

RESEARCH AND DEVELOPMENT BRANCH DEPARTMENT OF NATIONAL DEFENCE CANADA

CROWN COPYRIGHT

٩.

١.

THIS DOCUMENT IS THE PROPERTY OF HER MAJESTY'S CANADIAN GOVERNMENT

ANY PERSON OTHER THAN THE AUTHORIZED HOLDER "PON OBTAINING POSSESSION OF THIS DOCUMENT BY FINDING OR OTHERWISE SHOULD FORWARD IT. TOGETHER WITH HIS NAME AND ADDRESS IN A CLOSED ENVELOPE, TO THE DEPARTMENT OF NATIONAL DEFENCE OR THE COMMISSIONER OF THE ROYAL CANADIAN MOUNTED POLICE. OTTAWA, ONT. POSTAGE NEED NOT BE PREPAID. ALL PERSONS ARE HEREBY WARNED THAT THE UNAU-THORIZED RETENTION OR DESTRUCTION OF THIS DOCU-MENT IS AN OFFENCE AGAINST THE OFFICIAL SECRETS ACT.

RESEARCH AND DEVELOPMENT BRANCH DEPARTMENT OF NATIONAL DEFENCE CANADA

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC

DARTMOUTH N.S.

DREA TECHNICAL MEMORANDUM 75 / A

THE PREDICTION OF FLAP- CONTROLLED HYDROFOIL SHIP STEADY STATE PERFORMANCE

E.A. JONES

M.C. EAME S 'B.V. DAVIS+ SEPTEMBER 1975

APPROVED BY T. GARRETT DIRECTOR /TECHNOLOGY DIVISION

DISTRIBUTION APPROVED

CHIEF DREA

RESEARCH AND DEVELOPMENT BRANCH DEPARTMENT OF NATIONAL DEFENCE CANADA

W QUEST ENGINEERING LTD.

ABSTRACT

A method is presented for prediction of the steady state performance characteristics of craft with hydrofoil **systems** of the fully-submerged type. The principles have fairly general application but the emphasis is on a canard hydrofoil system of type and size suitable for open ocean operation. Considerable use is made of empirical expressions, with some discussion of their underlying physical basis. Limited comparison is made with experimental data.

SOMMAIRE

On présente une méthode de prédiction des caractéristiques de performance d'un hydroptère, à vitesse constante, cap en avant, par temps calme, les ailes entièrement submergées. Les principes sont d'une applicabilité asses générale, mais on met l'accent sur l'hydroptère "canard", de modèle et de dimensions convenant à l'exploitation en pleine mer. On s'appuie dans une grande mesure sur les expressions empiriques, tout en abordant leur fondement théorique. On fait quelques comparaisons avec les données expérimentales. CONTENTS

		Page Nos.
Nome	enclature	Vi
1.	Introduction	1
2.	Foil and System Geometry	2
	2.1 General Configuration	2
	2.2 Foll Planiorm Geometry	3
	2.3 Struts and Pod Geometry	5
	2.5 Ship Geometry	6
3.	Section Characteristics	7
	3.1 Section Type	7
	3.2 Lift-Curve Slope	7
	3.3 Lift Coefficient	9
	3.4 Zero Litt Angle	10
	3.5 Lift due to Flaps	IU Flana 11
	3.7 Ditching Moment	Flaps 11 11
	5.7 Fitching Moment	
4.	Profile Drag	12
- •	4.1 Profile Drag at Ideal Incidence	12
	4.2 Effect of Surface Irregularities	14
	4.3 Profile Drag as a Function of Lift	15
	4.4 Profile Drag due to Flaps	15
	4.5 Final Expressions	15
5.	Finite Span Effects	16
	5.1 Edge Correction	16
	5.2 The Induced Angle	17
	5.3 The Induction Factor	18
	5.4 Corrections to Flap Effectiveness	20
	5.5 Downwash at Main Foil	21
	5.6 Pitching Moment	21
б.	Miscellaneous Drag Components	22
	6.1 Hull Air Drag	22
	6.2 Pod Drag	22
	6.3 Spray Drag	22
	6.4 Fence Drag	23
	6.5 Interference Drag	23
	6.6 Additional Minor Drags	23
7.	Steady State Performance Calculation	23
8.	Comparison of Results	25

Contents (Cont'd)

٠

.

9.	Concluding Remarks	26
	Table I	27
	Illustrations	28
	References	33
	Appendix A	35

NOMENCLATURE

(see Figures 2, 3, 4 α 5 for identification of suffix	(See	Figures	2,	3,	4	&	5	for	identification	of	suffixe
--	------	---------	----	----	---	---	---	-----	----------------	----	---------

Lower	Case
a'	theoretical section lift curve slope
b	projected foil span
^b f	projected flap span
С	foil chord
d	pod diameter
fь	flap span ratio
fc	flap chord ratio
g	standard gravitational acceleration
h	foil depth of immersion
i 1	foil incidence setting above zero lift angle
٤ _F	foil base length
٤ _P	length of pod
l s	projected strut length
n s	number of pods
q	dynamic pressure = $\frac{p v^2}{2}$
t	section thickness
x	x coordinate measured forward from cg
у	y coordinate measured to port from cg
Z	z coordinate measured upwards from cg

vi

- -

Upper	Case
A	aspect ratio
В	buoyancy
C _{DH}	coefficient of air drag for hull
CDI	coefficient of induced drag
C _{DP}	coefficient of profile drag
C _{DS}	coefficient of spray drag
C _F	coefficient of friction drag
C _{PF}	form factor for profile drag
c ₁	section operating lift coefficient
C _{li}	ideal section design lift coefficient
C'10	practical uncorrected design lift coefficient
C _{lo}	depth-corrected design lift coefficient
CL	foil operating lift coefficient
c _{Lα}	foil lift-curve slope
с _м	foil moment coefficient
° _m _δ	rate of change of moment coefficient with flap deflection
CPD	pod profile drag coefficient
DA	air drag of hull
Е	edge correction factor
F	Froude number
F _D	induction factor for drag
Fα	induction factor for angle
н _ь	hull depth from main superstructure top to keel
H w	maximum hull width

Vii

an an in

$^{\mathrm{K}}a$	depth correction factor for section lift-curve slope
К _е	section efficiency factor
κ _f	depth correction factor for two-dimensional $flap$ effectiveness
Ko	depth correction factor for section lift coefficient
L n	total lift due to foil element n
М	foil pitching moment
R	Reynolds number
S	projected foil area
s _f	projected foil area in way of flaps
U	ship speed
W	ship weight
Gree	<u><</u>
a	angle of attack
α _δ	foil flap effectiveness
αδο	uncorrected two dimensional flap effectiveness
αδο	depth-corrected two dimensional flap effectiveness
αi	initial foil incidence setting
a 0	depth-corrected zero lift angle
αι	induced angle
Ŷ	Breslin's wave function
δ	flap angle
ε _B	net downwash angle at bow foil
ζ	auxiliary function used in establishing induction factor
η	auxiliary function used in establishing biplane factor and wave function

-

- λ foil taper ratio
- μ flap correction factor
- ν_{α} Glauert's planform factor for lift
- ν_n Glauert's planform factor for drag
- ρ density of water
- $\rho_{\mathbf{A}}$ density of air
- σ Prandtl's biplane factor
- τ ship trim
- ϕ section trailing edge angle
- $\omega_{\mathbf{h}}$ downwash velocity at bow foil
- Ax distance of center of pressure aft of quarter chord
- Ah difference in depth between bow and main foils at zero trim
- $\Delta \textbf{C}_{\textbf{F}}$ coefficient of friction drag increment due to surface roughness
- Λ quarter chord sweepback angle
- Γ foil dihedral angle (to horizontal)
- Γ_1 strut slant angle (to vertical)

1. INTRODUCTION

The accurate prediction of the steady state characteristics of hydrofoil ships is fundamental to the success of early planning in a development program. It is essential to forecast, with reasonable confidence, range capability and power requirements in order to determine the size of ship required for a given operational application and to make objective comparisons with other vehicles. At a later stage in the design process, accurate prediction techniques can lessen dependence on an extensive model test program and greatly improve the understanding of the model test results.

The objective here is to obtain an overall appreciation of the characteristics rather than detailed hydrodynamic analysis of a particular hydrofoil configuration. The prediction methods are based largely on empirical expressions and in consequence, apply primarily to the particular hydrofoil system chosen in this case, a propeller driven, canard arrangement, generally typical of current military hydrofoil design and suitable for fairly wide ranges of size and speed. There often exists a theoretical basis for the empirical expressions, making it possible, with care, to extend the methods to other practical design cases.

The hydrofoil system is first described and expressions derived to define the geometry. The hydrofoil section characteristics are then treated, with expressions given for the lift, pitching moment and drag for the section operating in two-dimensional flow, close to the water surface. The more practical case is then given of a wing of finite span operating in three-dimensional flow close to the water surface. Various miscellaneous drag effects are also considered. The generalised lift balance and moment equations are given for the foilborne, steady state Case, with reference to the way in which the expressions for lift and moment are incorporated. Finally, in an appendix, the use of the expressions is demonstrated by determining the flap angles required and the total resistance for given speeds and foil depths of immersions. The method has limitations. There is little information available on the characteristics of sections with simple, sealed flaps. Increase in lift with flap angle is probably not linear, although that is the assumption here. Also, it is assumed that the flow is cavitation free. The method is thus good for only small flap and trim angles and for the normal foilborne speed range. In particular, takeoff drag would require special study. Resistance estimates are generally harder to make than lift, being dependent for example, on quality of manufacture and intersection design details.

Unfortunately there are very few experimental data available from full scale hydrofoil ship trials, allowing no comparison of flap angles and only limited comparison with resistance estimates. Nevertheless, the methods outlined here are thought suitable for preliminary estimates and it is anticipated that some refinement will be possible as further model and full scale trials data become available.

2. FOIL AND SYSTEM GEOMETRY

2.1 GENERAL CONFIGURATION

The hydrofoil arrangement is assumed to be canard in form, as shown in Figure 1, with the "inverted **T**" bow foil supporting less than 35% of the all up weight. The bow foil is continuous and horizontal with a **planform** which employs both taper and sweep. It has constant angle of attack and constant thickness-to-chord ratio (t/c). Lift is varied by a flap with constant flap-chord ratio. A two-strut main foil supports **the** remaining ship weight. It is composed of two anhedral elements joined at the centre to form an "inverted V". Angle **of** attack and the t/c are constant over its length and the foil has taper outboard of the support struts. Flaps are full-span, except for necessary breaks at intersections. They have constant flap-chord ratio and zero sweep angle at **the** flap hinge lines.

The main foil struts are inclined to the vertical with a chord and t/c which vary continuously over their lengths. Propulsion is by marine screw propellers located with fairly large transmission pods at the **main** foil-strut intersections.

2.2 FOIL **PLANFORM** GEOMETRY

The planforms are shown in Figure 2. Geometrical relationships are straight forward for the -most part and are given here for definition and completeness. It should be noted that all these expressions are for the main foil geometry but reduce to the equivalent bow foil expressions when the main foil span between struts, b,, becomes zero.

Taper Ratio

$$\lambda = \frac{c_2}{c_1} \tag{2.1}$$

Flap Chord Ratio

$$f_{c} = \frac{c_{f1}}{c_{1}} = \frac{c_{f2}}{c_{2}}$$
(2.2)

Foil Span

$$b = b_1 + 2b_2$$
 (2.3)

Projected Foil Area

$$s = b_1 c_1 + b_2 c_1 (1 + \lambda)$$
 (2.4)

- - - - _

or

 $s = S_1 + 2S_2$

where S, is the area inboard of the main struts

 S_{2} is the area of each outboard element

_ _

Projected Foil Area in way of Flaps

$$S_{f} = S - c_{1} [b-2(b_{f_{1}} + b_{f_{2}})]$$
 (2.5)

Angle of Sweep

For the particular case considered, with the flap hinge lines arranged to have zero sweep angle, the angle of sweep for the outboard elements is given by:

$$A = \tan^{-1} \frac{c_1}{b_2} \left(\frac{3}{4} - f_c\right) \left(1 - \lambda\right)$$
 (2.6)

Net Angle of Sweep

For the composite foil

$$\Lambda = 2\frac{s^2}{s} \tan^{-1} \frac{c_1}{b_2} (\frac{3}{4} - f_c) (1 - \lambda)$$
 (2.7)

Mean Depth

For the integrated main foil unit shown in Figure 2, elliptical lift distribution is assumed over the outboard spans, b, giving the effective hydrodynamic depth:

$$h = h + \tan \Gamma (0.25b_1 + 0.405b_2)$$
(2.8)

for
$$0.25b_1 < b_2 < 0.56b_1$$

Mean Chord

$$c = \frac{S}{b}$$
 (2.9)

Lateral Centre of Pressure

The lateral distance of the centre of pressure of an outboard element from the axis of intersection is given by:

$$y = \frac{2}{2} \begin{bmatrix} 1 & -L & O \\ 3 & (1+\lambda) \end{bmatrix}$$
(2.10)

Longitudinal Centre of Pressure

The distance of the centre of pressure of an outboard element aft of the quarter chord point of the centre section is given by:

$$Ax = \frac{y}{s} b_{2} c_{1} (1 + A) \tan A$$
 (2.11)

Aspect Ratio

The aspect ratio of the main foil is effectively increased by the presence of the struts which act as "end plates" to reduce **spanwise** flow. Effective aspect ratio is dependent on the **spanwise** position of the struts and on the foil depth. It can be derived from expressions given by Hoerner¹ as:

$$A = \frac{b}{c} \left[1 + \left(\frac{b}{b}\right)^{3} \frac{h}{b} \right]$$
(2.12)

Foil Buoyancy

$$B_{F} = 0.7 \ c \frac{t}{c} \ ps$$
 (2.13)

2.3 STRUTS AND PODS GEOMETRY

The strut and pod geometries common to both bow and main foil assemblies are shown in Figure 3. The strut span is assumed to extend to the foil axis of intersection which is taken to be coincident with the pod axis.

Mean Immersed Chord

$$\mathbf{c}_{\mathrm{m}} = \mathbf{c}_{\mathbf{s}_{2}} + \frac{\mathbf{h}_{1}}{2\mathbf{k}_{\mathbf{s}}} (\mathbf{c}_{\mathbf{s}_{1}} - \mathbf{c}_{\mathbf{s}_{2}})$$
(2.14)

Chord at the Waterline $\mathbf{c}_{\mathbf{W}} = \mathbf{c}_{\mathbf{s}_{2}} + \frac{\mathbf{h}_{1}}{\mathbf{k}_{\mathbf{s}}} (\mathbf{c}_{\mathbf{s}_{1}} - \mathbf{c}_{\mathbf{s}_{2}})$ (2.15)

Mean Immersed Thickness - Chord Ratio

$$\left(\frac{t}{c}\right)_{m} = \left(\frac{t}{c}\right)_{s_{2}} + \frac{h}{2\ell}_{s} \left[\left(\frac{t}{c}\right)_{s_{1}} - \left(\frac{t}{c}\right)_{s_{2}}\right]$$
 (2.16)

Waterline Thickness - Chord Ratio

$$\left(\frac{t}{c}\right)_{W} = \left(\frac{t}{c}\right)_{s_{2}} + \frac{h}{l} \left[\left(\frac{t}{c}\right)_{s_{1}} - \left(\frac{t}{c}\right)_{s_{2}}\right]$$
(2.17)

Immersed Strut Area

$$\mathbf{S}_{\mathbf{S}} = \frac{\mathbf{c}_{\mathbf{m}} \mathbf{h}_{\mathbf{1}}}{\mathbf{c} \circ \mathbf{s}_{\mathbf{S}} \mathbf{\Gamma}_{\mathbf{S}}}$$
(2.18)

Immersed Strut Buoyancy

$$B_{s} = 0.7S_{s}c_{m}(t/c)_{m}$$
 (2.19)

Pod Frontal Area

$$S_p = 0.25 \pi d^2$$
 (2.20)

Pod Buoyancy

Using a Prismatic Coefficient of 0.7,

$$B_{\rm P} = 0.55 \ \rho \ d^2 \ \ell_{\rm p}$$
 (2.21)

2. **4** AXIS OF COORDINATES

The axis system is shown in Figure 4. It is taken as fixed with respect to the ship, has its origin at the center of gravity and polarities as shown. Coordinates are measured to the quarter chord points of the foils but forces are assumed to act at the centers of pressure, which are **not** necessarily in the same location.

2.5 SHIP GEOMETRY

Foil Base Length

 $k_{\mathbf{F}} = x_{\mathbf{B}} - x_{\mathbf{M}}$ (2.22)

Ship Trim

$$\tau = \frac{h_{1}M - (h_{B} + \Delta h)}{\ell_{F}}$$
(2.23)

$$h_{1B} = h_{1M} - Ah - \tau \ell_{F}$$
(2.24)

3. SECTION CHARACTERISTICS

3.1 SECTION TYPE

It is assumed that an NACA section of the 16 Series will be used with a uniform-load mean line and a **thickness**to-chord ratio of 10% or less. The 16 Series sections have found several applications in hydrofoil design. Little is known about the section characteristics with a flap but the uniform pressure distribution of the unflapped section should give good cavitation characteristics and the section offers the best basis for design at present.

3.2 <u>LI</u>FT-CURVE SLOPE

A general expression for the section lift-curve slope is given in Reference 2 in terms of t/c and the included angle at the section trailing edge, ϕ (degrees), as:

$$a_0'' = 2\pi + 4.7 \left(\frac{t}{c}\right) (1 + 0.00375\phi)$$
 (3.1)

The relation between φ and t/c for 16 Series sections is:

 $\phi = 238 (t/c)$

so that for these sections:

$$a_0^{"} = 2\pi + 4.7 (t/c) + 4.18 (t/c)^2$$
 (3.2)

Lift-curve slope is reduced in practice by viscous effects which increase the boundary layer thickness in the area of adverse pressure gradient, particularly towards the trailing edge. This results in an efficiency factor dependent on Reynolds Number, R, and trailing edge angle, ϕ , which must be applied to Equation 3.2. The efficiency factor can be derived from curves given in Reference 2 as follows:

$$K_e = 1.25 (6.8)^{-} \frac{1}{\log_{10} R} - 6.92 (t/c) R^{-0.09}$$
 (3.3)

For infinite depth, section lift curve slope then becomes:

$$a_{\infty}^{\prime\prime} = K_{e} [2\pi + 4.7 (t/c) + 4.18 (t/c)^{2}]$$
 (3.4)

In the hydrofoil case, the presence of the free surface modifies the section flow and reduces the lift curve slope appreciably for **submergences** below one **chord**. **Bernicker³** gives a theoretical treatment of two dimensional depth effects from which an approximate expression for the depth correction can be derived as:

$$K_{a} = \frac{20(h/c)^{2} + 1}{20(h/c)^{2} + 2}$$
(3.5)

Hence, the expression for section lift curve slope for horizontal, unswept hydrofoils operating near a free surface becomes:

$$a'_{o} = K_{a} K_{e} [2\pi + 4.7 (t/c) + 4.18 (t/c)^{2}]$$
 (3.6)

The effective section characteristics are modified by dihedral or anhedral angle, I', of the foil. Angle of attack changes due to ship trim or foil setting angle are measured in the vertical plane so that the effect of dihedral is to introduce the factor $\cos \Gamma$, reducing the section lift curve slope. Sweep angle, A, also affects the characteristics. The effective angle of attack, measured normal to the quarter chord line, is increased by introduction of the factor $\cos A$ while the speed over the section is decreased by the factor $\cos A$. In detail, **lift per** unit area, L/S, is given by:

$$\frac{L}{S} = \frac{1}{2} \rho \quad (V \cos \Lambda)^2 \quad a'_o \quad (a \ sec \ \Lambda \ \cos \ \Gamma) \tag{3.7}$$

Hence, the effective section lift curve slope becomes:

$$a_0 = K_a K_e [2\pi + 4.7 (t/c) + 4.18 (t/c)^2] \cos A \cos A$$
 (3.8)

3.3 <u>LIFT</u> COEFFICIENT

NACA 16 Series airfoils, in common with other sections using a uniform - load type (a = 1.0) mean line, do not achieve in practice lift coefficients as high as the idealized design values. Lindsey et $a1^4$ give the following empirical relation for 16 Series sections:

$$C_{lo} = C_{li} [1 - 5 (t/c)^{1 \cdot 35}]$$
 (3.9)

where C_{lo} and C_{li} are the practical and ideal design lift coefficients respectively.

Again, in the hydrofoil case, the practical lift coefficient is reduced by flow curvature wihen near the surface. The correction factor can be derived from Bernicker's work³ as:

$$K_{o} = \frac{36(h/c)^{2} + 1}{36(h/c)^{2} + 2}$$
(3.10)

Bernicker also identifies an effect of thickness on the lift of a thin hydrofoil which can be approximated by:

$$\Delta C_{g} = - \frac{0.05(t/c)}{(h/c)^{2}}$$
(3.11)

Thus, the practical depth-corrected lift coefficient for a 16 Series section is:

$$C_{lo} = K_{0} C_{lo} - \frac{0.05(t/c)}{(h/c)^{2}}$$
(3.12)

It should be noted that the expression for ΔC_{ℓ} is unbounded, becoming - ∞ at h = 0. It is therefore necessary to introduce a limiting value for $C_{\ell o}$ in any computations.

9

3.4 ZERO LIFT ANGLE

Using Equations 3.8 and 3.12, the depth-corrected zero lift angle is:

$$\alpha_{0} = -\frac{C_{\ell 0}}{a_{0}}$$
(3.13)

where α is measured in the vertical fore and aft plane.

3.5 LIFT DUE TO FLAPS

It is assumed that use is made of a plain, sealed, trailing-edge flap with flap-chord ratio, f_c , of less than about 0.3. The effect of flap angle is to modify the incidence and camber of the foil section and consequently, use is made of a flap effectiveness factor, defined as:

$$\alpha_{\delta} = \frac{da}{d\delta} \tag{3.14}$$

where α is the angle of attack of the foil section and δ is the angle of flap deflection.

For flap-chord ratios < 0.3, theoretical flap effectiveness is given by:

$$\alpha_{\delta o}^{"} = \frac{4}{\pi} \sqrt{f_c}$$

In practice, experimental data suggest that the empirical expression given by ${\tt Hoerner}^1$

$$\alpha'_{\delta o} = 1.1 \sqrt{f_c}$$
(3.15)

gives a better fit and is satisfactory at least for flap angles $< +5^{\circ}$. Above 5°, some decrease may be expected due to increasing thickness of the boundary layer. Corrections for trailing edge angle and for section t/c tend to cancel and have not been included.

Bernicker's depth correction for $flaps^3$ is different from the one given earlier for foils. It can be approximated by:

$$K_{f} = \frac{G(h/c)^{2} + 1}{G(h/c)^{2} + 2}$$
(3.16)

where $G = 25 (1.5 - f_{c})$

Since the foil correction factor, K_a , is already included in section lift curve slope (Equation 3.8), flap effectiveness must be modified by the ratio of the two. Section lift-curve slope also includes factors for foil inclination and sweep angles which do not apply to flap effectiveness since the flap hinge line is at zero sweep and flap angle is defined in the plane normal to the foil. It is convenient to compensate for these by re-correcting α_{δ} . Hence,

$$\alpha_{\delta o} = 1.1 \sqrt{f_c} \frac{Kf}{Ka} \sec \Gamma \sec A \qquad (3.17)$$

3.6 EFFECTIVE CAMBER AND INCIDENCE WITH FLAPS

Pitching moment and profile drag are dependent on the proportions of lift due to flap deflection which are appropriate to camber and incidence change. Thin airfoil theory shows that

$$\Delta C_{\ell} = 26 \sin^{-1} (2\sqrt{f_{c}(1-f_{c})}) + 4\delta\sqrt{f_{c}(1-f_{c})}$$
(3.18)

where the first term represents the effect of change of incidence and the second term change of camber. These terms are very similar for $f_c < 0.3$ so that flap lift can be taken as equally divided between camber and incidence effects.

3.7 PITCHING MOMENT

The pitching moment of an airfoil section is primarily a function of its camber. For the NACA mean camber line, a = 1.0, used in standard 16 Series sections, quarter chord pitching moment is $-0.25C_{li}$, which depth effects modify in practice to $-0.25C_{loc}$.

For a section in a swept, inclined foil, the moment per unit area, measured in the plane of the foil and in the direction of the quarter chord line, is:

$$\frac{M}{S} = \frac{1}{2} \rho (V \cos \Lambda)^2 (c \cos \Lambda) (-0.25 a_0') (\alpha_0 \sec \Lambda \cos I')$$
$$= \frac{1}{2} \rho (-0.25 a_0) \alpha_0 c \cos \Lambda$$

In the fore-and-aft plane this becomes:

$$\frac{M}{S} = \frac{1}{2}\rho \ (-0.25a_{o}) \ \alpha_{o} \ c \ \cos^{2} \Lambda$$

Hence for a section used in a swept, inclined foil the basic pitching moment is:

$$C_{M} = -0.25C_{lo} \cos^2 \Lambda$$

In addition, thin airfoil theory shows that the effective camber change due to flap angle deflection gives a moment curve slope of:

$$C_{Mb} = -2\sqrt{f_c(1-f_c)^3}$$

Experimental data suggest that about 80% of this is realised in practice. Since the flap hinge line is unswept and flap angle, 6, is measured in the plane of the foil, sweep and inclination have no effect on this term. Thus the total pitching moment for a section, including sweep and inclination correction terms, becomes:

$$C_{M} = -0.25 C_{lo} \cos^{2} \Lambda - 1.66 \sqrt{f_{c} (1 - f_{c})^{3}}$$
(3.19)

4. PROFILE DRAG

4.1 PROFILE DRAG AT IDEAL INCIDENCE

The minimum drag of a hydrofoil or strut profile occurs generally at ideal incidence, i.e. at $C_{l} = C_{l_0}$. The drag is composed of both friction and form drag. Friction

drag is primarily a function of Reynolds Number and the standard empirical relationship' for viscous flow over a flat plate, assuming a fully turbulent boundary layer is:

$$C_{\rm F} = 0.075 \ (\log R - 2.0)^{-2}$$
 (4.1)

To this must be applied a form factor which is dependent on thickness-to-chord ratio, camber ratio and the location along the chord of maximum thickness. Hoerner⁶ gives a basic section thickness factor of 1.2 (t/c) for "laminar flow" sections like the 16 Series, with maximum thickness at 40 to 50% of the chord. There is an additional pressure drag component which arises from thickening or separation of the turbulent boundary layer at the trailing edge of the section. This comprises a basic section thickness term of 120 (t/c)⁴ and a section camber term of 60 (t/c + 0.2 C_{li})⁴. Thus the form factor for the 16 Series and similar profiles is given by:

$$C_{PF} = 1.0 + 1.2 (t/c) + 120 (t/c)^{4} + 60 (t/c + 0.2C_{0.1})^{4}$$
 (4.2)

For the profile drag of foils and struts, a factor of 2 is required to allow for skin friction on both sides. Also, for a foil operating close to the free surface, c_{ki} is modified by flow curvature to c_{ko} . The profile drag thus becomes:

$$c_{DP} = 2C_{F} [1.0 + 1.2 (t/c) + 120 (t/c)^{4} + 60 (t/c + 0.2C_{lo})^{4}]$$
(4.3)

As noted earlier, the coefficient of friction used in this equation assumes turbulent flow over the entire surface and in consequence, the relatively low drag coefficients achieved by delayed transition to turbulent flow are not predicted. This seems to be realistic in the hydrofoil case since delayed transition to laminar flow is realisable over a comparatively narrow range of C_{l} and the required cleanliness, profile accuracy and smooth in-flow conditions are hard to obtain in practice with a hydrofoil section.

4.2 EFFECT OF SURFACE IRREGULARITIES

Surface roughness causes an important increase in drag which must be considered even though the flow is already assumed turbulent over the section. It is extremely difficult to estimate the increment to coefficient of friction which should be allowed. Standard roughness tests on airfoils⁷ indicate an increment, AC,, of more than 0.002 for conditions appropriate to fully turbulent flow. This is for a 0.011 inch grain roughness on the leading edge of a foil of **24** inches chord and does not decrease greatly for grain sizes down to 0.002 inch. However, these roughnesses are considerably greater than should occur in normal manufacture. For example, inspection of HMCS BRAS D'OR, a 200 tons auw hydrofoil ship

with carefully manufactured foils, showed a surface finish of about 0.003 inch equivalent grain size for an 8 foot chord foil.

 $Barr^8$ quotes ΔC_F values of 0.0004 to 0.0008 as

normal allowances in standard ship design practice and recommends the latter value for a smooth, unfouled foil of five feet chord with an equivalent grain size roughness of about 0.003 inch. In fact, much will depend on size and method of manufacture. An allowance of 0.0004 seems appropriate for a smaller foil machined from the solid whereas 0.0008, as recommended by Barr, does seem to be a minimum for larger, fabricated foils. An even higher allowance should be made for foils or struts with a relatively rough or fouled finish.

Surface waviness and discontinuities of curvature can drastically affect the drag of **aerofoils**⁹ by inducing premature transition to turbulent flow and in more extreme cases, turbulent separation. No allowance is made here since full turbulent flow is already assumed and since control of section shape ought to be good enough to prevent premature separation.

The profile drag of practical hydrofoil sections at ideal angle of attack is therefore taken to be:

 $C_{DP} = 2 (C_F + Ac_{,}) [1.0 + 1.2 (t/c) + 120 (t/c)^4]$

+ 60
$$(t/c + 0.2C_{lo})^{4}$$
] (4.4)

14

4.3 PROFILE DRAG AS A FUNCTION OF LIFT

Equation 4.4 applies only to the optimum lift coefficient, where "shock free" entry obtains. Drag will increase for lift coefficients above and below this due to flow around the leading edge and the resulting changes to boundary layer flow. The drag increment is of the form:

$$\Delta C_{DP} = \kappa (C_{\ell} - C_{\ell o})^{n}$$

where K and n must he determined experimentally and C_{l} is the operating lift coefficient for the section concerned. Suitable data are not available for 16 Series sections and it has been necessary to substitute data for the similar Type 65 Series, obtained from Reference 7 over a Reynolds Number range of 3 x 10⁶ to 9 x 10⁶. These give the empirical relationship:

$$\Delta C_{\rm DP} = 0.005 \ (C_{\ell} - C_{\ell o})^{1.9}$$
(4.5)

In practice, C_{ℓ} must be determined from the corrected two dimensional lift curve slope and the total angle of attack, the latter comprising ship trim angle, τ , initial incidence setting if used, $\alpha_{.,}$ and no lift angle, $a_{0,}$ Thus, using Equations 4.5 and 3.13:

$$\Delta C_{\rm DP} = 0.005 \, [a_0 \, (\tau + \alpha_i)]^{1 \cdot 9}$$

4.4 PROFILE DRAG DUE TO FLAPS

As noted in 3.6, the effect of a **plain**, trailing edge flap of normal size is to change the effective **camber** and the effective incidence of the section in essentially equal proportions. These changes are reflected as additions of $0.5a_0\alpha_{\delta 0}\delta$ to the C_{lo} and C_l terms of Equations 4.4 and 4.5. The final expressions for profile drag then become those listed below as Equations 4.7 and 4.8.

4.5 FINAL EXPRESSIONS

 C_{DP} (total) = C_{DP} + ΔC_{DP}

where:

$$c_{DP} = 2 (C_{F} + AC_{,}) \{ 1.0 + 1.2 (t/c) + 120 (t/c)^{4} + 60 [t/c + 0.2 (C_{lo} + 0.5a_{o}\alpha_{\delta o}\delta)]^{4} \}$$
(4.7)

 $(\Delta C_F$ should be taken as 0.0008 for the normal large ship case.)

and

$$\Delta C_{DP} = 0.005 [a_{0}(\tau + \alpha_{i} + 0.5\alpha_{\delta 0}\delta)]^{1.9}$$
(4.8)

5. FINITE SPAN EFFECTS

Consideration of foils of finite span introduces several basic effects which must be applied to the section characteristics determined previously.

5.1 EDGE CORRECTION

This is a relatively minor correction to allow for decrease of velocity at the wing edge, necessary since edge velocity determines the circulation and hence, the lift. For an elliptic wing, the decrease is given by the factor:

and for planforms of interest to us can be approximated by:

$$E = \frac{b + \lambda c}{b}$$

The effective wing span should be used since it more accurately reflects flow conditions, so that the preferred expression becomes:

$$\mathbf{E} = \mathbf{1} + \frac{\lambda}{\mathbf{A}} \tag{5.1}$$

where A is the effective aspect ratio. With edge correction, lift curve slope becomes $\frac{a}{E}^{o}$, where a_{o} is given by Equation 3.8.

5.2 THE INDUCED ANGLE

The major influence of finite span is to create a trailing vortex field, influenced in the hydrofoil case by free surface effects. This results in a net downward flow with enough inclination to tip the resultant force backward, decreasing the lift curve slope and creating a significant drag component. The required increase in total angle of attack to maintain a given ${\rm C}_L$ is the induced angle, $\alpha_{\rm T}$.

From aerodynamic theory, the induced angle can be shown to 'be:

$$\alpha_{\mathbf{I}} = \frac{\mathbf{C}_{\mathbf{L}}}{\pi \mathbf{A}}$$

and in the hydrofoil case, this is modified to:

$$\alpha_{I} = \frac{C_{L}}{\pi A} (1 + \zeta)$$

where ζ arises from free surface effects to be discussed later. Lift Coefficient

LIIC COEIIICIEIIC

The three dimensional lift coefficient becomes:

$$C_{L} = \frac{a_{o}}{E} \left[\alpha - (1 + \zeta) \frac{C_{L}}{\pi A}\right]$$
 (5.2)

Lift-Curve Slope

The corresponding three dimensional lift curve slope is:

$$C_{L_{a}} = \frac{1}{\frac{E}{a_{o}} + \frac{1+\zeta}{\pi A}}$$
(5.3)

Induction Factor for Lift

The term $\frac{1+\zeta}{\pi A}$ in Equation 5.3 contains all the terms contributing to the induced angle and is called the induction factor for lift.

$$\mathbf{F}_{\alpha} = \frac{1+\zeta}{\pi \mathbf{A}} = \frac{\alpha}{\mathbf{C}_{\mathbf{L}}}$$
(5.4)

Induced Drag

There is a similar induction factor for drag, $F_D^{}$, identical with $F_{\alpha}^{}$ except for a small **planform** correction term. The induced drag, $C_{DT}^{}$, is given by:

$$C_{DI} = C_{L} \cdot \alpha_{I}$$

$$C_{DI} = F_{D} \cdot C_{L}^{2}$$
(5.5)

or

The various terms which make up the Induction Factor for practical hydrofoils operating close to the water surface are treated separately below.

5.3 THE INDUCTION FACTOR

Breslin's **analysis** of induction **factor**¹⁰ is used since it is a relatively simple method and takes speed effects into account. This gives:

$$F = \frac{1}{\pi A} (1 + v + \sigma + \pi A) \frac{gc}{v^2} + \mu$$
 (5.6)

where v is the Glauert planform correction,

- ∇_{α} for F_{α} , ∇_{D} for F_{D} σ is Prandtl's biplane factor γ is Breslin's wave function
- μ is a correction, not included by Breslin, for the influence of flap operation on the loading distribution of the foil.

Planform Correction

As plotted by' Barr', following Glauert, this is approximated, for λ > 0.4, by:

$$v_{a} = \frac{A - 0.4}{3.6} \cdot \frac{A}{2\pi}$$
 for lift (5.7)

$$v_{\mathbf{D}} = \frac{\lambda \bullet 0.4}{12} \frac{A}{2\pi} \quad \text{for drag} \quad (5.8)$$

For $\lambda > 0.4$, the correction is neglected.

Biplane Factor

The interaction of the trailing vortices from the hydrofoil tips with the free surface gives rise to a diverging wave system. For Froude Numbers greater than 2, the associated function in the Induction Factor remains sensibly constant with speed and becomes Prandtl's finite span Biplane Factor, with hydrofoil mean immersed depth taken to be half the biplane wing separation.

It is convenient to define an auxiliary variable:

$$\eta = \frac{\text{Mean Depth}}{\text{Effective Semi-Span}} = \frac{2h}{b} = \frac{2h}{Ac}$$

Then Prandtl's approximation for σ is:

$$\sigma = \frac{1 - 0.66\eta}{1.055 + 3.7\eta}$$
(5.9)

Wave Function

This originates from the interaction of the lifting vortex with the free surface and gives rise to a transverse wave system. In the three-dimensional case, it is shown by Breslin to increase rapidly in value with speed to reach a peak at a chord Froude Number, F_c , of $\sqrt{2}$ where it is the dominant wave source. It decreases rapidly, becoming virtually zero at $F_c = 5$. For $2 \le F_c \le 4$ (15 to 30 knots for a 6 foot chord hydrofoil), it is a significant effect.

The use of three dimensional theory for predicting wave drag is open to question since experimental data tend to compare better with the two dimensional for $F_c < 2$ and with three dimensional for $F_c > 3$. Breslin recommends use of the three dimensional theory and for foilborne predictions this is most accurate since $F_c = 3$ corresponds about with the lower limit for foilborne operations. Below this, several factors combine to make predictions for the take-off zone doubtful in any case.

 $E(1+\eta^2)^{-1/2}$ The Breslin function contains an elliptic' function but for arguments close to unity, this approximates to $[2-(1+\eta^2)^{-1/2}]$ giving the wave function as:

$$\gamma = \frac{4}{3\pi} \left\{ \frac{2}{\pi} (1+\eta^2)^{3/2} \left[2 - (1+\eta^2)^{-1/2} \right] - \frac{3}{2} \eta \right\}$$
(5.10)

Flap Correction

The foil flaps are assumed to be full span but will have gaps at the intersection pods and at mid-span. The flap edges introduce vortices of their own and distort the **spanwise** lift distribution, increasing the induced angle. Reference 12 gives the increment to induced drag for a single cut-out of span **0.2b** as:

$$\Delta C_{\text{Di}} = K^2 (\Delta C_{\text{L}})^2$$

where K has the value 0.14 and is virtually independent of aspect ratio, at least for 4 < A < 12. The corresponding induction factor increment is:

$$\mu = \pi A (0.14)^{2} \frac{\Delta C_{L}}{C_{L}}^{2}$$

$$\mu = 0.062A \alpha_{\delta}^{2} \delta^{2} \frac{C_{L\alpha}}{C_{L}}^{2} \qquad (5.11)$$

or

This expression applies to the bow foil. For the two strut main foil arrangement considered here, it is factored by 2.

5.4 CORRECTIONS TO FLAP EFFECTIVENESS

The edge correction for flaps, E_f , is different from the one given earlier for foils (Equation 5.1). Curves presented by Lowry and Polhamus" present the correction which must be applied to flap effectiveness assuming that the factor E, of Equation 5.1 has already been applied to the foil lift-curve slope. Over the range of aspect ratios and flap-chord ratios of interest, these curves can be approximated by the expression:

$$E_{f} = 1 + \frac{(1-f_{c})^{2}}{2A}$$
(5.12)

Again, since flap effectiveness, when included in the final lift balance equations is referred to total foil area, a correction is required for flaps which do not extend over the full span. Thus if $\mathbf{S_f}$ is the total area of the foil

in way of the flaps and **S** is the total foil area, the net three-dimensional flap effectiveness becomes, using Equation 3.17:

$$\alpha_{\delta} = \alpha_{\delta} \mathbf{o} \mathbf{E}_{\mathbf{f}} \frac{\mathbf{S}_{\mathbf{f}}}{\mathbf{S}}$$
(5.13)

5.5 **DOWNWASH** AT MAIN FOIL

The main foil is affected by the **wake** of the bow foil which appears as two distinct vortices, separated as shown in Figure 5.

There is both upwash and downwash on the main foil, resulting in a net downwards velocity as indicated by the hatched area. This is dependent on free surface effects, the distance aft and the difference in depth between the bow and main foils. At the bow foil,

Net downwash velocity =
$$\omega_B = F_{\alpha B} C_{LB} V$$

Net downwash angle = $\varepsilon_{B} = F_{\alpha B} C_{LB}$ (in radians)

Variation with distance aft is given by the factor (cos $\frac{gl_{F}}{v}$)

and with depth difference by (e
$$V^2$$
). The effect is
assumed to extend over a main foil span of $\pi/4$ of the bow foil
span. Thus, the effective increment to main Eoil angle of
attack, in radians, is:

$$\Delta \varepsilon = -\frac{\pi}{4} \frac{b_{B}}{b_{M}} \varepsilon_{b} e^{-\frac{g(h_{M}-h_{B})}{V^{2}}} \cos \frac{g\ell_{F}}{V^{2}}$$
(5.14)

.. . .

 $-g(h_{\mu}-h_{\mu})$

5.6 PITCHING MOMENT

In the absence of data on the effect of the free surface on $C_{m_{\delta}}$, this correction has been omitted. The very small additional nose down moment which should result will be a conservative factor in most applications. Using Equation 3.19, the total pitching moment coefficient for a flapped foil thus becomes:

$$C_{M} = -0.25C_{L_{a}} \alpha_{0} \cos^{2} \Lambda - 1.66 \sqrt{f_{c}(1-f_{c})^{3}}$$
 (5.15)

The corresponding foil pitching moment is:

$$M = q \ Sc \ C_{M} \tag{5.16}$$

δ. MISCELLANEOUS DRAG COMPONENTS

6.1 HULL AIR DRAG

It is difficult to provide a general equation for air drag of the hull since it is very sensitive to the extent and type of deck-mounted equipment. The coefficient of drag, C_{DH} , used here is based on maximum hull frontal area. It is estimated to vary from 0.3 for an exceptionally clean design to 0.7 for a warship equipped with missiles, masthead control radar and with little attempt to streamline. Recommended normal warship value for C_{DH} is 0.6. The expression for air drag is:

$$D_{\mathbf{A}} = C_{\mathbf{D}\mathbf{H}} \frac{\rho_{\mathbf{A}} \mathbf{V}^{2}}{2} \quad \mathbf{H}_{\mathbf{b}} \quad \mathbf{H}_{\mathbf{w}} \quad (\text{for calm conditions}) \quad (6.1)$$

6.2 POD DRAG

$$C_{PD} = (C_{F} + \Delta C_{F}) [1+1.5(\frac{d}{\ell})^{3/2} + 7(\frac{d}{\ell})^{3}]$$

where $\begin{pmatrix} l \\ p \end{pmatrix}$ is pod length and d the diameter. This expression is based on wetted area and is converted to frontal area by assuming that:

Based on frontal area, pod drag coefficient becomes

$$C_{PD} = (C_{F} + \Delta C_{F}) \left[3 \frac{\ell_{P}}{d} + 4.5 \left(\frac{\ell_{P}}{d} \right)^{-1/2} + 21 \left(\frac{\ell_{P}}{d} \right)^{-2} \right]$$
(6.2)

6.3 SPRAY DRAG

The most appropriate data seem to be due to **Chapman¹³**. These include measurements on round-nosed biogival strut forms with maximum thickness at 50% chord, t/c ratios of 0.11 to 0.21 and chords between 4 and 23 inches. The resulting, empirical expression for spray drag coefficient is:

$$C_{\rm DS} = 0.011 + 0.08 \left(\frac{t}{c}\right)$$
 (6.3)

This is based on the area $(t_w \cdot c_w)$, where c_w and t_w are the water line chord and thickness respectively, measured normal to the strut.

6.4 FENCE DRAG

Ventilation fences are normally used on the foil support struts and are assumed to be flat plates projecting on either side of the strut and normal to its axis. Fence length **is** taken to be strut chord length and the drag coefficient is assumed to be a representative 0.009, based on the **area** 2 x chord length x maximum chord thickness at the fence.

6.5 INTERFERENCE DRAGS

Only foilborne performance is considered here and hence, only the interference drag of the foil-strut intersections need be included. These are taken to incorporate an intersection pod, housing the transmission and control actuation components. The foil and strut areas are calculated to the intersection axes and both Hoerner⁶ and Barr⁸ consider the pod-strut and pod-foil interference drags to be essentially equal to the drag of those portions of foil and strut enclosed by the pod. Interference drag is thus automatically taken into account. If the pod axis is displaced vertically above the foil-strut intersection axis, strut drag will be overestimated by this method and strut length should be taken to the pod axis only.

6.6 ADDITIONAL MINOR DRAGS

Any hydrofoil ship design must necessarily include sea water intakes, projections, bolt holes and gaps of various kinds. Although individually small, these components will be significant in total. In the absence of specific information, a miscellaneous drag allowance of 2% total drag is recommended.

7. STEADY STATE PERFORMANCE CALCULATION

Equilibrium conditions are determined from a vertical force equation and a longitudinal moment equation:

$$\Sigma_{1}^{n} L_{n} - w = 0 \tag{7.1}$$

$$\Sigma_{\mathbf{1}}^{\mathbf{n}} \mathbf{L}_{\mathbf{n}} \mathbf{x}_{\mathbf{n}} - \mathbf{M}_{\mathbf{n}} = \mathbf{0}$$
 (7.2)

 $C L_n$ is the sum of the lifts of all the foil and flap elements, together with the buoyancy, B_n , of the submerged components. $\sum M_n$ is the sum of the moments of these elements, together with any moments due to thrust and drag. Buoyancy moments are taken as $M_n = B_n (x_n - 0.25c_n)$ where x_n is the distance of the centre of pressure from the ship c.g.. Generally for foil element lift:

$$\mathbf{L}_{\mathbf{n}} = \mathbf{q} \mathbf{S}_{\mathbf{n}} \mathbf{C}_{\mathbf{L}_{a}} (\alpha + \alpha_{\delta} \delta)$$

where $\text{C}_{\underset{\ensuremath{L}}{L_{\alpha}}}$ is the fully-corrected lift-curve slope

 $\alpha \quad \text{is the total angle of attack} \\ \alpha_\delta \quad \text{is the corrected flap efficiency} \\ \delta \quad \text{is the flap angle.}$

For designs with propeller drive located at main foil-strut intersections, the thrust drag moment is assumed negligible.

The depth and trim are specified for each speed and the remaining unknowns are then the flap angles at the bow and main foils. Equations 7.1 and 7.2 become:

$$\mathbf{W} - \mathbf{B}_{\mathbf{B}} - \mathbf{B}_{\mathbf{M}} = \mathbf{q} \mathbf{S}_{\mathbf{B}} \mathbf{C}_{\mathbf{L}_{\alpha \mathbf{B}}} (\tau + \mathbf{i}_{1} \mathbf{B}^{-\alpha} \mathbf{o}_{\mathbf{B}} + \alpha_{\delta \mathbf{B}} \delta_{\mathbf{B}}) + \mathbf{q} \mathbf{S}_{\mathbf{M}} \mathbf{C}_{\mathbf{L}_{\alpha \mathbf{M}}} (\tau + \mathbf{i}_{1} \mathbf{M}^{-\alpha} \mathbf{o}_{\mathbf{M}} + \Delta \varepsilon + \alpha_{\delta \mathbf{M}} \delta_{\mathbf{M}})$$
(7.3)

$$-B_{B}(x_{B}-0.25c_{B}) - B_{M}(x_{M}-0.25c_{M}) =$$

$$qS_{B}C_{L_{\alpha B}}(\tau + i_{1B} - \alpha_{0B} + \alpha_{\delta B}\delta_{B}) \times_{B} + qS_{M}C_{L_{\alpha M}}(\tau + i_{1M} - \alpha_{0M} + \Delta \varepsilon + \alpha_{\delta M}\delta_{M}) \times_{M} + M_{M} + M_{B}$$
(7.4)

where S_{B} , S_{M} are given by (2.4):
ⁱ_{1B}, ⁱ_{1M} are initial foil incidence angle settings, where used ^a_{oB}, α_{oM} are given by (3.13) $\Delta \epsilon$ is downwash at main foil, given by (5.14) M_{B} , M_{M} are given by (5.16) $\alpha_{\delta B}$, $\alpha_{\delta M}$ are given by (5.13) $C_{L_{\alpha B}}$, $C_{L_{\alpha M}}$ are given by (5.3)

These would be linear equations in δ_B and δ_M , the flap angles, except for the **downwash** correction factor at the main foil (Equation 5.14) and the flap correction terms, μ_M and μ_B (Equation 5.11). A single iteration is therefore used, with these terms omitted for the first calculation and included in the second. A thrust-drag moment term could also be included in a second calculation if considered desirable.

Appendix A gives a program listing for steady state lift and resistance calculation for a 400 ton a.u.w. fully-submerged design. A brief description of the design and an input data chart are included.

8. COMPARISON OF RESULTS

Experimental verification of predictions is very difficult because accurate full scale thrust measurement data are very few. Even for those data that are available, the exact conditions of operation are unknown, making the validity of the comparison doubtful.

The MOD "0" version of the NSRDC trials ship PCH-1, HIGHPOINT, gives the most applicable data as the configuration, propulsion and geometry correspond to that assumed here. Resistance data points are available from 1969 torque and rpm measurements used in conjunction with propeller model test data¹⁴ and from 1972 thrust measurements ¹⁵. These data are compared in Figure 6 with predictions. The two sets of experimental data differ considerably showing the difficulty of making experimental measurements. The predicted resistance values are given for $\Delta C_F = 0.0004$ and 0.0008. The lower value for ACF is probably applicable in this case since the PCH foils were reportedly accurately made and very well finished. In view of the unknowns, it is difficult to draw any conclusion other than that the predictions are in general agreement with the experimental data.

More detailed comparison is possible only on the basis of other design predictions. The Boeing Company's values' ⁶ for the various drag components of PCH-1 MOD 1 are compared in TABLE I with corresponding values obtained by the methods outlined here. Agreement is generally good except for air drag of the hull which is predicted to be some 50% higher by the method given here.

9. CONCLUDING REMARKS

Factors have been identified which affect **the** lift and drag of practical hydrofoil configurations operating close to the free surface. Expressions, largely empirical in nature, have been obtained to **characterise** these configurations. Used with the steady state lift and moment balance equations, the expressions predict the required flap angles and the total resistance of the system. The predictions agree reasonably well with what little full scale experimental data are available.

The greatest need identified by this study is for basic hydrodynamic data on simple, flapped hydrofoil sections. Comprehensive section tests would be most useful to confirm the characteristics assumed here, to indicate the non-linear flap angle effects and to define the practical limits of cavitation-free operation. Comparison of predictions with model test data on T and T foil assemblies also would be very useful, leading to a better understanding of prediction and model test limitations.

Resistance values are particularly hard to predict. The assumption made here of turbulent flow over the whole section and the somewhat arbitrary selection of a value of the coefficient of friction increment due to roughness render some other factors of little consequence. It remains to be seen how well these assumptions will stand up in practice. In the meantime, the various factors have been identified and can be modified as new evidence becomes available.

	COMPA	RISON	OF	RESISTANCE	ESTIMATES	FOR	PCH-1	MOD-1	
					BOEING	(Ac =		<u>% DI</u>	FF.
					(T BC)	(^Δ C _F	()	
							(. TR2)		
BOW	POD				338		366	8. 2	2
AFT	LOWER	PODS			1645	1	7. 26	4.9	9
AFT	UPPER	PODS			1250	1	062	- 15. (D
BOW	STRUT	AND	SPRAY		946		88 1	- 6. 9	9
BOW	FOIL	PROFI	LE		2894		2671	- 8. 3	3
BOW	FOIL	INDUC	ED		1373	1	3'97	1.7	7
MAIN	STRUT	AND	SPRA	Y	2964	2	989	0.8	B
MAIN	FOIL	PROF	TLE		6418	6	628	3. 3	3
MAIN	FOIL	INDU	JCED		1823	2	2259	23.	9
HULL	AIR				1596	2	4158	54.	0
MISC	ELLANE	OUS					449		
TOTA	L			2	21247	22	886	7. 2	7

TABLE	Ι
-------	---

N.B. Values for 45 knots and 120.0 tons a.u.w.

FIG I GENERAL CONFIGURATION

FIG 2 FOIL GEOMETRIES

FIG 3 POD AND STRUT GEOMETRY

FIG 4 SHIP GEOMETRY AND AXIS SYSTEM

FIG 5 EFFECT OF DOWNWASH AT MAIN FOIL

FIG 6 PCH-I (MOO 0) RESISTANCE

REFERENCES

- 1. Hoerner, S. F., "Hydrofoil Handbook", Gibbs and Cox Inc., 1956.
- 2. Callaghan, J. C., "Aerodynamic Prediction Methods for Aircraft at Low Speeds with Mechanical **High** Lift Devices", AGARD Lecture Series No. 67, May 1974.
- 3. Bernicker, R. P., "A Linearised Two-Dimensional Theory for High Speed Hydrofoils near the Free Surface", Journal of Ship Research, Vol. 10, No. 1, March 1966.
- 4. Lindsey, W. F., Stevenson, D. B., Daley, B. N., "Aerodynamic Characteristics of 24 NACA 16 Series Air Foils at Mach Numbers Between 0.3 and 0.8", NACA Technical Note 1546, Langley Aeronautical Library, Langley Field, Va., September 1948.
- 5. "Principles of Naval Architecture", The Society of Naval Architects and Marine Engines, New York, 1967.
- 6. Hoerner, S. F., "Fluid Dynamic Drag", published by the author, 1958.
- 7. Abbott, I. H. von Doenhoff, A. E. and Stivers, L. S., "Summary of Airfoil Data", NACA Report No. 824, Langley Memorial Aeronautical Library, Langley Field, Va.
- 8. Barr, R. A. and Vermeulen, J. C., 'Hydrofoil Handbook", Hydronautics, Inc.
- 9. Riegels, F. W., "Aerofoil Sections', Butterworth Press, London, 1961.
- 10. Breslin, J. P., "Application of Ship Wave Theory to the Eydrofoil of Finite Span", Journal of Ship Research, Vol. 1, No. 1, April 1957.
- 11. Lowry, J. G. and Polhamus, E. C., "A Method for Predicting Lift Increments due to Flap Deflection at Low Angles of Attack in Incompressible Flow", NACA Technical Note 3911, Langley Aeronautical. Library, Langley Field, Va., January 1957.
- 12. Young, A. D., "The Aerodynamic Characteristics of Flaps", Report No. Aero. 2185, Royal Aircraft Establishment, Farnborough, February 1947.

- 13. Chapman, R. B., "Spray Drag of Surface-Piercing Struts", AIAA Paper No. 72-605, presented at the **AIAA/SNAME/USN** Advanced Marine Vehicles Meeting, Annapolis, Maryland, July 1972.
- 14. **Dobay,** C. F., "Smooth-water Speed and Powering Performance of Patrol Hydrofoil PCH-1 MOD-O", NSRDC-264-H-06, April 1970.
- 15. Reig, D., "Speed and Powering Tests with New Torque and Thrust Meters (PCH-MOD 0), Boeing Company LTR 2-1506-1000-685, N00600-69-C-0618.
- 16. Private communication from USNSRDC.

.

APPENDIX A

Program Listing for a Typical Fully-Submerged System

The program listing is for a 360 tons all-up weight hydrofoil ship with a fully-submerged system designed for 50 knots maximum speed. Figure 1A shows the main foil arrangement and Figure 2A the bow foil. The input data required for the program are listed in the Table which follows.

SHIP: FIL Type 64

PROGRAM FSSS 2

DATE: 24/1/75

-1

PARAMETER	SYMBOL			VALUES	UNITS
Line 1		-	±1 ****	- div - 49	
Speed	UK	25.0	27.5 10.0	35.0 40.0 45.0 50	0.0 Knots
ALL UP Weight Foll Base Length	EM			360.0 97.5	Tons Fr
Bow Poil Fraction, x _B /9	FRA			0.90	••
C.G. to Prop. Axis Distance	HG			22.0	ft
Line_2					
t.F. Projected Span between Stru	ts B1M			29.0	Qt
N.Q. Tip Span	B2M			18.5	Ft
H.Q. Tip Chord	C2M			11.4	QT Vr
I.F. Min-Span Depth	H1M	14.5	13.80 13.	25 11.90 10.20 8.93 8.	33 Qt
Y.Q. t/c Roughness Increment	TCM			0.065	
	ULLUQ			0. 0008	
Line }_				10.5	F (
B.Q. Root Chord	618 C18			19.5	Fτ Ot
B.F. Tip Chord	C 2 B			2.10	Ĕť
B.F. Intersection Depth	HB	2.47	3.48 4.3	5.0 5.0 5.0 5.0	Ft
⊳.v. t/C (h _{iM} -h _{iB}) at Zero Trim	DELH			0.065 3.5	Ft
1.F. Incidence	AIMD			0.0	Degree
 Line 4					
M.F. Anhedral Angle to Hor.	GMD			0.0	Degree
M.F. Strut Dihedral to Vert.	GSD			14.0	Degree
m.r. Section Lift Coefft. B.F. Section Lift Coefft.	CLIM CLIB			0.33 0.33	
B.F. Incidence	AIBD			0.0	Degree
• Anhedral only					
Line 5					
1.F. Flap Span, b.,	BF1M			10.0	Ft
H E Flansnan h	BF2N			14 0	0+
E Elan Shan b	66.20			D 75	Q.t.
f F F F F F F F F F F F F F F F F F F F	BT 2. B			R.75	Qt
M.F. Flap Chord Ratio B.F. Flap Chord Ratio	FM			0.20	
Bow Pod Length	PLB			10.0	Ft
how pod Diameter	PDB			1.50	Qt
Line_6				aran a di Malandi in internativaly di gen	
Hull Air Drag Coefft	COA			0.6	
Hex. Hull Bleam	HUB			32.0	Ft
HUELKITI to DecknouseTop Main Pod Length	HKO PLH			∠ч.∪ 19.25	⊢t Qt
fain Pod Diameter	POH			3.50	Qt
Line /	CSIM			12.5	F+
J.S. Intersection Chord	CS2M			12.5	Ft
J.S. Root t/c	TC1M			0.16	Ft
n.o. intersection t/c A.S. Projected Length	SLH			0.08 21.5	Ft Ft
.S. Lower Fence Height (Proj)	FLM1			6.5	Ft
.S. Upper Fence Height (Proj)	FLM2			11.5	Ft
Line 9					
S Root Chord	CSIR			8.0	0+
3.S. Intersection Chord	CS2B			6.5	QC Ft
3.S. Root t/c	TC1B			0.16	Ft
3.S. Intersection t/c	TC2B			0.08	Ft
3.S. Lover Fence Height	FLB1			2.5	Ft
3.S. Upper Fence Reight	FLB2			7.0	Ft
Llne					
ain Pod Height Above Foil	DPHM			3.25	Ft
Bow Fcil Pod Height Above Foil	OPHB			0.75	Ft

```
PROGRAM FSSS2 (INPUT.OUTPUT.TAPE 5 = INPUT.TAPE 6 = OUTPUT)
      STEADY STATE ANALYSIS OF FULLY SUBMERGED HYDROFULLS
С
C
      PROGRAM FSSS2
      COMMON RHO.PI.G
      RHO =1.997
      PI=3.14159
      G = 32.2
999
      READ (5+1) UK+EM+EL+FRA+HG
      READ (5.1) BIM.B2M.CIM.C2M.HIM.TCM.DELCF
READ (5.1) BB.CIB.C2B.HB.TCB.DELH.AIMD
      HEAD (5,1) GMD+GSD+CLIM, CLIB, AIBD
      READ (5.1) BF1M.BF2M.BF2B.FM.FU.PLB.PDB
      READ (5.1) CDA.HUB.HKD.PLM.PDM
      NEAD (5+1) CS1M+CS2H+TC1M+TC2H+SLM+FLM1+FLM2
      R E A D (5,1) CS18, CS26, TC18, TC28, SLE, FL81, FL82
      READ (5.1) DPHM. DPHB
      FORMAT (7F10.4)
1
      READ (5+2000) N E X T
2000 FORMAT (11)
      GM = GMD/180.0*PI
      GS = GSD/180.0 = PI
      COSG = COS(GM)
      SING E SIN(GM)
      TANG = SING/COSG
      COSGS = COS (GS)
      AIM = AIMD*PI/180.0
      AIB = A18D*P1/180.0
С
      MARKER FOR SINGLE REPEAT
      M = -1
      U = 1.689 + UK
      u = 0.5 + RH0 + U + + 2
      XH = FRAPEL
      XM = XB-EL
      ALM = C2M/C1M
      ALB = C28/C18
      RW = 81W+5.0+85W
      SM = B1M+C1M+B2M+C1M+(1.0+ALM)
      SFM = SM-C1M*(BM-2.0*(BF1M+BF2M))
      C M = SM/BM
      s e =C1840.54(1.0+ALB)488
      C8 = S8/88
      SFB = SB-C18+(88-2.0+8F28)
      HM = H1M - TANG*(0.25*81M - 0.405*82M)
      ARM = BM/CM+(1.0+(81M/BM)++3+HK/8M)
      SWM = 0 . 0
      ARB = 58/CH
      TANLE = C18/(0.5+88)+(0.75-F8)+(1.0-AL8)
      Y8 = 0.25*88*(1.0-(1.0-AL8)/(3.0*(1.0 . AL8)))
      CPAB = YB+TANL8+0.5+88+C28+(1.0 . AL8)/S8
      SWB = ATAN (TANLB)
      TANLM = C1M/B2M*(0.75-FM)*(1.0-ALM)
      YM = B2M/2.0*(1.0-(1.0-ALM)/(3.0*(1.0 + ALM)))
      CPXM = YM#TANLM#B2##C2M#(1.0 + ALM)/SM
      DB # X6-CPXB
      DM = XM - CPXM
      FMUB=0.0
      FMUM=0.0
```

```
С
      BUOYANCIES
      CALL BUOY (H8.0..DPH8.0..1.0.CS)H,CS28.TC18.TC28.SL8.S8.C8.TC8.
     1PL4.PD4.F808.S808.PB08)
      CALL BUOY (N1M+B1M+DPHM+TANG+COSG+CS1M+CS2M+TC1M+TC2M+SLM+SM+
     1CM.TCM.PLM.PDM.FBOM.SHOM.PBOM)
      T808 = (F808 . S808 + P808) *Rh0/2240.0
      THOM = (FBOM + 2.0*(SBOM - PHOM))*RH0/2240.0
      DN# = 0 . 0
      CALL SLOPE (TCM, COSG, CLIM, ALM, ARM, HM, CM, FM, SWM, SFM, SM,
99
     10.CLA2DM.FMUH.AOM.CLAM.CLOM.ALFDM.CMFM.FAM.FBM)
      ACHD = AOM*180.0/PI
      C A L L SLOPE (TCB+1.+CLIB+ALB+ARB+HB+CB+FB+SNB+SFB+SB+
     1U.CLA2DU.FMUB.A08.CLAB.CLOB.ALFDB.CMFB.FAU.FBU)
      UHAGH = CDA#0.00238#U##2#HUB#HKD/2.0
      AUSD # AOB*180.0/PI
      THIM = ATAN((H1M-DELH-HB)/EL)
      LIFT AND MOMENT EQUATIONS
C
      AII = ALFDB*CLA5*SB
      A12 = ALFDMOCLAMOSM
      HI = 2240.0* (EM-THOB-THOM) / Q-SB*CLAB* (TRIN-AUB+AIH) - SM*CLAM* (TRIN
     S-AUM+AIM+DNW)
      A21 = A11*XB \cdot CMFB*CB
      AZZ = A12*XM . CMFM*CM
      UC! = -2240.0*(TBOB*DB + TBOM*DM)/Q = SU*(CLAB*(TRIM-AOB*AIB)*XB
     1CLA8*A0840.25*C8*(COS (SWB))**2)-SM*(CLAM*(TRIM-A0M+DN*+AIM)*XM+CLA
     1M#A0H#0.25*CH# (COS (SWM) ) ++21-DRAGH+HG/0
      xi = A11*A22 - A12*A21
      UELE = (A22*81 - A12*82)/X2
      DELM = (B1-A11*DELB)/A12
      CLB = ALFDB*CLAB*DELB · CLAB*(TRIM-AOB+AIB)
CLM = ALFDM*CLAM*DELM · CLAM*(TRIM-AOM+DNW+AIM)
      WB = (CLUPSUPQ/2240.0+TBOB)/EM
      TRIMD = TRIMP180.0/PI
      UELBD = DEL84180.0/PI
      UELMD = DELM#180.0/PI
С
      S I NOLE REPEAT
      IF (M) 100+101+101
      FMUB=0.062*ARd*(ALFD8*DELB*CLA8/CL8)**2
100
      FMUM = 0.062*ARM* (ALFDN*DELM*CLAM/CLM)**2*2.0
      UNW = -PI+88+FA6+CL8/(4.0+8M)+EXP(-6+(HM-H8)/U++2)+COS(6+EL/U++2)
      ₩ = 0.0
      60 TO 99
      WMITE (6+300)
101
300
      FORMAT (//8X2HUK+8X2HEM+8X2HEL+7X3HFRA+8X2HHG)
204
      WRITE (6+204)
WHITE (6+201) UN+EM+EL+FRA-HG
205
      FCI(MAT (//7×3H=1H+7×3H82M+7×3HC1M+7×3HC2M+7×3HH1M+7×3HTCM+5×5HUELC
     351
      WRITE (6+205)
      WRITE (6.201) BIM.BZM.CIM.CZM.HIM.TCM.DELCF
      FORMAT (//8%2HEB+7%3HC18+7%3HC28+8%2HHB+7%3HTC8+6%4HDELH+6%4HAIMD)
206
      WRITE (6+206)
      WRITE (6+2010 - 00+C18+C28+H8+TC8+UELH+AIMD)
207
      FORNAT (//7/3H MD+7x3HGSD+6X4HCLIM+6X4HCLIB+6X4HAIBD)
      WR1 TE 6.207
      WRITE (6,201) UMD.GSD.CLIM.CLIE.AIHD
```

```
FURMAT (//6X4HBF1M+6X4HBF2M+6X4HBF2B+8X2HFM+8X2HFB+7X3HPLB+7X3HPDB
208
     5)
      WRITE (6.208)
      WHITE (6+201) UF1M+BF2M+BF2B+FM+FU+PLU+PDB
      FORMAT (//7X3HCDA+7X3HHUB+7X3HHKD+7X3HPLM+7X3HPUM)
209
      WRITE (6+209)
      #HITE (6,201) CDA,HUB,HKD,PLM,PDM
      FORMAT (//6X4HCS1M+6X4HCS2M+6X4HTC1M+6X4HTC2M+7X3HSLM+6X4HFLM1+6X4
231
     SHFLM2)
      WRITE (6+231)
      #RITE (6,201) CS1M+CS2M+TC1M+TC2M+SLM+FLM1+FLM2
      FURMAT (//6X4HCS18+6X4HCS28+6X4HTC18+6X4HTC28+7X3HSL8+6X4HFL81+6X4
922
     SHFL82)
      WRITE (6+233)
      WRITE (6.201) CS18+CS28+TC18+TC28+SL8+FL81+FL82
      FURMAT (//5X4HDPHM +6X4HDPHB)
234
      WRITE (6+234)
      WRITE (6+201) DPHM+DPHB
      FORMAT (1H1/30X11HOUTPUT D A T A )
301
      WHITE (6+301)
FORMAT (/4X16HZERO LIFT ANGLES,4X17HLIFTC UR VE SLOPES,6X12HLIFTC
302
     SUEFFTS+2X12HBOW FRACTION)
      WRITE (6.302)
      WRITE (6+200)
      FURMAT (/7X3HAUM+7X3HAUB+6X4HCLAM+6X4HCLAB+7X3HCLM+7X3HCLB+8X2HWB)
200
      FORMAT (7F 10.4)
201
      ARITE (6.201) AOMD, AOBD, CLAM, CLAB, CLM, CLB, WB
      FURMAT
               (/6X4HTRIM•7X11HFLAPANGLES•6X8HDOWNWASH•3X18HFLAPEFFECT1
303
     SVENESS)
      WRITE (6+303)
      #RITE (6.202)
      FGRMAT (/6X4HTRIM+6X4HDELB+6X4HDELM+7X3HDNW+6X5HALFDM+6X5HALFDB)
202
      FORMAT (6F10.4)
203
WRITE (6+203) TRIMD+DELBD+DELMD+DNW+ALFDM+ALFDB
C RESISTANCE AND POWER
C MAIN FOIL A S S E M B L Y
      STRUTS
С
С
     PROFILE DRAG OF UNESTRUT
      CALL STRUT (HIM+BIM+DPHM+TANG+CSIM+CS2M+SLM+TC1M+TC2M+U+DELCF+
     SCOSGS.J.DPSM)
     SPRAY DHAG OF ONE STRUT
С
      CALL SPRAY (HIM+BIM+TANG,CSIM+CS2M,TC1M,TC2M,SLM,Q.DSSM)
    FENCE DRAG OF ONE STRUT
С
      HSM = HIM + BIMATANGPO.5
      CALL FENCE (CS1M+CS2M+FLM1+SLM+TC1M+TC2M+Q+FDM1)
      CALL FENCE (CSIM+C52M+FLM2+SLM+TC1M+TC2M+G+FUM2)
      1F H5M-FLM2) 120+121+121
      FDM2 = 0.0
120
121
      FOM = FOM1 + FOM2
     STEUT DEAG TOTAL
m
      TUSM = 2.5400 Sm + 2.0405SM + 2.046DM
С
    PODS
С
     ONE
         NAIN FUIL POD
      CALL P O D (FLM+FONU+DELCF+(+)PHM)
с
    MAIN FOL POD TO' :-
      TOPM = 2 .9 DEPM
    NAIN FOIL DHAG
С
```

```
CALL FUTL (DELM-U-CM-DELCE-TCM-CL1/-CLAPDM-SM-COSG-G-EHM-ALEDM-CLA
     IM.THIN.AOM.ONV.AIN.DPAM.DPHM.CIM)
      TDEN = DPAM + DPAM + DIM
  TOTAL MAIN FOIL ASSEMBLY DRAG
С
      DNE = TOSM + TDPM + TDEM
   ROW FOIL ASSEMBLY
С
    THRTZ
С
     PROFILE DPAG
С
      CALL STRUT (HR+0.0.BPHP+0..CS19.CS2P.SLP.TC1P.TC2P.U.DFLCF.].0.0.
     SPPSE)
     SPPAY DPAG
С
      CALL SPPAY (HH+0++0++CS1P+CS2P+TC1P+TC2B+SLR+G+DSSP)
    FENCE DRAG OF ROW STRUT
С
      CALL FENCE (CS1H+CS2A+FLR1+SLH+TC1H+TC2R+C+FDR1)
      CALL FENCE (CS1P+CS2P+FLR2+SLP+TC1P+TC2B+C+FDP2)
      IF (HB-FLP2) 124+125+125
124
      FDB2 = 0.0
125
      FDP = FDP1 + FP52
   ROW STRUT DRAG TOTAL
C
      TDSP = DPSP + DSSP + FDR
    POD DRAG
С
      CALL POD (PLR.PDP.U.DELCF.Q.DPPA)
    FOIL DRAG
C
      CALL FOIL (DELP+U+CH+DELCF+TCH+CLCA+CL42DP+SR+1++C+FRP+ALEPD+-CL42+
     ITEIM.AOP.0.0.4IH.DPAR.DPPR.DIA)
    HOH FOIL DRAG
С
      TDER = DPAR + DPAR + DTR
С
  TOTAL BOW FOIL ASSEMBLY DRAG
      DPF = TDSR + DPPR + TDFR
      MISCELLANEDUS DRAG
C
      DMIS = (DNF+DRF+DRAGH) #0.02
C SHIP TOTAL DRAG
      DT = (DME+DRE+DRAGH) + DMIS
C THRUST HORSEPOWER
      THP = DT#U/550.0
304
      FORMAT (PXREHMAIN FOIL STRUTS AND TOTAL STRUT DRAGS)
      WRITE (6.304)
      FCPMAT (/6X4HDPSM.6X4HDRSM.7X3HFCM.6X4HTDSM)
210
      WRITE (6.210)
      FCRMAT (SF10.0)
219
      WRITE (A.218) OPSM.DSSM.EDM.TOSM
      FORMAT (VAXIGHMAIN FOIL POD DRAGS)
306
      WRITE (6.306)
      FORMAT (/AX4HOPPN.20X.AX4HTDPN)
212
      WRITE (6-212)
      FORMAT (F10.0.20X.F10.n)
220
      WRITE (A.220) DPPN.TOPH
307
      FORMAT (VAXELHMAIN FOIL PROFILE. INDUCED AND TOTAL ASSEMBLY DRAGS)
     WEITE (4.307)
      FCPMAT (/AX4HDPAM.4X4HDPPM.7X3HDTM.10X.4X4HTDFM.7X3HDMF)
213
      WEITE (6.213)
      FOPMAT (PEID.0.10X.PEID.6)
221
      ABILE (+*551) UBVA-DOBA-DIM-LUEA-UAE
306
      FORMAT (/PX10HRNA FOTE STOUT DULS)
      WRITE (F.P.H)
214
      FORMAT (/-X4HARSH-AX4LASSA.7X3LED4.10Y.4X4LASSA)
```

```
40
```

WPITE (6+214)

- 222
- FORMAT (3F10.0.10X.1F10.0) WRITE (6.222) DPSB.DSSB.FDB.TDSB
- FORMAT (/2X41HBOW FOIL POD.MISCELLANEOUS AND HULL DRAGS) 309
- WRITE (6,309) FORMAT (/6X4HDPPB,6X4HDMIS,5X5HDRAGH) 215
- WRITE (6,215) FORMAT (3F10.01 223
- WRITE (6+223) DPPB+DMIS+DRAGH
- (/2X50HBOW FOIL PROFILE, INDUCED AND TOTAL ASSEMBLY DRAGS) FORMAT 310 WRITE (6,310)
- (/6X4HDPAB+6X4HDPBB+7X3HDIB+10X+6X4HTDFB+7X3HDBF) FORMAT 216 WRITE (6+216)
- FORMAT (3F10.0+10X+2F10.0) 224
- WRITE (6,224) DPAB, DPBB, DIB, TDFB, DBF (/2X32HTOTAL DRAG ANO THRUST HORSEPOWER) FORMAT 311
- WRITE (6+311)
- FORMAT (/8X2HDT+7X3HTHP+8X2HUK+8X2HEM) 217
- WHITE (6+217)
- FURMAT (2F10.0.1F10.2.1F10.1) 225 WRITE (6+225) DT+THP+UK+EM IF (NEXT .GT. U) GO TO 999 STOP
 - END

```
SUBROUTINE SLOPE (TC+COSG+CLI+AL+A+H+C+F+5W+SF+S+U+CLA2D+FML+
     $A0+CLA+CL0+ALFD+CMF+FA+FB)
      COMMON RHO, PI.G
C
    REYNOLDS NUMBER
      R = U*C/1.28E-5
C
    20 LIFT CURVE SLOPE AT INF. DEPTH
      CLA2D1 = (2.0*PI . 4.7*TC . 4.18*TC**2)*(1.25/6.8**(1.0/ALOG10(R))
     1-6.92#TC/R##0.09) #COSG#COS(SW)
С
    "IDEAL" 20LIFT COEFFT.
      CL01 = CLI*(1.0-5.*(TC)**1.35)
    EDGE CORRECTION
С
      E = 1.0 • *8 48
С
    PLANFORM CORRECTION FOR LIFT
      IF(AL-0.4)1.1.2
      PA = 0.0
1
      GO TO 5
      P A =(AL-0.4)/3.6*A/2.0/PI
2
    DEPTH FACTOR FOR CAMBER
С
  5
      AKO =
             (36.0*(H/C)**2. 1.0)/(36.0*(H/C)**2+2.0)
    DEPTH FACTOR FUR SLOPE
С
      AKA = (20.0*(H/C)**2 . 1.0)/(20.0*(H/C)**2 . 2.01
С
    2D LIFT CURVE SLOPE
      CLA2D = AKA*CLA2DI
    AUXILIARY 3D FUNCTION
С
      ETA = 2.0*H/ (A*C)
    30 BIPLANE CORRECTION
С
      SIG = (1.0-0.66 \text{ ETA}) / (1.055 + 3.7 \text{ ETA})
С
    3D WAVE CORRECTION
      GAM = 4.0/(3.0*PI)*(2.0/PI*(1.0+ETA**2)**1.5*(2.0+1.0/(1.0+ETA**2)
     $**0.5)-1.5*ETA)
    2DFLAP EFFECTIVENESS
С
      ALFDO = 1.1*SQRT(F)/COSG/COS(Sw)
    FLAP MOMENT CURVESLOPE
С
      CMD = 1.6*SQRT(F*(1.0-F)**3)
    FLAP EDGE CORWECTXON
С
      EF = 1.0 + ((] \cdot 0 - F) + (2 \cdot 0 + A)
    FLAP DEPTH FACTOR
С
      AJ = 25.04(1.5-F)
      A K F = (AJ*(H/C)**2+1.0)/(AJ*(H/C)**2+2.0)
    FLAP PARTIAL SPAN FACTOR
С
      AKB = SF/S
    CAMBER CORRECTED LIFT COEFFICIENT
С
      DDL = H/C-SQRT(0.05*TC/(AKO*CLO1))
      IF (DDL-0.1) 8+8+9
      HC = 0.1 . SQRT(0.05*TC/(AKO*CL01))
8
      DL = 0.05*TC/HC**2
      GO TO 10
      DL = 0.05 \text{ + } TC/(H/C) \text{ + } 2
9
      CL0 = AKO*CL01-DL
10
    ZEROLIFT ANGLE
С
      A U =-CLO/CLA2D
    CORRECTED FLAPEFFECTIVENESS
С
      ALFD = ALFDO*AKF*EF*AK8/AKA
С
    INDUCTION FACTOR FOR LIFT
      FA = (1.0 + PA . SIG+FMU)/(PI*A) \cdot (GAM*C*G/U**2)
   LIFT CURVESLOPE
С
      CLA = 1.0/(E/(CLA2U*AKA)*FA)
```

```
C FLAP MOMENT RATE COEFFICIENT
CMF = -CMD*AKB
C PLANFORM CORRECTION FOR DRAG
IF (AL=0.4)3,3,4
3 PB=0.
GO TO 6
4 PB = (AL-0.41 /12.0*A/(2.0*Pi))
C INDUCTION FACTOR FOR DRAG
5 FE = (1.0+PB+SIG+FMU)/(PI*A)+GAM*C*G/U**2
RETURN
END
```

```
SUBROUTINE STRUT (H1.B1.DPH.TANG.CS1.CS2.SL.TC1.TC2.U.DELCF.COSGS.
SQ.DPS)
HS = H1 . 0.5+81+TANG-DPH
 CS = cs2 . 0.5+(CS1+CS2)+H$/SL
 R = U+CS/1.28E-5
 T C = TC2. 0.5*(TC1-TC2)*HS/SL
 CDSF = 0.075/(ALOG10(R)-2.0)**2 . DELCF
 CDSP = 1.0 + 1.2*TC + 60.0*TC++4
 DPS = 2.0*CDSF*CDSP*CS*HS/COSGS*Q
 RETURN
 END
 SUBROUTINE SPRAY (H1,B1,TANG,CS1,CS2,TC1,TC2,SL,Q,DSS)
HS = H1 . B1*TANG*0.5
 ₩C5 = C52 • (CS1-CS2) • ■++Mb
 TCS = TC2 . (TC1-TC2) +HS/SL
 DSS = (0.011*WCS**2*TCS + 0.08*(WCS*TCS)**2)*0
RETURN
 END
 SUBROUTINE FENCE (CS1+CS2+FL+SL+TC1+TC2+Q+FD)
C F = CS2 + (CS1-CS2) *FL/SL
T C F = TC2 + (TC1-TC2) *FL/SL
 f D = 0.009+Q+TCF+CF++2
 RETURN
 END
SUBROUTINE BUOY (H1.B1.OPH.TANG.COSG.CS1.CS2.TC1.TC2.SL.S.C.TC.
1PL+PD+F80+S80+P80)
MS = M1 . 0.5+B1+TANG - OPH
 CS = CS2 + 0.5+(CS1-CS2)+HS/SL
 TCS = TC2 + 0.5+(TC1-TC2)+HS/SL
 FBO = 0.7+C+TC+S
 SBO #0.7*CS*HS/COSG*CS*TCS
 PB0 = 0.55*PD**2*PL
 RETURN
```

```
END
```

```
SUBROUTINE POD (PL+PD+U+DELCF+0+DPP)

COMMON RH0+PI+G

PLD = PL/PD

CDPP = 3.0°PLD . 4.5/PLD**0.5 + 21.0/PLD**2

R = U*PL/1.28E+5

CDFP = 0.075/(ALOGIO(R)-2.0)**2 - DELCF

DPP = U*PI/4.0*CDFP*CDPP*PD**2

RETURN

END
```

```
SUBROUTINE FOIL (DEL.U.C.DELCF.TC.CLO.CLA2D.S.COSG.G.FB.ALFD.CLA.

1TRIM.AU.DNW.AI.DPA.DPB.DI)

R = U*C/1.2dE=5

CDFF = 0.075/(ALUGIO(R)=2.0)**2 < D E L C F

C D P F = 1.0 . 1.2*TC . 120-0*TC**4 * 60.0*(TC · 0.2*(CLO . 0.5*

1CLA2D*ALFD*DEL))**4

D P B = 0.005*(CLA2D*ABS(TRIM . 2% · DNW . 0.5*ALFD*DEL))**1.9*S/

1CUSG*U

DPA = 2.0*CDFF*CDPF*S/CUSG*Q

DI = FB*U*S*(ALFD*CLA*DEL + CLA*(TRIM-AO+DNW*AI))**2

RETURN

END
```

UK 25. 0000	EM 360. 0000	EL 97.5000	FRA .9000	22. 00: :		
B1M	82M	C1M	C2M	H1H	TCM	DELCF
29. 0000	18. 5000	11.4000	3. 8000	14.5000	• 0650	• 附和
88	C18	C28	H9	TC8	DEL#	AIPD
19 .500 0	6.3000	2. 1000	2. 4700	. 0650	3.5000	0.0030
GMU 0. 0000	GSD 14.0000	CLIM .3300	CLIB .3300	AIBD 0. 0000		
8F]M		8F28	FM	F8	PL8	РDы
10.0000		8.7500	•2000	.3000	10.0000	1 .500 0
CDA •6000	HUB 32. 0000	HK) 24. 0000	PLN 19. 2500	POM 3.5000		
CSIN	CS2M	TC1M	TC2M	SL∺	FLM1	FLH2
14.5000	12. 5000	.1600	.0800	21.5000	6.5000	1 1.5090
CS18	CS28	TC18	TC28	SLB	FL81	FL82
cr.0000	6. 5000	.1600	•0800	13.0000	2. 5000	7. 0000
DPHM 3. 2500	DPH8 .7500					

46

.....

ZERO LIF	T ANGL ES	LIFT CUR	VE SLOPES	LIFT C	OEFFTS BOW	FRACTION
AUM	AUH	CLAM	CLAB	CLM	CLB	WB
-6 •9831	-3.0248	3.7955	2.0095	.6604	•5867	01062
TRIM	FLAP	ANGLES	DOWNWASH	FLAP EFF	ECTIVENESS	
THIM	DELB	DELW	DNW	ALFON	ALFDO	
4.9999 Main Foil	6.9598 Struts And	5.6919 TOTAL STR	LOO22 Ut Drags	.3439	•5660	
DPSM	DSSM	FDM	TOSM			
1849.	809.	568.	6453.			
MAIN FOIL	PUD DRAGS					
DPPM			TOPM			
991.			1982.			
MAIN FOIL	PROFILE, IN	DUCED AND	TOTAL ASSEM	IBLY DRAGS	i	
DPAM	DPBM	DIM		TDFM	DMF	
1769.	2077.	35439.		45285.	53721.	
HOW FOIL S	STRUT DRAG					
DPSB	USSB	FDB		TOSB		
153.	14s.	to.		369.		
BUw FOIL P	DD.MISCELLA	NEOUS AND	HULL DRAGS			
UPPB	DNIS	DRAGH				
228.	1246.	978.				
BOW FOIL P	HOFILE, IND	UCED AND	TOTAL ASSEP	BLY DRAGS		
DPAB	DP88	DIB		TOFO	DBF	
1178.	274.	5533.		6986.	7583.	
TOTAL DRAG	AND THRUS	T HORSEPOW	ER			

0 f	THP	UK	EN
63527.	4877.	25.00	360.0

•

		HG	FRA	EL	EM	UK
		22.0000	.9000	97.5000	360.6060	27 .5000
DELCF	TCM	HIM	C2M	C1H	82M	61M
.0008	.0650	13.8000	3.8000	11,4000	18,5000	29.0000
AIND	DELH	TCB	NB	C28	C18	86
0.0000	3.5000	.065 0	3.4800	2.1000	6.3000	19.5000
		AIBD	CLIB	CLIM	GSD	GMD
		0.0000	.3300	.3300	14.0000	0.0000
PDB	PLB	FB	FM	8F28	BF2M	SF1M
1.5000	10.0000	.3000	.2000	8.7500	14.0000	10.0000
		PDM	PLM	HKD	HUB	CDA
		3 .5000	19.2500	24.0600	32.0000	.b000
FLH2	FLM1	SLM	TC2M	TCIM	CS2M	CSIM
11.5001,	6.5000	21.5000	-0800	.1600	12.5000	12.5000
FL82	FLU1	SLÐ	TC28	TCIB	C\$28	CS18
7.0000	2.5000	13.0000	.0800	.1600	6.5000	8.0000

DPHM DPHB 3.2500 **,7500**

-

48

ZERO LIFT	ANGLES	LIFT CURV	E SLOPES	LIFT C	OEFFTS BOY	FRACTION
AOM	AOB	CLAM	CLAB	CLW	CAY	68
-2.8628	-2.9802	3.8633	3.4 136	•3347	.3165	•1123
TRIM	FLAP	ANGLES	DOWNWASH	FLAP EFF	ECTIVENESS	
THIM	DELB	DELM	DNC	ALFOM	ALFOB	
1.9972	.6068	•9268		.3451	•5526	
HALM FUL ST		IOTAL SIKU	DRAGS			
OPSM	DSSM	FDM	TDSM			
2000.	1419.	1114.	10397.			
MAIN FUIL P	DD DRAGS					
OPPM			TDPM			
1673.			3746.			
MAIN FOIL PR	OFILE IN	DUCED AND	TOTAL ASSE	HULY DRAGS	5	
OPAM	DPBM	DIM		TDFM	DMF	
084M 14013.	0 29 461.	DIM 16293.		TDFM 31367.	DMF 45510.	
DPAM 14013. Bow Foil St	DPSM 461. Rut Drag	DIM 16293.		TDFM 31367.	DMF 45510.	
DPAM 14013. Bow foil sti DPSH	DPBM 461. Rut Drag DSSB	DIM 16293. FDB		TDFM 31367. TDSB	DMF 45510.	
0PAM 14013. B OW Foil St 0PSH 734.	DPBM 461. Rut Drag DSSB 384.	DIM 16293. FDB 138.		TDFM 31367. TDSB 1256.	DMF 45510.	
DPAN 14013. BOW FOIL ST DPSB 734. BOW FOIL POI	DPBM 461. Rut DRAG DSSB 384. D+MISCELL	DIM 16293. FDB 138. ANEOUS AND	HULL DRAGS	TDFM 31367. TDSB 1256.	DMF 45510.	
DPAM 14013. BOW FOIL ST DPSB 734. BOW FOIL PG DPPB	DPBM 461. Rut DRAG DSSB 384. D.MISCELLA	DIM 16293. FDB 138. ANEOUS AND DRAGH	HULL DRAGS	TDFM 31367. TDSB 1256.	DMF 45510.	
DPAN 14013. BOW FOIL ST DPSB 734. BOW FOIL PC UPPB 430.	DPBM 461. Rut DRAG DSSB 384. D.MISCELL DMIS 1076.	DIM 16293. FDB 138. ANEOUS AND DRAGH 1916.	HULL DRAGS	TDFM 31367. TDSB 1256.	DMF 45510.	
DPAN 14013. BOW FOIL ST DPSB 734. BOW FOIL PG UPPB 430. BOW FOIL FR	DPBM 461. RUT DRAG DSSB 384. D+MISCELLA DMIS 1076. OFILE. INI	DIM 16293. FDB 138. ANEOUS AND DRAGH 1916. DUCED AND T	HULL DRAGS OTAL ASSEME	TDFM 31367. TDSB 1256. Bly Drags	DMF 45510.	
DPAM 14013. BOW FOIL ST DPSB 734. BOW FOIL PG UPPB 430. BOW FOIL PR DPAB	DPBM 461. RUT DRAG DSSB 384. D.MISCELL DMIS 1078. OFILE. IN DPBB	DIM 16293. FDB 138. ANEOUS AND DRAGH 1916. DUCED AND T DIB	HULL DRAGS	TDFM 31367. TDSB 1256. Bly drags TDFB	DMF 45510.	
DPAN 14013. BOW FOIL ST DPSB 734. BOW FOIL PG DPPB 430. BOW FOIL FR DPAB 2178.	DPBM 461. RUT DRAG DSSB 384. D+MISCELLA DMIS 1078. OFILE. IND DPBB 70.	DIM 16293. FDB 138. ANEOUS AND URAGH 1916. DUCED AND T DIB 2515.	HULL DRAGS OTAL ASSEME	TDFM 31367. TDSB 1256. BLY DRAGS TDFB 4763.	DMF 45510.	
DPAN 14013. BOW FOIL ST DPSB 734. BOW FOIL PC UPPB 430. BOW FOIL PR 2178. Total Drag J	DPBM 461. RUT DRAG DSSB 384. D+MISCELL DMIS 1078. OFILE. IN DPBB 70.	DIM 16293. FDB 138. ANEOUS AND URAGH 1916. DUCED AND T DIB 2515. THORSEPOWE	HULL DRAGS OTAL ASSEME R	TDFM 31367. TDSB 1256. Bly drags TDFB 4763.	DMF 45510. 08F 6449.	

10	188	UK	는 전
54953.	5906.	35.09	360.0

UK 30. 0000	EM 360. 0000	EL 97.5000	FRA .9000	HG 22.0000		
B1M	B2M	C1M	C2M	H1M	TCM	DELCF
29.0900	18.5000	11.4000	3.8000	13.2500	•0650	•0000
88	C18	C2B	H8	TCB	DELN	AIND
19.5000	6.3000	2.1000	4. 3000	.0650	3.5000	0. 0000
GMD 0.0000	GSD 14.0000	CLIM •3300	CLIB •3300	AIBD 0.0000		
uf]m	BF2M	8 F28	FM	F8	PLB	PD#
10.0000	14.0000	8.7500	•2000	.3000	10.0000	1.5000
CDA •6000	н ив 32.0090	нкD 24.0000	PLN 19.2500	PDN 3.5000		
CS1M	CS2M	TC1M	TC2M	SLM	FLN1	FL#2
12.5000	12.5000	•1600	0000	21.5000	6. 5000	11.5000
CS18	CS2B	TC18	TC28	SLB	FL81	FL82
4.0000	6.5000	.1600	.0800	13.0000	2. 5~00	1.0000
DPHM 3.2500	DPHB .7500					

۰.

ZERO LI	FT ANGLES	LIFT CURV	/E SLOPES	LIFT	COEFFTS BO	Y FRACTION
AOW -2.8714	▲08 -2.9919	CLAH 3.8572	CLAB 3.3000	CLM .4572	CL 8 • 4A64	48 • 1090
TRIM	FLAP	ANGLES	DOWNWASH	FLAP EF	FECTIVENESS	
TRIM 3.1994 MAIN FOIL S	DELB 1.9230 Thuts and	DELM 2.5430 Total Stru	DN# ••0027 It drags	ALFDH .3444	ALFD8 +5545	
DPSM 2311.	DSSW 1105.	FDM 818.	TDSM 8470.			
MAIN FOIL P	OD DRAGS					
DPPm 1399.			TUPH 2798 -			
MAIN FOIL	PROFILE. I	NDUCED AND	TOTAL ASSE	MBLY DRAG	S,	
DPAM 10935.	DPam 1030.	DIM 22897.		TDFM 34062.	UNF 46130.	
BON FOIL ST	RUTDRAG					
D ⁰ SB 455.	D228 201•	FDB 101.		TDSB 817.		
BON FOIL FO	U.NISCELLA	NEOUS AND H	ULL CRAGS			
UPP6 321.	DMIS 1077.	DRAGH 1408.				
BO# FUIL P	HOFILE. IN	DUCED AND	TOTAL ASSEM	BLY DRAGS		
DPA5 1637.	DP68 140.	DIB 3397.		TDFB 5174.	DØF 6313.	
TOTAL DRAG	SAND THRU	ST HORSEPOW	ER			

DT	THP	UK	EM
54928.	5060.	30.00	360.0

UK 35. 0000	EM 360.0000	EL 97.50 00	FRA •9000	HG 22. 0000		
81M 29.0000	82M 18,5000	CIN 11.~000	C2M 3. 8000	H1M 11.9000	TCM .0650	UELCF .0008
88 19.5000	C1B 6.3000	C2B 2. 1000	H8 5.0000	TCB .0650	DELM 3. 5000	6418 0000 .0
6MD 0. 0000	gsd 14.0000	CLIM .3300	CL18 .3300	AIBD 0.0000		
UF1M 10.0000	BF2M	8F28 a. 7500	FM •2000	F8 .3000	PLY 10.0000	PD3
CDA .6000	MU0 32.0000	HKD 24.0000	PLM 19. 2500	PDM 3. 5000		
CS1M	CS2M	TCIM	TC2M	SLW	FLM1	FLH2
CS18	C528	TC18	TC28	21.5000 SL8	6.5000 Flui	FL82
8.0000 DPHN	6.5000 DPHB	.1600	.0800	13. 0000	2. 5000	7. 0000

ZERO L	FT ANGLES	LIFT CURV	/E SLOPES	LIFT	COEFFTS E	BOW FRACTION
AOM -2.8770	AOB - 3 . 0 1 2 6	CLAM 3.8311	CLAB 3.1349	CLH •5450	CLB •4911	Lb •1075
TRIM	FLAP	ANGLES	DOWNWASH	FLAP EF	FECTIVENE	55
TR1M 4.0013 MAIN FOIL	DELB 3.5162 Struts And	UELM 3.8789 Total Stru	DNW 0011 Jt drags	ALFDM • 3442	ALFD .5580	
DPSN 2072.	D SSM 951.	FDM 688•	TDSM 7421.			
NAIN FOIL	POD DRAGS					
ррр и 1187.			TDPM 2373.			
	PROFILE. IN	DUCED AND T	OTAL ASSEM	BLY DRAG	S	
DPAW	DP8M 1472.	DIM 28131.		TDFM 38890.	UMF 48684 -	
BON FOIL	STRUT DRAG					
0 9 55 294.	DSSB 155.	FD8 85.		TD SB 579.		
BOW FOIL F	OD+MISCELLA	NEOUS AND	HULL DRAGS			
DP P8 273.	DMIS 1130.	DRAGH 1183.				
BOW FOIL	PROFILE, IND	UCED AND TO	DTAL ASSEMB	LY DRAGS	i	
DPAB 1396.	DP88 195.	D18 4202.		TDFB 5793.	09F 6645.	
TOTAL D R	A G AND THR	UST HORSEPOI	ER			
DT 57642.	THP 4866.	UK 27.50	ЕМ 360.0			

UK 49.0000	EM 360.0000	EL 97.5000	FRA .9000	HG 22.0000		
81M	62M	C1M	C2M	H1M	TCM	DELCF
29.0000	18.5000	11.4000	3.6000	10.2000	•0650	•0008
89	CIO	C2B	нё	TC8	DELH	AIFD
10.5000	6.3000	2.1000	5.0000	.0650	3.5000	0.0000
GMD 0.0000	6 S 0 1 4 . 0 0 0 0	CLIM •3300	CLIB .3300	AIBD 0.0000		
UF1N	8F2#	BF2B	FM	F8	۴٤8	PD8
10.0000	14.0000	8.7500	.2000	.3000	10.0000	1.5000
CDA .6000	HUB 32.0000	HKD 24.0000	PLN 19.2500	PDM 3 • 5000		
C51M	CS2M	TC1M	TC2M	SLM	FLM1	FLP2
12.5000	12.5000	•1600	.0500	21.5000	6.5000	11.5000
CS 18	CS2B	TC18	TC28	SLB	FL81	FLE2
8.0000	6.5000	•1600	.0800	13.0000	2.5000	7 I ÀÌÌ
DPHM	орни					

3.2500 .7500

ZERO LIFT	T ANGLES	LIFT CURVE	SLOPES	LIFT C	OEFFTS BOW	FRICTION
AOM -2.8577	AOB -2.9692	CLAM 3.6090	CLAB 3.4333	CLM •2553	CL8 +2499	₩8 •1158
TRIM	F∟AP	ANGLES	DOWNWASH	FLAP EFI	FECTIVENESS	
TRIM	DELB	DELM	DNW	ALFON	ALFOB	
.9989 MAIN FOIL :	.3662 STRUTS AND	.5717 TOTAL STRUT	0038 DRAGS	.3464	•5526	
DPSM	DSSM	FDM	TDSM			
2746.	1717.	668.	10260.			
MAIN FOIL	POD DRAGS					
OPPH			TDPM			
2412.			4825.			
MAIN FOIL	PROFILE, I	NDUCED AND T	OTAL ASSE	MBLY DRAGS	3	
DPAM	DPBM	DIM		TDFM	DMF	
18795.	133.	12469.		31398.	46483.	
80 ₩ F O I L	STRUT DRAG					
OPSB	DSSB	FDB		TDSB		
9 43.	502.	180.		1626.		
BOW FUIL PO	UD+MISCELL	ANEQUS AND HU	JLL DRAGS			
0848	DMIS	DRAGH				
553.	1120.	2503.				
BOW FOIL PH	OFILE+ 1ND	UCED AND TO	TAL ASSE	BLY DRAGS		
DPAB	DPBB	DIU		TDFB	DEF	
2191.	25 .	2026.		4848.	7026.	
TOTAL DRAG	AND THRUS	T HORSEPOWER	ł			
DT	ТнР	UK	EM			
57132.	7019.	40.00	360.0			

UK 45.0000	EN 360.0000	EL 97.5000	FRA •9000	HG 22.0000		
B1M	Ü2M	CIM	C2M	H1M	TCM	DE LCF
2Y.0000	18.5000	11.4000	3.0000	8.9300	• 0650	•0008
88	C1B	C28	HB	TC8	DELH	AIMD
19 . 5000	6.3000	2.1000	5.0000	.0650	3.5000	0.0000
GMU 0.0000	65D 14.0000	CLIM •3300	CLIB .3300	AIBD 0.0000		
8F1M	8F2M	BF28	FM	F0	PL8	PD5
10.0000	14.0000	8.7500	•2000	.3000	10.0000	1•5000
CDA •6000	нив 32.0000	HKD 24.0000	PLW 19.2500	PDM 3.5000		
CS1M	C\$2M	TC1M	TC2M	SLM	FLN1	FLM2
12.5000	12.5000	•1600	.0800	21.5000	6.5000	11.5000
CS18	CS2B	TC18	TC28	SLB	FL81	FL82
8.0000	6.5000	.1600	•0800	13.0000	2.5000	7.0000
DPHM 3.2500	DPH8 •7500					

56

LIFT CURVE SLOWS LIFT COEFFTS BOW FHACTION ZERO LIFT ANGLES AOM BOA CLAM CLAB CLM CLB 66 .2008 .2040 -2.8536 -2.9597 3.4493 .1196 3.7474 TRIM FLAP ANGLES DOWNWASH CLAP EFFECTIVENESS TRIM DELU DELM DNW ALFOM ALFDO .2527 .3211 .4603 -.0034 MAIN FOIL STRUTS AND TOTAL STRUT DRAGS .2527 .5526 .3478 FDM DPSM TOSM DSSM 2047. 2796. 845. 11375. MAIN FOIL POD CRAGS OPPH TOPM 3016. 6032. NAIN FOIL PROFILE, INDUCED AND TOTAL ASSEMBLY DRAGS DPAM DPBM DIM TDFM DMF 23474. 5. 9851. 33329. 50737. BOW FOIL STRUT WAG OPSE FOB TOSE DSSU 1177. 636. 228. 2041. BOW FOIL PCD. MISCELLANEOUS A N D HULL DRAGS DPPA DMIS DRAGH 691. 1236. 3168. BOW FOIL PROFILE, INDUCED AND TOTAL ASSEMBLY DRAGS DPAH DPBB DIB TDFO COF 3488. 3. 1697. 5188. 7920. TOTAL DRAG AND THRUST HORSEPOWER ... TAR: 1112 E M

01	105	UK	E 11
63061.	8714.	45.00	360.0

UK so .0000	EM 360.0000	EL 97.5000	FRA •9000	HG 22.0000		
81M	82M	Cìm	C2M	H1M	TCN	DELCF
29.0000	18.5000	11.4000	3.8000	8.3300	.0650	•0005
8B	C1B	C28	НВ	тсв	CELH	A1MD
19.5000	6.3000	2.1000	5.0000	•0650	3.5000	0.0000
GMD 0.0000	GSD 14.0000	CLIM • 3300	CLIB .3300	A I E D 0.0000		
8F1M	8F2M	BF2B	FM	FB	PL8	PDB
IU.0000	14.0000	6.7500	•2000	• 3000	10.0000	1 .500 0
CDA 6000	<i>HUB</i> 32.0000	HUD 24.0000	PLM 19.2500	РDM 3.5000		
CS1 M	CS2M	TC1M	TC2M	SLM	FLM1	FL⊭2
12.5000	12.5000	•1600	.0800	21.5000	6.5000	11.5000
CS1ย	CS2B	TC18	TC28	୨୮୫	FLB1	FLB2
8.0000	6.5000	.1600		A3.0000	2.5000	7.0000
0 PHM 3.2500	DPH8 • 7500					

58

.....

_

-

ZERO LIF	TANGLES	LIFT CURN	E SLOPES	LIFT C	OEFFTS B O	Y FRACTION
AUM -2 •8 486	AOB - 2 . 9 5 1 3	CLAM 3.7139	CLAB 3.461	CLM •1619	CL8 .1713	WB •1240
TRIM	FLAP	ANGLES	DOYNYASH	FLAP EFF	ECT IVENESS	
TRIM 0999 Main Fuil S	DELB 0297 STRUTS AND	DELM a.2219 TOTAL STW	DNY •.0030 Ut DHAGS	ALFDW • 3486	ALFD8 .5526	
DP5N 3048.	DSSM 2455.	FDM 1043.	TDSM 13092.			
MAINFOIL	POD DRAGS	· .'				
UPPM 3684.			TDPM 7367.			
MAIN FOIL	ROFILE, IND	UCED AND	TOTAL ASSEM	ULY DRAGS	5	
DPAM 28638.	DPBM 28.	DIM 7923.		TDFM 36590.	DMF 57049.	
BON FOIL	STRUT DRAG					
DP SH 1436.	DSS8 785.	FDB 282.		TDSB 2502.		
BOW FOIL PO	D.HISCELLA	NEOUS AND	HULL DRAGS			
DPPB 843.	DMIS 1400.	DRAGH 3911.				
BOY FOIL #	HOFILE. IND	UCED AND T	OTAL ASSEM	BLY DRAGS		
DPAB 4248.	DPBB 0.	DIB 1468.		TDFB 5716.	UBF 9061.	
TOTAL ORAG	G AND THRUS	ST HORSEPOW	ER			
DT 71422.	тнр 1096b.	UK 50.00	EM 360•0			

FIG IA TYPE 64 MAIN FOIL GEOMETRY

FIG 2A TYPE 64 BOW FOIL GEOMETRY

DOCUMENT CONTROL DATA - R & D		
	28. DOCUMENT SECURITY CLASSIFICATION Unclassified	
Defence Research Establishment	Atlantic 2b. GROUP	
3 DOCUMENT TITLE The Prediction of Flap-Controlled Hydrofoil Ship Steady State Performance		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) DREA Technical Memorandum 7 5/A		
5 AUTHOR(S) (Last name, first name, middle initial) Jone and Davis	s, Eric A., Eames, Michael C., , Barry V.	
6. DOCUMENT DATE September 1975	78. TOTAL NO. OF PAGES 76. NO. OF REFS	
8a. PROJECT OR GRANT NO.	ga ORIGINATOR'S DOCUMENT NUMBER(S) DREA Technical Memorandum	
05-70-07	75/A	
8b. CONTRACT NO.	9b, OTHER DOCUMENT NO.IS) (Any other numbers that may be assigned this document)	
11. SUPPLEMENTARY NOTES	12. SPONSORING ACTIVITY	
A method is presented steady state performance chara hydrofoil systems of the ful principles have fairly general is on a canard hydrofoil syst for open ocean operation. Con empirical expressions, with s underlying physical basis. L experimental data.	for prediction of the acteristics of craft with lly-submerged type. The application lbut the emphasis em of type and size suitable nsiderable use is made of some discussion of their dimited comparison is made with	

76-070

UNCLASSIFIED

Security Classification

KEY WORDS HYDROFOIL PERFORMANCE PREDICTIONS INSTRUCTIONS			
		 ORIGINATING ACTIVITY: Enter the name and address of the organization issuing the document. 	9b, OTHER DOCUMENT NUMBER(S): If the document has been assigned my other document numbers (either by the originator or by the sponsor), elso enter this number(s)
		2a. DOCUMENT SECURITY CLASSIFICATION. Enter the overall security classification of the document including special warning tams whenever applicable.	 DISTRIBUTION STATEMENT: Enter my limitations on further dissemination of the document. Other than those imposed by security classification, using standard statements such as:
26. GROUP: Enter security reclassification group numb. The three groups are defined in Appendix 'M' of the ORB Security Regulations.	(1) "Qualified requesters may obtain copies of this downent from their discrete woment from their discrete downents for Center"		
). DOCUMENT TITLE: Enter the complete document title in all capital letters. Titles in all cases should be unclassified. If a sufficiently descriptive title cannot be selected without classifi- catron, show title classification with the usual one-cepital-letter abbreviation in perentheses immediately following the title.	 (2) "Announcement and dissemination of this document Is not authorized without prior approval from originating activity." 11 SUBPLEMENTARY NOTES: the for additional evolutions: 		
 DESCRIPTIVE NOTES: Enter the category of document. 4.9- technical report, technical note or technical letter. If appropri- ate, enter the type of document, e.g. interim. progress, summary, ensual or final. Give the inclusive dates when 8 specific reporting period is covered. 	 12. SPONSORING ACTIVITY: Enter the name of the departmental project office or leboratory sponsoring the research and development. Include address. 		
AUTHOR(S): Enter the name(s) of author(s) as shown on or in this document. Enter last name, first name, middle initial. If military, show rank. The name of the principal author is an absolute minimum requirement.	13. ABSTRACT: Enta an abstract giving a brief and factual summary of the document. even though it may also appear elsewhere in thr body of the document itself. It is highly desirable that the abstract of classified documents be unclassi- field. Each partagraph of the abstract till and with a set of the abstract ti		
DOCUMENT DATE: Enter the date (month. year) of Establishment approval for publication of the document.	indication of the security classification of the information in the paragraph (unless the document (self is unclassified) represented as $(TS) < (C) < (C) < (C)$		
a. TOTAL NUMBER OF PAGES: The total f&count should follow normal pagination procedures, i.e., enter the number of peges containing information.	The length of the abstract should be limited to 20 single-spaced standard typewritten lines; 7% inches long,		
b. NIJMBER OF REFERENCES: Enter the total number Of references cited in the document.	14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a document and could be helpful		
Ig. PROJECT OR GRANT NUMBER: If appropriate, enter the applicable research and development project or grant number under which the document was written.	In second provide the accument. Key words including a selected bo that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by • indivision of technical context.		
Ib. CONTRACT NUMBER II appropriate, enter the ● ppliwblo number under which the document was written.			
b. ORIG:NATOR'S DOCUMENT NUMBER(S): Enter the offer(a) document number by which the document will be identified and controlled by the originating activity. This number mutt be unique to this document.			
