutine POWER
$p_{A}$ : atmospheric pressure in $1 b / \mathrm{ft}^{2}=2116$
F. vapor pressure in $\mathrm{lb} / \mathrm{ft}^{2}=36$
$\mathrm{P}_{\mathrm{H}} \quad$ stetic water pressure on rotating axis in $\mathrm{lb} / \mathrm{Ft}^{2}=\rho g \mathrm{~h}_{\mathrm{ra}}$
$h_{r a}$ : det th of rotating axis alow waterline in $\mathrm{ft} \geq 0$
Pre!iminary estimate of $\eta_{D}=0.4$
$\rho \quad=$ water drensity in $1 \mathrm{bs} x \sec ^{2} / \mathrm{ft}^{4}=1.9905$
$\mathrm{g}=$ accule tion of gravity in $\mathrm{ft} / \mathrm{sec}^{2}=32.174$
$\begin{aligned} & P_{B}=\text { preliminary estinate of cotal brake power } \\ &=0.4 P_{E} \text { at design speed }\end{aligned}$
$n_{p r}=$ number of prime movers $=$ number of waterjets
$=P_{B} / P_{e}$ (rounded up)
or ${ }^{\circ}{ }^{\text {value }}$ mpecified on Card 12
Limits: $4 \leq n_{p r} \leq 2$
$\mathrm{V}_{\mathrm{S}_{\mathrm{d}}}=$ design ship speed in $\mathrm{ft} / \mathrm{sec}=1.6878 \mathrm{~V}_{\mathrm{K}_{1}}$
$\mathrm{V}_{\mathrm{S}} \quad=$ cruise ship speed in $\mathrm{ft} / \mathrm{sec}=1.6878 \mathrm{~V}_{\mathrm{K}}$
$\mathrm{T}_{\mathrm{d}}{ }^{\mathrm{c}}$ = thrust requirement in 1 b for each waterjet at design speed $=T_{1} / n_{p r}$
$\begin{aligned} & T_{c} \quad= \text { thrust in } 1 b \text { for each waterjet at cruise } \\ & \text { speed }=T_{2} / n \text { or } T_{2} / n \text { when } n_{\text {au }}=0\end{aligned}$
$\begin{aligned} V_{J B} & =b o l l a r d \text { jet velocity in } \mathrm{ft} / \mathrm{sec} \text { at full power } \\ & =\mathrm{K}_{1} \mathrm{~V}_{\mathrm{S}_{\mathrm{d}}}\end{aligned}$
$\begin{aligned} \Delta \mathrm{V}_{\mathrm{J}} & =\text { increase in jet velocity due to IHR at } \mathrm{V}_{\mathrm{S}_{\mathrm{d}}} \\ & =\mathrm{K}_{2} \mathrm{~V}_{\mathrm{S}_{\mathrm{d}}}\left[\left(\mathrm{V}_{\mathrm{JB}_{\mathrm{d}}} / \mathrm{V}_{\mathrm{S}}\right)+1\right]-1.737\end{aligned}$
$\begin{aligned} \mathrm{V}_{\mathrm{J}} & =\text { jet velocity in } \mathrm{ft} / \mathrm{sec} \text { at } \mathrm{V}_{\mathrm{S}_{\mathrm{d}}} \\ & =\mathrm{V}_{\mathrm{JB}}^{\mathrm{d}}\end{aligned}$
$\begin{aligned} Q_{d} & =\text { mass flow in } \mathrm{ft}^{3} / \mathrm{sec} \text { at } \mathrm{V}_{\mathrm{S}_{\mathrm{d}}}\end{aligned}$
$=A_{J} V_{J_{d}}$, if $A_{J}$ is input
$=T_{d} /\left[\mathrm{p}\left(\mathrm{V}_{J}-V_{S}\right)\right]$, if $A_{J}$ is not specified

AJ	$A_{J}=\quad \begin{gathered}\text { area of } \\ \\ \text { Card 12A }\end{gathered}$ iet in $f=Q_{d} / V_{J}$ or value from
AI	$\begin{aligned} \mathrm{A}_{\mathrm{I}} & =\text { open area of pump inlet in } \mathrm{ft} \\ & =\left(\pi D^{2} / 4\right)\left(1-D_{h} / \mathrm{D}^{2}\right), \text { if } D \text { is input } \\ & =\mathrm{T}_{\mathrm{d}} \sigma_{\mathrm{TIP}}{ }_{\mathrm{d}} / \tau_{c_{d}} /\left(\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{H}}-\mathrm{p}_{V}\right), \text { if } D \text { not specified } \end{aligned}$
VID	$V_{I}=$ average flow velocity into punp inlat at
DMAX	$D_{\max }=$ maximum impeller diameter in ft, so that the center of rotating axis will not be above the still waterline
	$=H_{t}{ }^{\prime} / 1.25$, where $H_{t}{ }^{\prime}$ is draft at $1 / 4$ buttock at transom
DFT	$\begin{aligned} D \quad & =\text { diameter of pump impeller in } \mathrm{ft} \\ & =D_{\text {in }} / 12, \text { if } D_{\text {in }} \text { is input } \end{aligned}$
	$=\left[4 A_{I} / \pi\left(1-D_{h}^{2} / D^{2}\right)\right]^{1 / 2}$, if $D_{\text {in }}$ not specified If $D$ calculated $>D$
DIN	$D_{\text {in }}=$ diameter of pump impeller in inches   $=12 \mathrm{D}$, or value input on Card 12
DHPMAX	$\begin{aligned} P_{\max } & =\text { maximum input horsepower } \\ & \left.=6 \mathrm{~A}_{\mathrm{J}}{ }{ }_{\mathrm{JB}}{ }_{\mathrm{d}}{ }^{3} / 620.517\right)^{0.94733} \end{aligned}$
RPMMAX	$\begin{aligned} N_{\max } & =\text { pump speed in rpm at full power } \\ & \left.=60\left[p_{A}+p_{H}-p_{V}\right) /\left(1 / 2 \rho \sigma_{T I P_{d}}\right)-v_{I_{d}}\right]^{1 / 2} /(\pi D) \end{aligned}$
Y	Index for DO LOOP $\mathrm{I}=1, \mathrm{NV}$ ( $\mathrm{NV}=$ number of oreeds $=2$ )
	$\begin{aligned} \mathrm{V}_{S_{i}}= & \text { ship speed in } \mathrm{ft} / \mathrm{sec} \text { (design speed, cruise } \\ & \text { speed, } i=1,2 \text { ) } \end{aligned}$
J	Index for DO LOOP $\mathrm{J}=1$, NHP ( $\mathrm{NHP}=4$ )   Calculate thrust at 4 selected values of horsepower   Interpolate to obtain horsepower required at specified speed
HP (J)	$P_{j} \quad=$ selected horsepower $=(J / 4) P_{d}$
VJB	$\begin{aligned} \mathrm{V}_{\mathrm{JB}} & =\text { bullard jet velocity } \mathrm{inf}_{\mathrm{in}} \mathrm{ft} / \mathrm{sec} \text { at } \mathrm{P}_{\mathrm{j}} \\ & =\left[620.517 \mathrm{P}_{\mathrm{j}}^{1.0556} /\left(\mathrm{A}_{\mathrm{J}}\right)\right]^{1 / 3} \end{aligned}$

$$
\begin{aligned}
\Delta V_{J}= & \text { increase in jet velocity at } P_{j} \text { and } V_{S_{i}} \\
= & K_{2} V_{S_{i}}\left[\left(V_{J B_{j}} / V_{S_{i}}\right)+1\right]^{-1.737} \\
V_{J}= & j e t \text { velocity at } P_{j} \text { and } V_{S_{i}}=V_{J B_{j}}+\Delta V_{J} \\
Q_{j}= & \text { mass flow at } P_{j} \text { and } V_{S_{i}}=A_{J} V_{J} \\
T_{j}= & \text { thrust in } 1 b \text { at } P_{j} \text { and } V_{S_{i}} \\
= & 0 Q_{j}\left(V_{J}-V_{S_{i}}\right) \\
P_{i}= & \text { input horsepower for required thrust at } \\
& \text { specified ship speed, interpolated from } \\
& \text { array of } P_{j} \text { vs } T_{j} \text { at input value of } T_{i}
\end{aligned}
$$

RPM(I)

$$
=N_{\max }\left(P_{i} / P_{\max }\right)^{1 / 3}
$$

$$
\begin{aligned}
& V_{J B}=\text { bollard jet velocity at reruired input } \\
& \text { horsepower in } f t / s e c
\end{aligned}
$$

$$
=\left[620.517 \mathrm{P}_{\mathrm{i}}^{1.0556} /\left(0 \mathrm{~A}_{\mathrm{J}}\right)\right]^{1 / 3}
$$

$$
\Delta V_{J_{i}}=\text { increase in jet velocity due to IHR }
$$

$$
=K_{2} V_{S_{i}}\left[\left(V_{J B_{i}} / V_{S_{i}}\right)+1\right]^{-1.737}
$$

$?$

$$
\begin{aligned}
& V_{J}=\text { jet velocity in } \mathrm{ft} / \mathrm{sec}=V_{J B_{i}}+\Delta V_{J_{i}} \\
& Q_{i}=\text { mass flow in } \mathrm{ft}^{3} / \mathrm{sec}=A_{J} V_{J_{i}}
\end{aligned}
$$

V1

$$
\begin{aligned}
V_{I_{i}}= & \text { average flow velocity into pump inlet in } \\
& f t / s e c=Q_{i} / A_{T}
\end{aligned}
$$

$$
\mathrm{ft} / \mathrm{sec}=\mathrm{Q}_{\mathrm{i}} / \mathrm{A}_{\mathrm{I}}
$$

SIG(I)

$$
\sigma_{i}=\text { cavitation number }=\left(p_{A}+p_{H}-p_{V}\right) /\left(1 / 2 \rho V_{I}^{2}\right)
$$

RPS

$$
\mathrm{n}_{\mathrm{i}} \quad=\text { pump speed in } \mathrm{rps}=\mathrm{N}_{\mathrm{i}} / 60
$$

SIGTIP

$$
\sigma_{\mathrm{TIP}}^{i} 10 \text { impeller tip velocity cavitation number }
$$

TAUC

$$
=\left(P_{A}+P_{H}-P_{V}\right) /\left[1 / 2 \rho\left(V_{I_{i}}^{2}+\pi^{2} n_{i}^{2} D^{2}\right)\right]
$$

$$
\begin{aligned}
{ }^{\tau_{c}} c_{i} & =\text { thrust load coefficient } \\
& =T_{i} /\left[1 / 2 \rho A_{I}\left(V_{I_{i}}^{2}+\pi^{2} n_{i}^{2} D^{2}\right)\right]
\end{aligned}
$$

TCMAX

$$
\tau_{\max _{i}}=\text { cavitation limit on thrust load coefficient }
$$

$$
i=\sigma_{T I P_{i}}+0.14 \mathrm{~K}_{3}
$$

TCD (I)
QG (I)
pawe -p

$$
\left(\tau_{\max }^{i}-\tau_{c_{i}}\right) \text { negative value indicates cavitation }
$$

$$
\mathrm{Q}_{\mathrm{i}}^{\prime}=\text { mass flow in gal/min }=448.828 \mathrm{Q}_{\mathrm{i}}
$$

XNPSH ( I )	$\begin{aligned} \text { NPSH }_{i} & =\text { net positive suction head } \\ & =\left(\mathrm{V}_{\mathrm{I}}^{2} / 2 \mathrm{~g}\right)(1+\sigma) \end{aligned}$
SS (I)	$\begin{aligned} \mathrm{S}_{S_{i}} & =\text { suction specific speed } \\ & =N_{i}\left(Q_{i}^{\prime}\right)^{1 / 2} /(\mathrm{NPSH})^{3 / 4} \end{aligned}$
XJ (I)	$J^{\prime}{ }_{i}=$ effective advance coefficient $=V_{T} / n_{i} D$
PRNN	$\begin{aligned} \mathrm{n}_{\mathrm{po}_{i}} & =\text { number of pumps in operation } \\ & =n_{\mathrm{pr}} \text { at design speed }(i=1) \\ & =n_{\text {aux }} \text { at cruise speed if } n_{\text {aux }}>0(i=2) \\ & =n_{p r} \text { at cruise speed if } n_{\text {aux }}=0(i=2) \end{aligned}$
DHP ( I )	$\begin{aligned} P_{D_{i}} & =\text { total horsepower developed at pumps } \\ & =P_{i} n_{p o} \end{aligned}$
SHP (I)	$P_{S_{i}}=\text { total Shaft horsepower }=P_{D_{i}}$

NAME:

PURPOSE:

CALLING SEQUENCE:

SUBPROGRAMS CALLED:

SUBROUTINE DISCOT

Single or double interpolation for continuous or discontinuous function using Lagrange's formula
CALL DISCOT (XA, ZA, TABX, TABY, TABZ, NC, NY, NZ, ANS)
UNS, DISSER, LAGRAN
These subroutines are concerned with the interpolation, and are not documented separately

INPUT:
XA

2A

TABX array
TABY array
TABZ array
NC

NY
NZ
oUTPUT:
ANS
$x$ value (first independent variable) for interpolated point
$z$ value (second independent variable) for interpolated point
Same as x value for single-1ine function interpolation
Table of $x$ values--first independent variable
Table of $y$ values--dependent variable
Table of $z$ values--second independent variable
Three digit control integer with $\pm$ sign
Use + sign if $N X=N Y / N Z=$ points in $X$ array
Use - sign if $N X=N Y$
Use 1 in hundreds position for no extrapolation above maximum $Z$

Use 0 in hundreds position for extrapolation above maximum $Z$

Use 1-7 in tens position for degree of interpolation desired in X direction
Use 1-7 in units position for degree of interpolation desired in $Z$ direction

Number of points in $y$ array
Number of points in $z$ array
$y$ value (dependent variable) interpolated at $x, z$
DISCOT is a "standard" routine used at DTNSRDC. Consult User Services Branch of the Computation, Mathematics and Logistics Department for additional information.

NAME:
PURPOSE:

CALLING SEQUENCE:
INPUT:
M

N
XA
$X$ array

OUTPUT:
MINP

FUNCTION MINP

Select index of minimum $x$ value to be used for Lagrange interpolation, from an array of $x$ values greater than required
$I=\operatorname{MINP}(M, N, X A, X)$
$m=$ number of points required for interpolation of degree m-1
$n=$ total number of points in $x$ array $\geq m$ $x$ value to be used for interpolation
Table of $x$ values, must be in ascending order, but need not be equally spaced

Index of minimum $x$ value from the array to be used by FUNCTION YINTE for Lagrange interpolation of degree m-1
SAMPLE PROGRAM USING FUNCTIONS MINP AND YINTE:
DIMENSION X(10), $Y(10)$
$\mathrm{N}=10$
$M=4$
$\operatorname{READ}(5,10)(X(J), J=1, N),(Y(J), J=1, N), X A$
$I=\operatorname{MINP}(\mathrm{M}, \mathrm{N}, \mathrm{XA}, \mathrm{X})$
$Y A=Y I N^{\prime}{ }^{\prime} E(X A, X(I), Y(I), M)$

ALTERNATE PROGRAM USING FUNCTION YINTX: DIMENSION $\mathrm{X}(10), \mathrm{Y}(10)$ $\mathrm{N}=10$
$M=4$
$\operatorname{READ}(5,10)(\mathrm{X}(\mathrm{J}), \mathrm{J}=1, \mathrm{~N}),(\mathrm{Y}(\mathrm{J}), \mathrm{J}=1, \mathrm{~N}), \mathrm{XA}$
$Y A=Y \operatorname{INTX}(X A, X, Y, M, N)$

The result from either program is the same. In either case, only the M points closest to XA are considered in the interpolation formula. The first combination should be used whenever several dependent variables are to be interpolated at some value of the independent variable, since MINP need only be called once. FUNCTION YINTE may be used alone whenever $N=M$.

NAME:
PURPOSE:

CALIING SEQUENCE: YA $=$ YINTE (XA, $\mathrm{X}, \mathrm{Y}, \mathrm{N}$ )
INPUT:
XA
X array

Y array
N
OUTPUT:
YINTE

## FUNCTION YINTE

 formulaTable of $y$ values--dependent variable

Single interpolation of degree $n-1$ for function represented by $n(x, y)$ points using Lagrange's
$x$ value (independent variable) for interpolated point
Table of $x$ values--independent variable
$x$ values can be in either ascending or descending order and do not need to be equally spaced
$n=$ number of ( $x, y$ ) values defining the function

Interpolated y value (dependent variable) derived from Lagrange formula of degree $n-1$
For example, when $n=4$, cubic interpolation is performed

Lagrange's Interpolation Formula
$y=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdot \cdots\left(x_{0}-x_{n}\right)} y_{0}$ $+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \cdot \cdots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \cdot \cdots\left(x_{1}-x_{n}\right) y_{1}}$ $+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right) \cdot \cdot\left(x-x_{n}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right) \cdot \cdot\left(x_{2}-x_{n}\right)} y_{2}+. \cdot$. $+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right)\left(x_{n}-x_{2}\right) \cdot\left(x_{n}-x_{n-1}\right)} y_{n}$

NAME:
PURPOSE:

CALLING SEQUENCE: INPUT:

XA
X array
Y array
M

N
OUTPUT:
YINTX

## FUNCTION YINTX

Single interpolation of degree $m-1$ for function represented by $n$ ( $x, y$ ) points using Lagrange's formula. If $n>m$, only the $m$ closest points are considered in the interpolation formula
$\mathrm{YA}=\mathrm{YINTX}$ (XA, X, Y, M, N)
$x$ value (independent variable) for interpolated point
Table of $x$ values--independent variable $x$ values must be in ascending order, but, need not be equally spaced
Table of $y$ values--dependent variabie
$m=$ number of ( $x, y$ ) values considered for the interpolation process of degree m-1
$n=$ total number of ( $x, y$ ) values $\geq m$

Interpolated y value (dependent variable) derived from Lagrange formula of degree $m-1$
FUNCTION YINTX may be used instead of FUNCTION MINP and FUNCTION YINTE together
See Sample Programs using these three functions

## NAME:

## PURPOSE:

FUNCTION SIMPUN

Numerical integration of area under curve defined by set of ( $x, y$ ) points at either equal or unequal intervals

CALLING SEQUENCE: AREA $=\operatorname{SIMPUN}(X, Y, N)$
INPUT:

$X$ array	Table of $x$ values--independent variable      x values must be in ascending order
Y array	Table of $y$ values--dependent variable
N	Number of $(x, y)$ values

OUTPUT:
SIMPUN Area under curve $\approx \int \ddot{y} d x$
NAME: FUNCTION C1DSE

PURPOSE: Calculate Schoenherr frictional resistance coefficient
CALLING SEQUENCE: $\mathrm{CF}=$ C1DSF (XN1RE)
INPUT:
XN1RE $\quad R_{n}=$ Reynolds number $=V L / V$
OUTPUT:
C1DSF $\quad C_{F}=$ Schoenherr frictional resistance coefficient
PROCEDURE: Iteration with Newton-Raphson method Schoenherr formula: $0.242 / \sqrt{C_{F}}=\log _{10} R_{n} C_{F}$


Note: Angle A must be in radians for trigonometric functions SIN, COS, TAN.




SArifle:
29209
15.25
15
$18^{0.00}$ 7

15


FROFELLER CHAFACTEFISTICS
$1 F R O F=1 \quad \mathrm{FF} / \mathrm{II}=1.000$
$E A F=.700$
3．ELALIES

	$\begin{gathered} \mathrm{T} 1 \\ 1.2000 \end{gathered}$		$\begin{gathered} \mathrm{T} 2 \\ 1.0000 \end{gathered}$	$\begin{gathered} 01 \\ .2000 \end{gathered}$	$\begin{gathered} 02 \\ \cdot 9249 \end{gathered}$		$\begin{array}{r} \text { TCX } \\ .0497 \end{array}$	$\begin{array}{r} \text { acx } \\ .0099 \end{array}$		$\begin{aligned} & \text { FMFiX } \\ & .0000 \end{aligned}$	$\begin{array}{r} \text { AFPI } \\ .2304 \end{array}$		$\text { SIGKA }=$	$\begin{gathered} 1.00 \\ \mathrm{KO} \end{gathered}$	SIGMA:	$\begin{aligned} & .75 \\ & k 0 \end{aligned}$	$\begin{gathered} \operatorname{SIGMA}= \\ K T \end{gathered}$	$\begin{aligned} & 50 \\ & \mathrm{kO} \end{aligned}$
1	OFEN－WATER C		CHAFACTEFISTICS		$\begin{gathered} \text { SIGHA }= \\ \text { HiT } \end{gathered}$	$\begin{gathered} 6.00 \\ 8.0 \end{gathered}$	$\begin{aligned} & \text { SIGMA }= \\ & \text { KT } \end{aligned}$	$\begin{gathered} 3.50 \\ 1.0 \end{gathered}$	$\begin{aligned} & \text { GIGMA }= \\ & \text { KT } \end{aligned}$	$\begin{gathered} 2.00 \\ K 0 \end{gathered}$	$\text { SIGMA }=$	$\begin{gathered} 1.50 \\ k 0 \end{gathered}$						
． 000	． 490	． 0734	4.000	0.000	． $054 *$	． 0098	． $054 *$	． 0090	．054＊	． 0098	． $054 *$	． 0098	．054＊	． 0098	．054＊	． 0098	．051＊	． 0090
． 005	． 488	． 0732	2.005	0.000	．054＊	． 0098	． 0547	． 0093	．054＊	． 0098	．054＊	． 0093	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098
． 010	． 487	． 0730	0.011	0.000	．054＊	． 0098	．054＊	． 0093	－054＊	． 0097	． $054 *$	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098
． 015	． 485	． 0728	8.016	0.000	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098
． 020	． 483	． 0726	$6 \quad .021$	0.000	．054＊	． 0098	．054＊	． 0090	．054＊	． 0099	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098
． 0.25	． 482	． 0723	3.026	0.000	．054＊	． 0098	－054＊	． 0073	．054＊	． 0093	． 054 ＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098
． 035	． 478	． 0719	9.037	0.000	．054＊	． 0098	．059＊	． 0098	．0514	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098
． 050	． 473	． 0712	2.053	0.000	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098	．054＊	． 0098
． 075	． 454	． 0700	0.079	82.506	．054＊	． 0098	．054＊	． 0093	．054＊	． 0098	．054＊	． 0098	．054 4	． 0098	．054＊	． 0098	．054＊	． 0098
． 100	． 455	． 0688	8.105	45.499	．054＊	． 0099	．054＊	． 0079	．054＊	． 0099	．054＊	． 0099	．059＊	． 0099	．054＊	． 0099	．054＊	． 0099
． 125	． 446	． 06576	6.131	28.522	．054＊	.0099	． $054 *$	． 0099	．054＊	． 0099	．054＊	． 0097	．054＊	． 0099	． 054 ＊	． 0099	．054＊	． 0099
． 150	． 436	． 0663	3.157	19.381	．055＊	． 0099	．055＊	． 0099	．055＊	． 0099	．055＊	． 0099	．055＊	． 0099	．055＊	． 0099	．055＊	． 0099
． 175	． 426	． 0650	0.183	13.919	．055＊	． 0099	．055＊	． 0059	．055＊	． 0099	． $055 *$	． 0099	．055＊	． 0099	．055＊	＋0099	．0s5＊	． 0077
$\therefore 200$	． 416	． 0636	6.203	10.407	．055＊	． 0111	．05ら＊	． 0099	． 055	.0099	．055＊	． 0099	． $055 *$	． 0099	．055＊	． 0009	． 055 \％	． 0099
． 225	． 406	． 0623	$3 . .234$	8.021	．087＊	． 0138	．05S＊	． 0097	． 055 ＊	． 0099	．055＊	． 0099	．055＊	.0099	．055＊	.0059	． $055 *$	． 0099
． 250	． 395	． 0609	9.259	6.330	．083＊	． 0168	．055＊	． 0102	．055＊	.0100	．055＊	． 0100	．055＊	． 0100	．055＊	.0100	．055＊	． 0100
． 275	． 395	． 0594	4.284	5.092	．100＊	． 0200	．059＊	． 0121	．055＊	． 0100	．055＊	． 0100	．055＊	． 0100	．055＊	.0100	．055＊	． 0100
． 300	． 374	． 0580	0.308	4.159	．119＊	． 0235	． 070 ＊	． 0143	．055＊	.0100	．055＊	.0100	． $055 *$	.0100	．055＊	.0100	．055＊	． 0100
． 355	． 363	． 0565	5.333	3.440	．140＊	．0273	．082＊	． 0166	．055＊	． 0101	．055＊	． 0101	．055＊	． 0101	．055＊	． 0101	．055＊	． 0101
． 350	． 352	． 0550	0.357	2.875	． 163 ＊	． 0313	．095＊	． 0190	． 056 ＊	． 0113	．056＊	.0101	． 056 ＊	.0101	．056＊	.0101	． 056 ＊	． 0101
． 375	． 341	． 0535	5.380	2.425	．187＊	． 0355	．109＊	． 0216	．052＊	． 0129	．056＊	.0101	． 056 ＊	． 0101	．056＊	． 0101	．056＊	． 0101
． 400	． 330	． 0520	0.404	2.060	．212＊	． 0401	．124＊	． 0243	．071＊	． 0145	．05s＊	． 0111	． 055 ＊	． 0102	．055＊	． 0102	．056＊	． 0102
． 475	． 318	－0504	4.427	1.751	．240＊	． 0148	．140＊	．0272	．030＊	． 0162	．050＊	． 0124	． 0553	． 0102	．056＊	． 0102	．056＊	.0102
． 450	． 306	． 0488	8.449	1.513	．269＊	． 0498	．157＊	． 0303	．050＊	.0180	．057＊	． 01313	．057＊	． 0102	．057＊	.0102	．057＊	． 0102
． 475	＋ 295	.0473	3.471	1.306	． 295 C	． 0473	．175＊	． 0335	．100＊	． 0199	．075＊	． 0153	．057＊	.0105	．0¢7＊	.0103	．05）＊	． 0103
． 500	． 283	． 0457	7.493	1.131	． 28310	．0457	．194＊	． 0368	． 111 ＊	． 0219	．083＊	． 0158	．057＊	． 0116	．057＊	.0103	．057＊	.0103
－525	． 271	． 0441	1.514	． 983	． 271 C	． 0411	．213＊	.0403	－122＊	.0240	． 091 ＊	． 0184	．061＊	.0127	．057＊	． 0104	．057＊	． 0101
． 550	． 259	． 0424	4.534	． 855	． 259 C	． 0424	． $234 *$	． 0424	．134＊	． 0262	．100\％	． 0201	．067＊	． 0133	． $058 \%$	． 0106	．0s8＊	． 0105
． 575	． 247	． 0408	8.553	． 746	.247	． 0408	． 247 C	． 0409	．143＊	． 0284	＋110＊	． 0218	．073＊	.0150	．058＊	． 0115	． 05 E＊	． 0105
． 600	.234	． 0392	2.572	． 651	． 234	． 0392	． 234 C	． 0392	．159＊	． 03.08	．119＊	． 0236	．080＊	． 0162	．060＊	． 0124	． 058 ＊	.0103
． 625	． 222	． 0375	5.589	． 567	． 222	． 0375	．222c	． 0375	－173＊	． 0332	．130＊	． 0255	．036＊	． 0175	．05E＊	.0134	．059\％	． 0106
． 650	． 210	． 0359	9.605	． 497	． 210	．0359	． 210 C	． 0359	．187＊	． 0357	．140＊	． 0274	．083＊	． 0188	．070＊	． 0144	．059＊	． 0107
． 675	． 197	．0342	2.620	． 433	． 197	． 0342	． 197	.0342	．197C	． 0342	． $151 \%$	． 0294	．101＊	． 0202	． $076 *$	． 0155	．059＊	． 0108
.100	． 185	． 0325	－ 634	． 378	． 185	． 0335	． 185	． 0325	． 185 c	． 0325	．163＊	． 0314	．109＊	． 021.6	．081＊	． 0163	． 050 ＊	． 0114
． 725	.173	． 0309	9.645	． 328	.173	． 0307	． 173	． 0309	． 173 C	． 0309	． 173 C	． 0309	．116＊	． 0231	．087＊	． 0177	．050\％	．0121
． 750	． 160	． 0292	2.655	． 285	． 160	． 0292	． 150	． 0292	． 150 C	． 0292	． 130 C	． 0292	－124＊	．0246	． 075	． 0183	．0くこ＊	． 0129
． 775	． 148	． 0275	5.652	． 246	.148	． 0275	． 148	． 0275	． 148	.0275	． 1480	． 0275	．133k	． 0261	．100＊	． 0200	．0．35＊	． 0138
． 000	．135	． 0255	9.666	． 211	.135	． 02589	． 135	． 0259	.135	． 0259	.1350	．0259	． 135 C	．0259	． $106 *$	． 0212	． $071 *$	． 0146
． 895	． 123	． 0242	2.866	． 180	.123	． 0242	． 123	． 0212	． 123	.0242	． 123	． 0242	．123C	． 0242	． 1134	．0225	．075＊	． 0155
． 050	． 110	． 0226	6.662	． 153	． 110	． 0226	． 110	． 0236	． 110	． 0225	． 110	． 0226	． 110 C	． 0225	.110 C	． 0223	．080＊	． 0163
． 875	． 098	． 0209	9.653	． 128	． 098	． 0209	． 098	． 0209	． 098	． 0209	． 098	． 0209	． 098	.0209	． 098 C	． 0207	．095＊	． 0173
． 900	． 086	． 0193	3.637	.106	． 086	． 0193	． 086	.0193	． 086	.0193	． 1996	.0193	． 036	． 0193	． 086	． 0193	．006c	． 0182
．925	． 073	． 0176	6.612	． 086	.073	． 0176	． 073	． 0176	． 073	． 0176	． 073	． 0176	.073	． 0176	.073	． 0176	． 07.30	． 0175
．950	． 031	． 0160	－ 577	． 068	． 061	． 0160	． 061	． 0160	． 061	． 0160	． 061	． 0160	． 061	． 0160	． 061	． 0160	． 061	.0160
． 975	． 049	． 0144	4 ．527	． 051	． 049	． 0141	． 049	． 0144	． 049	． 0144	． 049	.0144	． 049	． 0144	． 049	． 0144	． 049	．0144
1.000	． 037	． 0128	8.457	． 037	． 037	． 0128	． 037	.0128	． 037	． 0128	． 037	． 0128	． 037	.0128	． 037	． 0128	． 037	． 0129
1.025	．025	． 0112	2.359	． 024	． 025	． 0112	． 025	． 0112	． 025	． 0112	． 025	.0112	． 025	． 0112	． 025	． 0112	． 025	． 0112
1.050	.013	.0097	7.221	． 012	.013	． 0097	.013	． 0097	． 013	． 0077	． 013	.0097	.013	.0097	.013	.0097	.013	.0097
9：075	． 001	． 0081	1.019	． 001	.001	． 0081	.001	.0081	． 001	.0081	． 001	.0081	． 001	． 0081	.001	． 0081	． 001	.0031

[^6]

HULL STFUCTUFES GFF (E-H)





FAYLOAD FEGUIFEMENTS
$W T=11200 . \operatorname{LRS}$
VOL $=1000 . \mathrm{FT} 3$
UCG $=4.00 \mathrm{FT}+$ HULL HEFTH
FAYLOAH IIENSITY= $11.20 \mathrm{LES} / \mathrm{FT} 3$

VCHICLE HENSITY =   PGYLOAT UENSITY =	$\begin{array}{r} 21.02 \mathrm{LE} \\ 9.77 \mathrm{LE} \end{array}$	$\begin{aligned} & S / F T 3 \\ & S / F T 3 \end{aligned}$	GFOUF 1   STFUUCT.	$\begin{aligned} & \text { GROUF } 2 \\ & \text { FROF } \end{aligned}$	GROUF   ELEC.	GE:OUF CONM.	$\begin{aligned} & \text { GROUF } \mathrm{S} \\ & \text { AUX.SYS. } \end{aligned}$	GROOUF 5 OUTFIT	$\begin{aligned} & \text { EMFIY } \\ & \text { SHIF } \end{aligned}$	USEFUL LOALI	CREH tFFOU.	FUEL LOAFI	$\begin{aligned} & \text { PAY } \\ & \text { LOAI } \end{aligned}$
UEIGHT/TOTAL WT.	(279876.	LES )	. 1708	. 2095	. 0462	. 0050	. 0507	. 0554	. 5376	. 4624	. 0222	. 4002	. 0100
WEIGHT IN LES			47803.	58358.	12933.	1691.	14176.	15510.	150471.	129405.	6205.	112000	11200.
WLIGHT IH TOMS			21.341	26.053	5.773	. 755	6.329	4.924	67.174	159.770	2.7\%	50.000	11200. 5.000
YCG/HOLL IIEFTH	110.00	FT,	. 6770	. 5483	. 8231	. 3755	. 7223	. 8486	. 6638	1.0677	. 4076	. 6054	3.0558
			6.77	5.49	8.23	8.76	7.22	8.49	6.64	10.68	+4.03	+6054 5.05	$60.5 \text { ك }$
* O-DULUME/TOTAL VOL.	118326.	FT3)	. 0926	.1547	0.0000	. 1036	. 1731	. 2737	. 9076	.1924	. 0068	. 1231	. 0525
". EVOLUME IN FT**3			1696.5	3018.2	0.0	1999.6	3171.8	5015.4	14800.4	3525.5	124.1	2255.4	1145.0
			$P A C$	1 F	nn	Afo	-NE	$P Q T$	-7				

[^7]GAGH-EUFFILL FFOFELLEFS
SAMFLLE
(0cr 82)



EMTURANCE WITH FRIME MOUERS

U-KT	EHF	SFC	VinllGE-HK	HOURS
10.0	301.	3.082	1145.	114.63
15.0	1440.	1.099	1009.	67.27
20.0	2861.	.773	962.	48.10
22.5	3461.	.711	973.	43.23
25.0	4110.	.663	976.	39.06
27.5	4966.	.622	967.	35.18
30.0	5774.	.585	944.	31.48
35.0	7910.	.531	887.	25.35
40.0.	1055.	.492	920.	20.51
45.0	13263.	.457	774.	17.20
37.2	7000.	.510	861.	23.18

GAWH-EUFFILL FEOFELLERS
SAMF:LE
(OCT 82)


	$\begin{aligned} & \text { ESCI } \\ & \text { NO. } \end{aligned}$	WEIGHT   FRACTIDH	VOLUME   FRACTION	UCG / HULL IIEFTH	WEIGHT   (LES)	$\begin{aligned} & \text { WEIGHT } \\ & \text { (L.TONS) } \end{aligned}$	WEIGHT   (H. TOMS)	vOLUME   (FT**	$\begin{aligned} & \text { YOLUME } \\ & (M * * 3) \end{aligned}$	MUL T
LUAIS										
USEFUL LOAII	0	. 1624	. 1924	1.0577	129405.	57.770	58.697	3525.5	99.83	1.00
FUEL	0	. 4002	. 1231	. 6054	112000.	50.000	50.802	2255.4	63.87	1.00
CREW AUIT EFFECTS	1	. 0096	. 0002	. $7320^{\circ}$	2688.	1.200	1.219	3.4	. 10	1.00
FEESSOHMEL STOFES	6	. 0007	.0037	. 5350	191.	. 085	. 087	67.2	1.90	1.00
F-DTAELE WATER	12	. 0119	. 0029	. 1380	3326.	1.485	1.509	53.5	1.51	1.00
FAYLOAII	0	. 0400	.0625	6.0558	11200.	5.000	5.080	1146.0	32.45	1.00
hULL StRUCTURE										
	1	. 1708	. 0926	. 5770	47803.	21.341	21.683	1596.5	48.04	1.10
	100	. 0341	. 0189	. 1689	9537.	4.258	4.326	346.9	9.82	1.00
	100	. 0150	. 0215	. 6930	4194.	1.873	1.903	393.2	11.13	1.00
	101	. 0357	. 0127	. 6260	9984.	4,457	4.529	232.2	6.57	1.00
	103	0.0000	0.0000	0.0000	0.	0.000	0.000	0.0	0.00	1.00
	103	0.0000	0.0000	0.0000	0.	0.000	0.000	0.0	0.00	1.00
	107	. 0193	. 0251	1.0270	5402.	2.412	2.451	480.6	13.04	1.00
	114	. 0154	. 0144	. 5158	4304.	1.921	1.952	263.7	7.47	1.00
	114	0.0000	0.0000	0.0000	0.	0.000	0.000	0.0	0.00	1.00
	111	. 0179	0.0000	1.6000	5014.	2.238	2.274	0.0	0.00	1.00
	112	. 0079	0.0000	. 1500	2224.	. 993	1.009	0.0	0.00	1.00
;	113	. 0070	0.0000	.7900	1945.	. 868	. 882	0.0	0.00	1.00
	198	. 0030	0.0000	. 6770	852.	. 380	. 387	0.0	0.00	1.00
	199	. 0155	0.0000	. 3770	4346.	1.940	1.971	0.0	0.00	0.00
FFROFULSION										
	2	. 2085	. 1547	. 5483	58358.	23.053	25.471	3018.2	85.45	1.00
.	201	. 0766	. 1346	. 6150	21450.	9.576	9.730	2466.0	69.83	1.00
	203	. 0347	0.0000	0.0000	9706.	4.333	4.403	0.0	0.00	1.00
	204205	. 0144	. 0301	1.1300	4032.	1.800	1.829	552.2	15.54	1.00
.	$206$	. 0036	0.0000	. 6150	1008.	. 450	. .457	0.0	0.00	1.00
-	209	. 0025	0.0000	. 6150	726.	. 324	. .329	0.0	0.00	1.00
	210	. 0655	0.0000	. 6150	18332.	8.194	8.315	0.0	0.00	1.00
	$211$	. 0026	0.0000	. 6150		. 324	. 329	0.0	0.00	1.00
$\cdot$	250251	. 0085	0.0000	. 6150	, 2379.	1.062	1.079	0.0	0.00	1.00
.	299	0.0000	0.0000	. 5483	0.	0.000	0.000	0.0	0.00	0.00
ELECTKIC FLANT										
	3	. 0462	0.0000	. 8231	12933.	5.773	5.866	0.0	0.00	1.10
	300	. 0216	0.0000	. 8300	6036.	2.695	2.738	0.0	0.00	1.00
	301	. 0051	0.0000	. 7850	1438.	.642	. 652	0.0	0.00	1.00
	302	. 0125	0.0000	. 6990	3489.	1.558	1.503	0.0	0.00	1.00
	303	. 0028	0.0000	1.3830	794.	. 355	. 360	0.0	0.00	1.00
	399	. 0042	0.0000	. 8231	1176.	. 525	. 533	0.0	0.00	0.00

SAMPLE (OCT 82)


COMAUNICATION AHI COMTEOL
$\angle L 1$


MULT

124.94-ton flaning hull feasieility monel gall-bukitll fropellers sample (oct 82)


$\begin{aligned} & 1.0 G-F T \\ & 108 . ? \end{aligned}$	$\begin{array}{r} L F \cdot-F T \\ 100.00 \end{array}$	$\begin{array}{r} E D A-F T \\ 22.24 \end{array}$			$\begin{aligned} & \text { LF/EFX } \\ & 5.56 \end{aligned}$	$\begin{array}{r} \mathrm{BF} A-\mathrm{FT} \\ 1.3 .33 \end{array}$	$\begin{aligned} & H H-F T \\ & 10.00 \end{aligned}$	$\begin{array}{r} \text { IZS-FT } \\ 0.00 \end{array}$	$\begin{gathered} \text { HULI. } 5 \\ \hline \end{gathered}$	$\begin{array}{r} \text { LCS }-F T \\ 0.00 \end{array}$	$\begin{array}{r} \text { FCS-FT } \\ 0.00 \end{array}$	$\begin{array}{r} \text { HCS }-\mathrm{FT} \\ 0.00 \end{array}$
$\begin{gathered} \text { HISFL-1. } \\ 2>9975 . \end{gathered}$	$\begin{gathered} \text { II ISF:L-TDHS } \\ 124.94 \end{gathered}$	$\begin{array}{r} H M-F T \\ 4.88 \end{array}$		V23	$\begin{gathered} \text { LF:/V13 } \\ 5.12 \end{gathered}$	$\begin{array}{r} K B-F T \\ 3.17 \end{array}$	$\begin{array}{r} {[M-F T} \\ 7.34 \end{array}$	$\begin{aligned} & K M-F \\ & 10.5 \end{aligned}$	$\begin{array}{r} \text { GM-FT } \\ 2.00 \end{array}$	$\begin{array}{r} \mathrm{KG}-\mathrm{F} \\ 8.5 \end{array}$		$\begin{gathered} 6-F T \\ +14 \end{gathered}$
Y/L.F.	X -FT	ZS-Fi	2C-FT	ZK-FT	YS-FT	YC-FT	YKi-FT	HETA-IIEG	AS-FTE VOL	-FT3		
0.000	0.00	9.12	2.12	. 86	8.50	9.01	0.00	7.98 .	133.80	0.00		
. 025	2.50	9.12	2.12	. 96	8.53	8.99	0.00	7.99	133.95	4.69		
. 050	5.00	9.22	2.17	. 81	8.57	8.98	0.00	8.59	135.83	1.21		
. 075	7.50	9.26	2.20	. 79	8.61	8.97	0.00	8.90	136.8410	2.23		
-100	10.00	9.31	2, 22	-68	8.64	9.08	0.00	9.60	$139.60 \quad 13$	7.41		
.150 .200	15.00 20.00	9.36 9.41	2.36 2.46	.64 .54	9.36 9.51	8.95	0.00	10.90	143.5720	6.17		
. 250	25.00	9.41 9.46	2.46 2.55	.54 .15	9.51 9.62	8.92 8.85	0.00 0.00	12.09 13.35	145.2227	9.11		
. 300	30.00	9.51	2.70	. 31	9.02	8.85 8.71	0.00 $0.0,0$	13.35 15.16	146.19 145.94	7.93		
. 350	35.00	9.55	2.81	. 19	9.93	8.60	0.00	16.94	147.54	1.77		
. 400	40.00	9.60	2.90	. 05	10.13	8.51	0.00	18.55	149.175	1.77		
. 450	45.00	9.75	3.00	. 01	10.55	8.22	0.00	19.93	151.20 64	4.33		
.500 .550	50.00 55.00	10.00	3.25	. 01	10.88	7.62	0.00	22.98	149.6472	7.93		
. 550	55.00 60.00	10.25 10.35	3.34	. 01	11.12	7.72	0.00	23.33	155.9479	8.61		
. 350	65.00	10.62	3.30 3.84	. 01	10.87	7.09	0.00	26.83	146.5787	1.82		
. 700	70.00	10.86	3.91	. 01	10.81 10.69	6.59 5.76	0.00	30.14	143.1494	3.76		
- 750	75.00	11.11	3.99	. 01	10.51	4.96	0.00 0.00	34.07 33.74	$\begin{array}{ll}132.79 & 101 \\ 129.89 & 109\end{array}$	4.74		
. 800	80.00	11.16	4.01	. 15	10.09	4.18	0.00	42.73	118.07114	3.57		
. 850	85.00	11.46	4.04	. 39	9.49	3.59	0.00	44.63	111.37120	5.03		
. 675	87.50	11.56	4.05	. 59	9.11	2.70	0.00	52.03	97.94122	8.07		
. 900	90.00	11.62	4.08	. 68	9.67	2.31	0.00	55.76	90.63125	2. 51		
.925 .950	92.50	11.86	4.11	1.19	7.12	1.52	0.00	59.95	71.03127	7.13		
.950 .975	95.00 97.50	11.92 12.11	4.13 4.15	2.36 3.79	6.03	. 63	0.00	68.85	53.50 122	2. 36		
1.000	100.00	12.27	4.15	3.79 4.19	5.43 4.78	. 25	0.00	55.89	$45.30 \quad 130$	3.91		
1.087	108.70	12.67	0.00	12.67	4.78 0.00	.09 0.00	0.00 0.00	0.00 0.00	$\begin{array}{rrr}39.43 & 131 \\ 0.00 & 133\end{array}$	9. 34		



		$\begin{aligned} & \text { STATE } \\ & \text { T-FT } \end{aligned}$	$\begin{gathered} 1 \\ 1.92 \end{gathered}$	$\stackrel{2}{4.13}$	$\begin{gathered} 3 \\ 5.66 \end{gathered}$	$\begin{gathered} 1 \\ 7.36 \end{gathered}$	$\begin{gathered} 1 \\ 1.92 \end{gathered}$	$\begin{gathered} 2 \\ 4.13 \end{gathered}$	$\begin{gathered} 3 \\ 5.66 \end{gathered}$	$\begin{gathered} 4 \\ 7.36 \end{gathered}$		$\begin{gathered} 1 \\ 1.92 \end{gathered}$	$\stackrel{2}{4.13}$	$\stackrel{3}{5.56}$	$\begin{gathered} 4 \\ 7.36 \end{gathered}$	$\begin{gathered} 1 \\ 1.92 \end{gathered}$	$\begin{gathered} 2 \\ 4.13 \end{gathered}$	$\begin{gathered} 3 \\ 5.63 \end{gathered}$	$\begin{gathered} 4 \\ 7.36 \end{gathered}$
	Snl	SKY	CG ACC (G)				HON ACC (G)				FIXETI	CO ficc (G)				How ACC (G)			
U-KT	K/W	TEIM						,	(B)		TEIM								
10.00	. 0538	2.77	. 08	. 17	. 24	. 31	. 39	. 82	1.12	1.45	2.50	. 08	. 17	. 23	. 30	. 37	. 79	1.09	1.41
15.00 20.00	. 0643	3.06	. 12	. 26	. 36	. 47	. 53	1.14	1.56	2.03	2.50	. 12	. 25	. 35	. 45	+37 +50	1.08	1.09 1.47	1.41 1.92
20.00 22.50	.0775 .0850	3.44 3.69	117 .19	. 36	. 19	. .73 .72	. 68	1.47 1.64	2.01 2.04	2.62	2. 50	. 16	. 34	. 47	. 60	. 42	1.33	1.47 1.83	1.92 2.30
2-00	. 0928	3.94	. 21	. 45	. 62	. 81	. 84	1.81	2.48	2.92	2.50 2.50	. 28	. 38	-5\%	. 68	. 38	1.46	2.00	2.60
.... -7.50	. 1008	4.21	. 21	. 51	. 69	. 90	.93	1.99	2.48	3. 3.55	2.50	. 22	.42 .47	.58 .54	.76	.73 .79	1.58 1.68	2.16	2.8.1
$\therefore$ "... 30.00	. 1035	4.48	. 26	. 56	. 76	. 99	1.01	2.17	2.97	3.87	2.50	. 24	. 51	. 70	.83	. 89	1.89 1.81	2.36 2.49	3.02
	1219 .1313	4.88 5.01	.31	. 66	.71 1.04	1.18	1.17	2.51	3.44	4.47	2.50	. 28	. 59	. 81	1.08	.84	1.81 2.03	2.48 2.78	3.22 3.62
$\therefore$-1. 75.00	.1380	4.90	.40	. 85	1.16	1.51	1.30 1.41	2.80 3.04	3.84 4.16	4.97 5.41	2.50 2.50	. 32	. 68	. 93	1.21	1.04	2.24	3.08	4.00
Q4.ss					1.16	1.51	$1 \cdot 71$	3.04	H.16	5.41	2.50	- 36	. 76	1.05	1.36	1.14	2.45	3.36	4.37

PACE 5 FROM SUBFOUTINE PRTOUT

flaming hull feasigility moliel
SAMFLE
(OCT 82)

1.10 A	LF.	$y \cdot x$	HH	HT	IISFL LE:	EETA	LCG	veg	W1	W2	W3	W4	W5	W6	WF	WCE	WF	W-I.T	$\operatorname{cost}$
97.8	90.0	18.00	10.00	4.28	273923.	23.0	34.6	8.2	20.0	25.8	5.6	. 7	6.0	6.5	50.0	2.8	5.0	122.3	3.60
109.7	100.0	18.00	10.00	4.01	279876.	23.0	33.1	$8 \cdot 5$	21.3	26.1	5.8	. 8	6.3	6.9	50.0	2.8	5.0	124.9	3.60
119.6	110.0	18.00	10.00	3.80	296363.	23.0	41.7	8.3	22.7	26.5	6.0	. 8	6.7	7.3	50.0	2.8	5.0	127.8	3.76



## DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH. Nical value. they carry a consecutive numerical identification regardless of THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES; CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN. TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

[^0]:    GRP is glass reinforced plastic, i.e., fiberglass.

[^1]:    *Parameters preceded by
    blank spaces
    blank spaces are ceded by an asterisk will bin left on input card. will be calculated by program if

    346

[^2]:    *Parameters preceded by an asterisk will be calculated by program if blank spaces are left on input card.

[^3]:    *Paraneters preceded by an asterisk will be calculated by program if blank spaces are left on input card.

[^4]:    * If auxiliary engines are used, the input value of cruise speed is superseded ha speed attainable. with a axiliary engines.

[^5]:    *UNITWT, THICKN, DEPTHA and DEPTHS are Statement Functions defined at beginning of Subroutine STRUCT.

[^6]:    

[^7]:    124.94-toh flaming hull feasifility model

