

SECTION MODULI AND INCIPIENT CAVITATION DIAGRAMS FOR A NUMBER OF NACA SECTIONS

by

A.B. Milam and W.B. Morgan

October 1957 Report No. 1177

TABLE OF CONTENTS

ABSTRACT				1
INTRODUCTIO	ON			1
GEOMETRIC	COEFF	CIENTS		2
INCIPIENT	CAVIT	TION DIAGEAMS		б
CONCLUSIONS	5			9
REFERENCES				10
APPENDIX	A:	Geometric Coeffici TMB EPH, NACA 16, 66 TM3 Modified Se	ents for 65A and ctions	12
	B:	Incipient Cavitatio for NACA 16, 65A, 1.10 40/1.575 and Modified Sections	n Curves 0000 • 66 TMB	17

LIST' OF TABLES

Page

Table 1 - Hal	f-ordinates	for V	Various	Secti	ons	3
Table 2 - Geo Sec	metric Coeff ction	licients	for	TMB I	PH	13
Table 3- Geo Sec	metric Coeff ction	ficients	for	NACA	16	14
Table 4 - Ge 65,	eometric Coe A Section	fficient	s for	NACA		15
Table 5 - Geo 66	ometric Coef (TMB Modif	ficients Tied) S	for ection	NACA		16
	LIST OF	FIGURE	S			
Figure l • Co	pordinate Sy	stem fo	or a	Sectior	1	11 ,
Figure 2 - Pi 1	ressure Dist 6-512 Secti	ribution on	n on	NACA		11
Figure 3 - I: N a	ncipient Cav ACA 16 Thic = 0.8 Mean	vitation kness B Line	Curve Form wi	s for ith		18
Figure 4 - I N a	ncipient Cav ACA 16 Thic = 1.0 Mean	vitation kness H Line	Curve Form wi	es for ith		19
Figure 5 - I f w:	ncipient Ca or NACA 654 ith a = 0.8	vitation Thick Mean	l Curv ness Fo Line	ves orm		20
Figure 6 • I f w	ncipient Ca or NACA 65 <i>1</i> ith a = 1.0	vitatio Thick Mean	n Curv ness Fo Line	res orm		21
Figure 7 - I f N T L	ncipient Ca or a Thickn ACA 66 Nose ail and with ine	vitation ess For and 1 a = (n Curv m with Paraboli).8 Mea	res 1 .C an		22

LIST OF FIGURES (Convid.)

, s.

			Page
Figu:e	8 -	Inciplent Cavitation Curves for NACA 0000-1.10 40/1.575 Thick- ness Form with a = 0.8 Wan Line	23
Figure	9 -	Incipient Cavitation Curves for NACA 0000-1.10 40/1.575 Thickness Form with a = 1.0 Mean Line	24

NOTATION

А	Area of section
с ^Г	Lift coefficient
f	Maximum camber of section
н _о	Total head (po + q ₀)
^I x _o	Moment of inertia about the x,-axis
Iyo	Moment of inertia about the y _o -axis
l	Section length
M X	Bending moment about xo-axis
M _{y0}	Bending moment about y _o -axis
p v	Vapor pressure of the fluid
PO	Static pressure in free stream
pl	Static pressure at a point on the body
d ^o	Dynamic pressure (1/2 ρ V ²)
S	Pressure coefficient
S _{crit}	Pressure coefficient at inception of cavitation
t	Maximum thickness of section
V	Free stream velocity
v	Perturbation velocity resulting from the thickness distribution
∆ v	Perturbation velocity resulting from the mean line distribution
∆ ^v a	Perturbation velocity resulting from the angle of attack

v

NOTATIONS (Cont'd.)

- X Abscissa measured from the leading edge parallel to the nose-tail line
- X₀ Abscissa measured from the centroid parallel to the nose-tail line
- x Abscissa of nose with reference to axis through the centroid
- x₂ Abscissa of tail with reference to axis through the centroid
- x₃ Abscissa of point of maximum thickness with reference to axis through the centroid
- Yo Ordinate measured from the centroid
- y1 Ordinate of nose with reference to axis through the centroid
- y₂ Ordinate of back with reference to axis through the centroid
- y3 Ordinate of point of maximum thickness with reference to axis through the centroid
- ρ Density of the fluid
- σ Cavitation number of the section

ABSTRACT

The section moduli for the TMB EPH, NACA 16, 65A and 66 TMB modified sections are given in this report along with incipient cavitation curves for the NACA 16, 65A, 0000-1.10 40/1.575 sections with a = 1.0 and 0.8 mean lines and the NACA 66 TMB modified section with an a = 0.8 mean line,

INTRODUCTION

In obtaining the maximum stress in a propeller blade or a hydrofoil it is necessary to know the section modulus. The geometric properties usually calculated in determining the section modulus are (1) the area of the section, (2) the position of the center of gravity and (3) the moments of inertia. In this report these properties have been combined into coefficients for a number of sections which have different camber ratios and thickness ratios,

The cavitation number at which cavitation first begins on the section is known as the incipient cavitation number, This value is derived theoretically by assuming that cavitation begins at the point of minimum pressure on the section. Incipient cavitation diagrams have been prepared for a number of NACA sections operating at shock free entry. From these diagrams it is possible to determine the section chord length which is necessary to prevent cavitation.

GEOMETRIC COEFFICIENTS

The geometric properties were programmed and computed on the Burroughs E-102 electronic computer for the TMB EPH, NACA 16, NACA 65A and NACA 66 TMB modified sections. Table 1 gives the half-ordinates for the sections investigated when the camber is zero and the thickness ratio is 0.10.

The basic equations involved in calculating the geometric coefficients for a coordinate system as shown in Figure 1 gives:

for the area
$$A = \int \int dy_0 dx_0$$
,

for the moment of inertia about an axis (xo) parallel to the nose-tail line and through the centroid

 $I_{x_0} = \int \int y_0^2 dy_0 dx_0$, and for the moment of inertia about the vertical axis (y_0) through the centroid and perpendicular to the nose-tail line

 $I_{y_o} = \int \int x_o^2 dy_o dx_o ,$

-2-

Table 1

Half -ordinates for Various Sections

(per cent l)	Half Ordinates (percent $\mathcal L$)								
(per cent ×)			65A	66_TMB_Mod_					
0	0	0	0	0					
1.25	1.188	1.077	1.183	1.155					
2.5	1,668	1,504	1,623	1.530					
5.0	2.325	2.091	2.182	2.095					
7.5	2.834	2.527	2.650	2.540					
10.0	3.186	2.881	3.040	2.920					
20.0	4,204	3.887	4,127	[•] 4,002					
30.0	4.750	4.514	4,742	4.637					
40.0	4.983	4.879	4.995	4,952					
45.0	4.997	4.970	4.983	5.000					
50.0	4.046	5,000	4.863	4.962					
60.0	4.647	4.862	4.304	4.653					
70.0	4.085	4.391	3.432	4.035					
80.0	3.260	3.499	2.352	3,110					
90.0	2.170	2.098	1.188	1.877					
95.0	1.480	1.179	0.604	1.143					
100.0	0,000	0.100.	0.021	0.333					

where

xo	is the centroid	abscissa parallel	measured to the	from nose-	the -tail	line
Ч _о	is the centroid	o rdin ate :	measured	from	the	

These basic equations have been simplified by numerical integration and it is this simplified form which was used in the computations for this report. The equations solved for the TMB EPH section and for the NACA 16 and 65A sections may be found in Reference 1. For the NACA 66 TMB modified section, the equations solved may be found in Reference 2.

The equations for finding the stresses at different points on the section are are the section are the section

Stress at leading edge
$$\frac{y_1^M x_0}{x_0} \frac{x_1^M y_0}{y_0}$$
 (1)

Stress at trailing edge =
$$-\frac{y_2^M x_0}{I_{x_0}} - \frac{x_2^M y_0}{I_{y_0}}$$
 (2)

Stress on back at point of maximum thickness

$$= -\frac{\mathbf{y}_{3}^{M}\mathbf{x}_{0}}{\mathbf{I}_{\mathbf{x}_{0}}} - \frac{\mathbf{x}_{3}^{M}\mathbf{y}_{0}}{\mathbf{I}_{\mathbf{y}_{0}}}$$
(3)

*References are listed on page 10

As shown in Figure 1, the abscissas xl, x_2 , and x_3 and the ordinates y_1 , y_2 , and y_3 are used to denote the abscissas and ordinates of the leading edge, trailing edge, and point of maximum back ordinate, respectively, when the center of the coordinate system is at the centroid of the section. The moments M_{x_0} and M_{y_0} are bending moments about the x_0 and yo axis, Also, it should be noted that in the **above** equations a positive stress denotes tension and a negative stress denotes compression,

The numerical values for the geometric properties for the four sections were computed for values of the camber ratio (f/l) from 0 to 0.05 and for the thickness ratio (t/l) from 0.02 to 0.20 where lis the section chord. The results were combined to form non-dimensional coefficients in the form of $\frac{y_0}{I_{x_0}} \frac{x_0}{I_{y_0}}$ and are tabulated in Appendix A. The section area (A) is also tabulated in Appendix A, It should be noted that these values are practically independent of the shape of the camber line and depend only on the magnitude of the camber ratio. For the range of camber ratios investigated the results hold for a circular arc, NACA a = 1.0 or 0.8 mean line,

-5-

With these coefficients it is a rather easy operation to compute an approximate value for the stresses in a section by using Equations (1) to (3). It must be noted that the geometric coefficients must be divided $by l^3$ and the units of the stress will depend upon the unit of l and the bending moments.

INCIPIENT CAVITATION DIAGRAMS

The incipient cavitation number is used to determine when a hydrofoil section should be free from cavitation. This value is theoretically derived by assuming that cavitation begins at the point of minimum pressure on the section. Diagrams have been prepared using results derived from NACA $data^{3,4,5,}$ for the NACA 16, 65A and four digit series -1.10 40/1.575 with a = 1.0 and 0.8 mean lines and the NACA 66 TMB modified section with an a = 0.8 mean line,all operating at shock-free entry, With these diagrams it is possible to obtain the maximum thickness ratio that the section can have and still be free from cavitation. These diagrams also include the effect of the camber ratio (f/l).

-6-

The cavitation number can be **expressed** in terms of the pressure coefficient on the **body**. Reference (3) describes the pressure coefficient (S) at **a**ry point on the body as

$$s = \frac{H_0 \cdot p_1}{c_0} = \frac{p_0 \cdot p_1}{q_0} + 1$$
 (4)

where

 H_0 is the total head $(p_0 + q_0)$ p_0 is the static pressure in the free stream p_1 Is the static pressure at a point on the body q_0 is the dynamic pressure $(1/2 \rho V^2)$ V is the velocity of the free stream ρ is the density of the fluid The cavitation number at which the section is

The cavitation number at which the section is operating is given by

$$\sigma = \frac{p_0 \cdot p_v}{1/2 \rho v^2} \tag{5}$$

where $p_{\mathbf{v}}$ is the vapor **pressure** of the fluid.

If it is assumed that cavitation occurs at any point on a body when $p_1 = p_v$ then $S = S_{crit}$ and the cavitation number is

$$\sigma = s_{\text{crit}} -1 \tag{6}$$

From Reference 3, S has been derived in terms of increments of velocity ratios

$$S = \left(\frac{v}{v} \pm \frac{\Delta v}{v} \pm \frac{\Delta v}{v}\right)^2 \tag{7}$$

where

 $\frac{\mathbf{v}}{\mathbf{v}}$ is the local velocity ratio resulting

from the thickness distribution

 $\Delta \frac{V}{V}$ is the change in velocity ratio resulting from the mean line distribution

from the mean line distribution $\frac{\Delta v}{v}a$ is the change in velocity ratio

resulting from the angle of attack

Figure 2 shows a pressure distribution (1 - S)on the MACA 16-512 section as calculated from Equation (7). From this plot it can be seen that cavitation will first occur at 0.55 of the section length and at 1 - $S_{crit} = -0.6$.

The incipient cavitation charts were derived by using the critical cavitation number of the various sections. To facilitate the plotting and the use of the diagrams the results were plotted in terms of the coefficient $\frac{C_L}{t}$. These charts are for shock free entry in which case $\frac{\Delta v_a}{v}$ is zero, The angle of attack may be taken into consideration using the method shown in Reference 3.

Calculations were performed for the NACA 16, 65A and 0000-1.10 40/1.575 sections with NACA a = 1.0 and 0.8 mean lines and the NACA 66 TMB modified section with an a = 0.8 mean line and the results are plotted in Figures 3 to 9 and given in Appendix B.

-8-

CONCLUSIONS

This report gives the geometric coefficients which are necessary to calculate the stresses in a propeller blade or hydrofoil. These have been computed and compiled in table form for the TMB EPH, NACA 16, 65A and 66 TMB modified sections. By substituting these values in Ecuations (1) to (3), stresses in a section may be found with a minimum of work.

The cavitation number of a section must be determined to give the best cavitation characteristics for the design. This report gives the theoretically derived incipient cavitation charts for the NACA 16, 65A, 0000-1.10 40/1.575 and 66 TMB modified sections.

REFERENCES

- 1. Morgan, W. B., "An Approximate Method of Obtaining Stress in a Propeller Blade," DTMB Report No. 919, October 1954.
- 2. Eckhardt, M.K. and Morgan, W. B., "A Propeller Design Method," Transactions of The Society of Naval Architects and Marine Engineers, 1955.
- 3. Abbott, I, H., et. al., "Summary of Airfoil Data," NACA Report No, 824,1945.
- 4. Loftin, Lawrence, K., Jr., "Theoretical and Experimental Data for a Number of NACA oA-Series Airfoil Sections," NACA Report No. 903, 1948.
- 5. Berggren, Robert E. and Graham, Donald J., "Effects of Leading-Edge Radius and Maximum Thickness-Chord Ratio or, the Variation with Mach Number of the Aerodynamic Characteristics of Several Thin NACA Airfoil Sections," NACA Technical Note 3172, 1954.

2001.mg

Figure 1 - Coordinate System for a Section

Figure 2 - Pressure Distribution on NACA 16-512 Section

APPENDIX A

Metric Coefficients for TMB EPH, 16,65A and 66 TMB Modified Sections

Table 2 -	- Geometric	Coefficients	for	TMB	EPH	Section
-----------	-------------	--------------	-----	-----	-----	---------

€/l	12 AT44	$- (\mathbf{y}_1/\mathbf{I}_{\mathbf{x}_0})l^3$ and $- (\mathbf{y}_2/\mathbf{I}_{\mathbf{x}_0})l^3$	(73/1 ₂₀) ¹³	(x1/1 ³⁰) ₁₂	$- (x_{g}/x_{y_{0}})^{13}$	$(r_5/I_{y_0})l^3$
0.02 0.04 0.05 0.10 0.12 0.14 0.16	.0149 .0447 .0596 .0895 .1044 .1193	80 80 80 80 80 80 80 80 80 80 80 80 80 8	f/l = 0 27558 6964 3095 1741 1114 773 568 435	53 59 267.9 17 86 13 39 10 71 89.3 7 65 6 69	596 5 2982 1988 1491 1193 794 852 745	4207 2103 1402 1051 841 701 601 525
0.18	1342	88	343 278	595 535	662 596	467 420
0.02 0.04 0.05 0.10 0.12 0.14 0.16 0.20	.0149 .0298 .0296 .0596 .0746 .0895 .1044 .1193 .1342 .1492	1 804 90 262 51 80 23 34 29 17 69 10 29 6 51 4 37 3 08 2 25	27148 7233 3209 1795 1144 791 579 442 349 282	53642 266.1 1787 1340 1072 893 765 670 995 536	597.5 298.7 1991 149.3 1195 995 85.3 74.6 663 59.7	4184 2092 1394 1046 836 697 5.97 5.23 4.64 4.18
0.02 0.04 9.95 0.10 0.12 0.14 0.16 0.18 0.20	.0149 .0298 .0447 .0597 .0895 .1045 .1194 .1343 .1493	2 333 80 455 11 149 61 657.8 34 43 20 18 12 82 8 65 6 11 4 47	<pre>// · □=*□=================================</pre>	5379 2689 1793 1344 107,5 89,6 768 672 59.7 59.7	599.9 2999 1999 1499 1199 999 85.7 749 666 599	4175 2087 1391 1043 835 596 521 463 417
	0140	2 202 89	f/I = 0.03	5407	602 7	4170
0.02 0.04 0.06 0.10 a.12 0.14 0.16 0.18 b.20	.0149 .0298 .0448 .0597 .0597 .0896 .1046 .1195 .1345 .1345 .1494	20169 9240 4941 2932 187.6 127.1 901 661	6019 3004 1755 1140 795 584 447 352 285	2703 1802 1351 1081 901 77.2 67.5 600 540	003.1 2012 150,9 120,7 100,6 86,2 75,4 67,0 60.3	2069 1393 1044 835 696 597 522 4.64 4.17
0.02	0149	193361	<i>f/l = 0,04</i> 10780	544 6	6087	4196
G.06 O.09 O.10 0.12 O.16 O.18 0.20	.04:059 .0749 .0898 .1048 .1198 .1348 .1498	593 a7 2355.4 11313 6213 374.4 2417 1648 117.4 865	5153 2770 1677 1110 782 578 443 351 204	2723 1815 1341 1089 947 77.8 680 685 544	304,3 2029 152,1 121,7 101.4 86,9 76,0 67,6 60,8	2098 1398 1049 839 699 524 4.66 419
0,02	.0150	167929	f/l = 0.05 0302	5494	614.7	4222
0.04 0.06 0.08 0.10 0.12 0.14 0.18 0`20	.0450 .0601 .0751 .0901 .1051 .1202 .1352 .1502	588 8.5 253 9,0 127 9,6 72 3.6 44 3.8 28 9,6 19 9,0 14 2,6 10 5,4	4368 2508 1577 1067 762 567 437 347 281	27 47 18 31 13 73 10 98 9 15 7 84 6 86 6 10 5 49	3073 204.9 153.6 122.9 102.4 87.8 76.8 68.3 61.4	2111 1407 1055 444 703 603 527 469 422

t/l	12 Area	$-(y_1/I_{x_0})l^3$ and $-(y_2/I_{x_0})l^3$	$(y_3/1_{x_0})l^3$	(x ₁ /1 _{y₀) t³}	$-(x_2/1_{y_0})l^3$	(x ₃ /I _{y0}) ¹³
			1/1 - 0			
0.02 0.04 0.06 0.08 0.10 0.12 0.12 0.14 0.16 0.18 0.20	.0147 .0294 .0441 .0588 .0735 .0882 .1029 .1176 .1324 .1471	40 40 40 40 40 40 40 40 40 40 40 40 40 4	28068 7017 3118 1754 1122 779 572 438 346 280	5791 2895 1930 1447 1158 965 827 723 643 57.9	6179 3049 2059 1544 1235 1029 882 772 686 617	-1939 - 9.69 - 646 - 4.84 - 387 - 323 - 277 - 242 - 215 - 193
0.02	.0147	180013	\$// ■ 0.0 27905 7269)1 579,5 2807	618.9	19,7 2
0.06 0.08 0.12 0.14 0.16 0.18 0.20	.0735 .0882 .1029 .1177 .1324 .1471	30 01 34 20 17 64 10 26 6 49 4 36 3 07 2 25	3257 1819 1158 800 586 447 352 285	2 0 31 1 9 31 1 4 48 1 1 59 9 65 8 27 7 24 6 43 5 79	206,3 154,7 123,7 103,1 88,4 77,3 68,7 61.8	$\begin{array}{c} 2.68\\ -6.5\\ -3.94\\ -3.94\\ -2.8\\ -2.8\\ -2.8\\ -2.4\\ -2.4\\ -2.19\\ -1.97\end{array}$
	.0147	2 3 2 7 6 3	1/1 • 0.0 21242	5813	621.5	-2011
0.04 0.08 0.10 0.12 0.14 0.18 0.20	.0294 10441 .0588 .0736 .0883 .1030 .1177 .1325 .1472	45391 14922 6541 34 14 20 13 12 79 862 609 4 46	70.03 3237 1832 1171' 811 593 452 356 288	2 906 193.7 1453 116.2 968 830 726 645 581	310.7 207.1 155 3 124.3 103.5 887 77.6 69.0 62.1	-1005 - 670 - 502 - 402 - 335 - 287 - 287 - 223 - 223 - 201
0.02		2 197 07	1/1 = 0. 15382	5u4.3	625.4	-245 4
0.04 0.06 0.08 0.10 0.14 0.16 0.18 0.20	.0589 .0736 .0884 .1031 .1179 .1326 .1473	55719 20116 9216 4928 2924 18?1 1258 898 650	6235 3089 1796 1163 810 594 454 358 289	2 921 194.7 1 460 1 168 97.3 63.4 7 30 6 49 5 84	112.7 208.4 156.3 125,0 104,2 89,3 78,1 69,4 62.5	- 1027 - 684 - 513 - 410 - 3.42 - 2.23 - 256 - 228 - 205
0.04	.0147	192850	f/l = 0.1 114 52	04 58845	630.6	-2101
0.06 0.08 0.10 0.12 0.14 0.16 0.28	.0.4029 .0590 .073 a .0886 .1033 .1181 .1329 .1477	592 41 23 492 31 28 3 61 9.7 373 .4 24 1.1 16 44 11 7.1 8 6.2	5373 2862 1724 1137 800 589 452 357 289	2943 1962 147.3 117.7 981 84.0 735 654 588	315.3 210.2 157.6 126.1 105.1 96.0 78.8 70.0 03.0	$ \begin{array}{r} -1050 \\ 700 \\ 525 \\ -420 \\ -3.50 \\ -3.50 \\ -3.62 \\ -3.50 \\ -3.$
0.02	.0148	167486	f/1 ■ 0.0 8878	05 5937	636.8	-2153
0.04 0.06 0.08 0.13 0.12 0.14 0.16 0.18 0.10	.0296 .0444 .0592 .0889 .1037 .1185 .1333 .1481	58729 25323 12763 721.7 4426 2888 1985 1422 1051	4580 2604 1627 1097 781 580 446 354 287	2968 1979 1484 1187 989 848 742 659 593	318.4 212.2 159.2 127.3 106.1 90.9 79.6 70.7 63.6	-1476 - 717 - 338 - 430 - 358 - 307 - 269 - 239 - 215

t/l	1 1 ² Area	$- (\mathbf{y}_1/\mathbf{I}_{\mathbf{x}_0}) l^3$ and $- (\mathbf{y}_2/\mathbf{I}_{\mathbf{x}_0}) l^3$	$(\mathbf{y}_3/\mathbf{I}_{\mathbf{x}_0}) t^3$	$(x_1/I_{y_0})l^3$	- (1 ₂ /1 ₃₀)12	(x ₃ /I
0.02	0134 0269	oo oo	f/1 - 0 32243 80 60	6 411 3 2 0 5	794.1 397.0	670 335
0.08 0.10 0.12	0404 05368	00 00	3582 2015 1289	2137 1602 1282	264.7 1985 1588	223 167 134
Ø514	080 8 094 3	00	695 658	106.8 915	132.3 1134	111 95
0.16 0.18 0.20	1077 .1212 1347	00 00	398 722	712 641	882 784	83 7,4 67
0.02	.8134	211015	f/i ∎0.0. 30577	1 6415	7954	667
0.02 0.04 0.06	D269 D404	3069.1 93 7.9	8249 3676	3207 2138	397.7 2651	333
0.00 0.10 0.12	0673 0808	40 09 206.6 12 03	2062 1316 911	1 603 1 283 1 069	1988 1590 132 5	166 133
0.13 0.18	0943 so77	761 511	666 510	916 801	113.6 99.4	9.5 83
0.20	.1347	2 43	325	6 41	00.5 79.5	6,6
0.02	0134 0269	272850 *53208	22491 7673	6 4 3.4 321.7	7987 399.3	667 333
0.04	ይ 40 4 ይ 53 9 ይ 67 4	174 9.1 7661 4025	3596 2051 1318	214.4 1608	266.2 199.6	222
0.12 0.14	D809 D943	23 60 14 9,9	915 671	1073 919	133.1 114.1	111 9.5
0.16 0.18 0.20	,1078 ,1213 ,1348	1011 714 523	513 404 327	804 714 643	99.8 88.7 79.8	83 7,4 66
		227546	1/1 0.0	3	202.6	
0.02 0.04 0.06	D269 D404	6531.5 235 80	6706 3384	3233 2155	401.8 267.8	509 334 223
0.08 0.10 0.12	0533 0674 0809	108 Q3 577.7 3428	1969 1296 907	1616 1293 1077	200.9 160.7	167 133
0.14 0.16	0944 1079	21 9.3 14 86	667 511	923 808	114.6 100.4	9.5 8,3
0.18 0.20	.1214	دد 10 7 7.3	404 327	718 646	89,2 80.3	7,A 6.6
0.02	D135	226063 694 31	f/l = 0.0 11572 5687	14 6 5 <u>1</u> 4 3 257	810.3	<u>673</u>
0.06 0.08	0405 0541	27537 13226	3096 1888	217.1 1628	2701 202.5	22A 168
0.10 0.12 0.14	D676 D811 D946	7264 437.7 2825	12 90 888 658	1302 1085 930	162.0 135.0 115.7	134 112 96
0.16	.1082 .1217	192.7 1322	506 400 323	814 723 651		84 74
0.20		1014	1/1 = 0.0)5	01.0	0,7
u. 02 0. 04 0. 06	0135 0271 0407	1963 10 688 43 296 83	8824 4781 2784	6573 3285 219.0	8142 4091 272.7	67.9 339 226
0.08	P542 0678	14960 8460	1765 1202	1642 1314	2045 1636	169 135
0.14	1 085	33 86 23 26	643 496	938 821	150.5 116.8 102.2	113 97 84
D.18 0,20	.1221 .1357	1667 1232	395 321	730 657	90.9 81.8	7.5 6.7

• /)	1 100	$- (\mathbf{y}_1/\mathbf{I}_{\mathbf{x}_0}) l^3$	$(y_{\pi}/1_{\pi})l^{3}$	$(\mathbf{x}_{1}/\mathbf{I}_{2})l^{3}$	• (x_/I) /3	(T (T) 3
• • •	l ² not	$-(y_2/I_{x_0})l^3$	······································	1. y _o ,	(- <u>2</u> ,- <u>3</u> ,-	(~3/1y ₀ /*
			f/l = 0			
0.02 0.04 0.05 0.10 0.12 0.14 0.16 0.18	.0143 .0287 .0431 .0574 A718 .0862 .1005 .1149 .1293	00 00 00 00 00 00 00 00	29479 7369 3275 1842 1179 018 601 460 363	5860 2930 1953 146.5 117% 976 837 732 651	652.9 326.4 217.6 163.2 130.5 108.8 93.2 81.6 72.5	2849 1424 949 7.12 569 4774 407 3.56 316
0.20	,1420	ŵ	294 {/l = 0.0)1	05.2	284
0.02 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20	.0143 .0287 .0431 .0578 .0862 .1005 .1149 .1293 .1436	1934 10 281 30 859.7 36 7.4 189.6 110.3 6 9.7 4 6.9 3 30 2 4.1	28631 7640 3391 1898 1209 837 613 468 369 298	5864 2932 1954 1466 1172 977 837 733 651 586	654.0 3270 2180 163.5 1308 1090 93.4 81.7 72.6 65.4	282 3 141 3 94 3 56 7 4.7 3 4.0 5 3,5 5 3,1 6 2,8 5
0.02	a 1 4 3	2 500 86	//J ≠0. 21436	02 5882	656 7	2804
0.04 0.06 0.10 0.12 0.14 0.16 0.18 0.20	2287 2431 A.575 0718 2862 .1006 .1150 .1294 .1437	4 87 68 160 32 70 49 36 89 21 63 133.4 9 26 6 5 4 4 7,9	7185 3344 1899 1217 844 618 472 372 301	2 9 4 1 1 9 60 1 4 7 0 117.6 9 8 0 \$ 40 7 3 5 6 5 3 5 8 8	328.3 218.9 164.1 131.3 109.4 93.0 820 72.9 65.6	1405 938 7055 5655 4,72 4,05 355 316 285
0.02	,0143	2 260 22	15330	5912 2056	660.8	27.91
0.04 0.06 0.10 0.12 0.14 0.16 0.18 0.26	A 297 D 575 D 719 D 863 .1007 .1151 .1295 .1439	21633 9951 529.5 3142 2010 1362 965 759	3168 1852 1204 840 617 472 372 301	1970 1970 147.a 1182 985 8 4.4 739 656 591	320 165 1321 1001 94.4 82.6 73.4 66.0	936 936 704 5.65 4.72 406 356 318 287
0.02	.0144	207243	11304	595.5	666.3	27.83
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20	0288 0432 0577 0721 0865 .1009 .1154 .1298 .1442	63648 25249 12123 6658 4012 2590 1766 1258 925	5421 2918 1769 1172 826 610 468 370 300	2 99.7 1 985 1 488 1 191 992 8 50 74.4 661 59,5	333.1 2221 1665 1332 1110 951 832 740 666	1 39 7 93 5 70 4 56 6 4.7 3 40 7 3,2 0 3,2 0 28 9
a	2144	1 200 54	1/1 = 0. ()3	670 0	***
0.02 0.04 0.06 0.08 0:10 0.12 0.14 0.16 0.16 0.20	A 1 4 4 0 23 4 0 43 4 0 57 8 0 78 0 86 8 .101 3 .115 7 .130 2 .144 7	6309.9 27207 13712 7754 4755 3103 2132 1528 1130	4590 2640 1662 1126 804 598 461 366 297	5007 3003 2002 1501 1201 1001 858 750 600	0/2.8 336.4 2242 1682 134.5 112.1 96.1 841 74.7 672	27.79 1397 936 706 5.66 4.75 410 360 322 291

				المستسعة إ	- N			<u> </u>	T-X/					NE (**********************
				1		X. I.						-		
					<u>E</u> minul		f HX		$\sqrt{2}$		1			
						· · · · · · · · · · · · · · · · · · ·	+		ХÇ					
				-			· · · · ·			N.	1			
							NE						-	
								C.			X			
							X	3						
						\mathbf{V}	F S		1	N X				
						À		N,			1 1 1			
								X		X		Į –		
										/ h		Ì.		Ъ
							2X			$\langle \rangle$				
							X		N7	1	Y V	XX		
								<u> </u>	ZЪ.		XX	<u> </u>		
								X	λ,			1-7		
								X						
									N.		A A		調ご	,
									\mathbf{X}		$\pm \chi/$			•
				•										
										N.	XIX	\\	- Ì	
											/ `` <u>`</u>			
							-		· · · · · · · · ·			N.		
											\mathbf{X}^{-}		観イ	
													χ.	
													<u>X</u>	
													5	
					į.									
30	26	50	× . ,	÷			~	•		(1)			<u> </u>	
-			5											

INITIAL DISTRIBUTION

Copies

9	Chief, BuShi ps Library, (Code 312) 5 Tech Library
	1 Prelim. Des. (Code 420)
	1 Mach, Des, (Code 430)
	I HUII Des. (Code 440)
n	Γ Pro. α Shalting (code 7747
Δ	1 Mech. Br. (Code 438)
	1 Undersea Warfare (Code 466)
1	CDR. USNOTS. Pasadena. Calif.
-	Attn: Library
1	DIR, NACA, Langley Field, Va.
	Attn: Hydro Lab
1	Head, Dept . of NAME, MIT,
-	Cambridge, Massachusetts
Ţ	Hydro Lab , CIT, Pasadena, Calli.
T	Schiffbau Verguchgangtalt
	Braumfelder Strasse 164
	Hamburg, Germany
1	Supt., Ship Div., National Physical
	Laboratory, Teddington, England
1	DIR, Netherlands Scheepsbouwkundig
	Proefstation, Wageningen, Holland
1	Central Technical Department
	Betnienem Steel, Quincy, Mass.
1	ALLIN MI'S Hallilli DIP Town Inst of Hydraulia Pos
1	State Univ , of Towa : Towa City Towa
1	DIR, St. Anthony Falls, Hydraulic
-	Lab., University of Minnesota
1	Polytech. Inst. of Brooklyn, Dept.
	Aero. & Appl. Mech., N. Y.
1	Ordnance Research Lab,, Penn. State
7	COLLEGE, UNIVERSITY PARK, PENN.
1	DIR, EII, SII, HODOKEN, N. V.

-25-