

VOLUME IV

HYDROFOIL STRUCTURAL CRITERIA

FOREWARD

Navy-al criteria for conventional ships are applicable to hydrofoil ships but the **unique** conditions to, which the latter are exposed while **foilborne** require **special** considerations. The following criteria contain specific requirements to **ensure** that structural capability is provided for high speed foilborne operations in a **seaway**.

The structural criteria herein consist of specific loads (or specific conditions which result in Loads) and corresponding requirements for specific structural responses to the loads. In general limit loads are to be matched with **yield** stresses, ultimate loads with ultimate stresses.

ABSTRACT

This criteria contains structural requirements for Navy hydrofoil ship hulls and foi 1 systems. Structural loads, or operating conditions which result in loads, are specified along with required structural responses. Both maximum design loads and fatigue loads are addressed.

KEY WORDS

•• -

Hydrofoi 1 Ship Foi 1 Systems sea state fatigue loads Wave impacts Hydroelastici ty TABLE OF CONTENTS

4

SECTION		PAGE
TITLE		i
FOREWAR	<u>م</u>	ii
ABSTRACT	Γ	111
TABLE OF	F CONTENTS	iv
LIST OF 7	TABLES	i x
LIST OF H	FIGURES	Х
1.0	SCOPE	l
1.1	CONTENT	1
1.2	PURPOSE	1
1.3	DEFINITIONS	2
1.3.1	Sea Environment	2
1.3.1.1	Significant Wave Height and Period	2
1.3.1.2	Distributed Wave Heights and Periods-	2
2.0	APPLICABLE DOCUMENTS	3
2.1	GOVERNMENT DOCUMENTS	. 3
-2.1.1	Specifications	3
2.1.2	Standards	4
2.1.3	Other Publications	4
2.2	NON-GOVERNMENT DOCUMENTS	4
3.0	REQUIREMENTS	5
3.1	GENERAL	5
3.1.1	Configurations	5
3.1.2	Design Weights	5
3.1.2.1	Maximum Foilborne	6
3.1.2.2	Average Operating	6
3.1.2.3	Minimum Operating	6
3.1.2.4	Hoisting	6
['] 3.1.3	Mass Proper ties	6
3.1.3.1	Center of Gravity	6

.

SECTION		PAGE
3.1.33	Moments of Inertia	6
3.1.4	Waves	6
3.1.5	Design Speeds	6
3.1.5.1	Maximum Foilborne Speed	6
3.1.5.2	Rough Water Foilborne Cruise Speed	6
3.1.5.3	Maximum Foilborne Rough Water Speed	8
3.1.5.4	Hullborne	8
3.1.6	Applied Loads	8
3.1.6.1	Limit Loads	• 8
3.1.6.2	Yield Loads	8
3.1.6.3	Ultimate Loads	8
3.1.6.4	Service Loads	10
3.1.7	Strength Requirements	- 10
3.1.7.1	Yield Strength	10
3.1.72	Ultimate Strength	10
3.1.73	Fatigue Life	10
3.1.7.4	Flaw Growth and Residual Strength	11
3.1.8	Hydroelastic and Stiffness Requirements	11
3.1.8.1	Control Reversal	11
3.1.8.2	Divergence	11
3.1.83	Flutter	11
3.1.8.4	Buffeting	11
3.1.8.5	Static Deflection	13
3.1.9	Shock and Vibration	14
3.1.10	Weapons Loads	19
3.1.10.1	Gun Firing	19
3.1.10.2	Missile Launching	19
3.1.10.3	Explosive Air Blast	19
3.1.10.4	Undex - Hullborne	20
3.1.10.5	Undex - Foilborne	20
3.1.11	Simulations	20

SECTION		PAGE
3.2	FOIL SYSTEM	21
3.2.1	General	21
3.2.2	Foil Maximum Force	21
3.2.2.1	Lift and Moment	21
3.2.2.2	Foil Maximum Drag	22
3.2.3	Strut Maximum Force	22
3.2.3.1	Side Force and Moment	22
3.2.3.2	Strut Maximum Drag	23
3.2.3.3	Foil Chord Plane Loads	23
3.2.4	Maneuver Loads	24
3.2.4.1	Flat Turn	24
3.2.4.2	Hardover Helm	24
3.2.4.3	Maneuver In Waves	25
3.2.5	Debris Impact	2 5
3.2.6	Service Load Spectrum	25 -
33.7	Hydrostatic Pressure	2 5
3.2.8	Propulsion Loads	25
3.2.9	Retraction Extension Loads	25
3.2.10	Foil-Strut Structure	26
3.2.11	Pods and Fairings	26
3.2.11.1	Hydrodynamic Loads	26
3.2.11.2	Deflection Loads	26
3.2.11.3	Hydrostatic Loads	26
3.2.12	Flaps	26
3.2.12.1	Hydrodynamic Load	26
3.2.12.2	Actuation Loads	27
3.2.12.3	Def lec tion Loads	27
3.3	HULL	28
3.3.1	Load Conditions	28
3.3.1.1	Hullborne Loads	28
3.2.1.2	Foilborne Cruise Loads	28

-

١.

SECTION		PAGE
3.3.1.2.1	Foilborne Straightaway	28
3.2.1.2.2	Foilborne Maneuvering	28
3.3.1.3	Foilborne Wave Impact Loads	28
3.3.1.3.1	General	28
3.3.1.3.2	Rough Water Takeoff	29
3.3.1.3.3	Emergency Landing	29
3.3. I .3.4	Rough Water Broach	29
3.3.1.3.5	Rough Water Maneuver	30
3.3.1.4	Wave Impact Acceleration	30
3.3.1.5	Service Loads	30
3.3.2	Hull Structural Capability	31
3.3.3	Hull Girder	31
3.3.3.1	Hullborne	31
3.3.3.2	Foilborne Cruise	31
3.3.3.3	Foilborne Wave Impacts	.31
3.3.3.4	Fatigue	32
3.3.4	Shell Bottom Plating	32
3.3.5	Shell Topsides, Weatherdeck and Superstructuh	34
3.3.5.1	Wave Pressure Loads	34
- 3.3.5.2	Weapon Firing Loads	37
3.3.6	Frames and Bulkheads	37
3.3.6.1	Hullborne	37
3.3.6.2	Foilborne	37
3.3.7	Keel	37
3.3.7.1	Docking	37
3.3.7.2	Foilborne	37
3.3.8	Hull Recesses	38
3.3.9	Foundations	3
3.3.9.1	'Foil System Foundations	38
3.3.9.2	Machinery and Equipment Foundatons	38
3.3.9.3	Weapon Foundatons	38

8

•

SECTION		PAGE
3.3.10	Tanks	39
3. 3. 11	Interior Decks	39
3. 3. 11. 1	Watertight Decks	39
- 3.3.11.2	Non-Watertight Decks	39
3.3.12	Non-structural Bulkheads	39
3.3.13	Masts	40
3.3.14	Watertight Compartment Tests	40
3.3.15	Mooring and Towing	40
4.0	QUALITY ASSURANCE	42
4. 1	REPORTS	
4.2	BLANK	
4.3	Structural Tests	43
5.0	(DELETE)	
6.0	NOTES (TBD)	
10.0	APPENDIX	45
10.1	Wave Spectra	45
10. 2	Blank	48
10. 3	Calculation of Wave Impact Loads	49

• - -

(

LIST OF TABLES

1. s. 16 m			
TABLE NUMBER			PAGE
3.1.6	Load Configurations		9
3.1.7(a)	Fatigue Reliability Factors		12
3.1 .7(b)	Definition of Failure Inspectability Ratings		12
3.1.7(c)	Initial Flaws in Ferrous Materials		12
3.1.7(d)	Crack Growth Reliability Factors		12
*-			
10.1.1	Typical Specification for Sea Conditions .	de v	
	in the North Sea		46
10.1.2	Wave Height Relationships		47

• • • • • • • • •

. -

6

۰,

•

- **

LIST OF FIGURES

...

s. '-

. 1

FIGURE NUMBER		PAGE
1.0	Criteria Requirements/Responses/Verification	xi
3.1.1	Center of Gravity Envelope	7
3.1.2	Shock Load Envelope for Equipment Installation in	
	Forward 1/3 Length	15
3.1.3	Shock Load Envelope for Equipment Installation in	
	After 2/3 Length	16
3.1.4 🔔	Sinusoidal Vibration Environment	17
3.1.5	Random Vibration Environment	18
3.3. la	Limit Pressures for Sideshell, Weatherdeck	
	and Super Structure (English)	35
3.3.1b	Limit Pressures for Sideshell, Weatherdeck	
	and Super Structure (Metric)	35
3.3.2	Interior Deck Loads	41
10.1	Spectral Distribution of Wave Heights	47
10.3.1	PHM Hull Load Factors	53
10.3.2	Coordinate System for Ship Motions	54

¥.,1

Ż

· · · ·

• E transfer e

1. A. B. 1.0 CRITERIA REQUIREMENTS/RESPONSE/VERIFICATION FIGURE

1.1 CONTENT

These Criteria contain the requirements for structural loads and structural responses that shall be used for design and **verification** tests of U.S. Navy **hydrofoil** ships. **Hullborne** and **foilborne operating** conditions described herein shall **establish** structural design **loads** for all hull and foil **system** components. The proposed structure shall be shown by **analyses** or, if required, by tests, to have **stresses** not **exceeding allowable stresses**, to have required fatigue life, and to have stiffness sufficient to prevent hydroelastic problems. The **hullborne** and foilborne operating conditions shall be used to determine **shock** and vibration environments applicable to the design of all components and equipment.

This volume is one of the set of design criteria and specification volumes for US. **Navy** Hydrofoil Ships developed under the direction of DTNSRDC for the Naval Sea Systems Command. The title of each volume is given below.

Volume	Ι	General Information Manual					
Volume	II	Hydrodynamics and Performance Prediction Criteria					
Volume	III	Hydrofoil Ship Control and Dynamics Specifications and					
		Criteria					
Volume	IV	Structural Design Criteria					
Volume	e v	Propulsion Systems Design Criteria					

A follow-on set of specifications for ship intrinsic subsystems (Volumes VI through XIV) is planned.

٠.

13 PURPOSE

The criteria and requirements set forth herein, in conjunction with the other volumes of design criteria and specifications for U.S. Navy Hydrofoils, are intended to govern the design, development, and procurement of military hydrofoil ships. This voume identifies the minimum acceptable structural characteristics **and** the

minimum design and development activity necessary to ensure that strength and rigidity are achieved commensurate with requirements for high speed operations in the intended sea conditions.

-

1.3 DEFINITIONS

1.3.1 Sea Environment

1.3.1.1 Significant Wave Height and Significant Wave Period

Signficant Wave Height – Average height (crest to trough) of the one-third highest waves in a sea. Abbreviated H_{c} .

Significant Wave Period - Average period of. the one-third highest waves. Abbreviated T.

1.3.1.2 Distributed Wave Heights and Periods — The relative frequency of Occurrence of wave heights and wave periods used herein to determine structural loads shall have statistical distributions based on an accepted sea spectrum.

Appendix 10.1 is an example of accepted spectra.

20 APPLICABLE DOCUMENTS

The **following** documents of the issue in effect on the date of invitation for bids or **request** for proposal, form a part of this specification to the extent specified herein.

21 GOVERNMENT DOCUMENTS

2.1.2 Specifications

_ ++

(

Federal Specification Military Specifications

Comr	anion	Design	n Criteria	and S	pecification	for U.S	S. Navv	' Hv	vdrofoil	Ships
Comp	amon	2 USI SI			peenieuron	101 016			, ai oioii	~ inpo

Volume I	General Information Manual
Volume IA	General Information Manual - Technical Substantiation
Volume II	Hydrodynamic Performance Prediction Criteria
Volume IIA	Hydrodynamic and Performance Prediction Criteria -
	Technical Substantiation
Volume III	Hydrofoil Ship Control and Dynamics Specifications and
	Criteria
Volume IIIA	Hydrofoil Ship Control and Dynamics Specifications and
	Criteria - Technical Substantiation
Volume IVA	Structural Design Criteria - Technical Substantiation
Volume v	Propulsion System Design Criteria
Volume VA	Propulsion System Design Criteria - Technical
	Substantiation

Detail Specification for Design and Construction of Hydrofoil Ship ()

General Specifications for Ships of the United States Navy.

2.1.2 Standards

Federal Standards Military Standards MIL-STD-167 Vibration of Equipment and Machinery

2.13 Other Publications

Manuals

DDS 100-4 Strength of Structural Members

··· Regulations

Handbooks

MIL-HDBK5 Strength of Metal Aircraft Elements .

×

,

_ · · ·

· 2

23 NON-GOVERNMENT DOCUMENTS

Specifications Standards Other Publications

3.1 GENERAL

The requirements of these criteria shall apply to U.S. Navy hydrofoil ships having fully submerged foils with the foilborne hull supported at two longitudinal locations and with an automatic control system for stabilization. These criteria shall be the basis for structural design except as ammended by the Detail Specification, or as ammended in an approved Structural Design Criteria Report. Design requirements given in the General Specifications for conventional surface vessels of the U.S. Navy are also applicable. Each hullborne structural requirement therein shall be included in the design unless the requirement is specifically deleted or is in conflict with these criteria. The construction of the ship shall be in conformance with the requirements of the Detail Specification.

3.1.1 Configurations

The ship shall be considered complete and capable of **hullborne** or **foilborne** operations for the weights of 3.1.2 and load conditions of 3.2 and 3.3.

3.1.2 Design Weights

3.1.2.1 Maximum Foilborne Weight (W) - For this condition the vessel shall be considered complete in every respect (including a growth margin if specified) and . loaded with crew, cargo, and full foilborne allowances of fuel, potable water, provisions and stores, ammunition and other consumables as specified to perform its design mission.

3.1.2.2 Average Foilborne Weight (W_{AV}) – This condition of loading is the same as \cdot W_{M} except all consumable loads shall be reduced to 60 percent of full foilborne allowances.

3.1.2.3 Minimum, Foilborne Weight (W_{MIN}) - This condition of loading is the same as W_M except cargo shall be considered discharged and all consumable loads reduced to 10 percent of useable foilborne allowances.

3.1.2.4 Hoisting-(Blank)

3.1.3 Mass Properties

3.134 Center of cavity – An' envelope, as shown in Figure 3.1.1, shall be prepared indicating locations 'of -the center of gravity for all configurations including those with the most forward and most aft center of gravity locations and those defined in 3.1 .2.

3.1.3.2 Moments of **Intertia** – Pitch, **roll and** yaw moments of inertia shall be calculated for the design weights of **3.1.2** and reported **in** the Structural Loads **Report.**

3.1.4 waves

The sea environment shall be defined to match wave heights and wave periods given in the Detail Specifications. A Significant Wave Height and A Significant Wave Period shall be identified and a statistical distribution of waves, as defined in 1.3.1.2, shall be used to develop hull and foil system loads.

3.15 Design Speeds

3.1.5.1 Maximum Foilborne Speed (V_M) – The maximum foilborne speed shall be the steady state calm water speed attainable at full military power rating of the propulsion system and at W_{MIN} .

3.1.5.2 Rough Water Foilborne Cruise Speed (V_c) – The rough water cruise speed shall be the average speed attainable in head and bow seas at maximum continuous power rating of the propulsion system.

3.1.5.3 Maximum Foilborne Rough Water Speed (V_{RW}) - The maximum intermittent rough water speed for loads calculations shall be 5 knots greater than V_c.

3.1.5.4 Hulborne Speed, Foils Extended (V_{FIB}) Hullborne speed with foils extended shall be the average speed attainable at the maximum continuous power rating of the foilborne propulsion system in calm water or, if stated in the Detail Specifications, shall be the required Speed of Advance.

3.1.6 Applied Loads

The basis of the strength design of the ship shall be Yield, Ultimate, and Service Loads. The ship shall be in equilibrium under the **action of** applied loads with inertia loads accounting for imbalances. **Applied loads shall be calculated for the** loading conditions of 3.2 and 3.3 for the **operational conditions of 3.1.** The applicability of 3.1 is shown in Table 3.1.6.

3.1.6.1 Limit Loads – The loads **derived** from **the requirements of this document** shall **be** Limit Loads unless otherwise specified. **Whenever the provisions of this** specification as applied to a particular hydrofoil ship fail to identify potentially critical loading **conditions**, or result in inappropriate Limit Load-magnitudes for specified conditions, new or revised Limit Load criteria shall be proposed by the contractor in the initial submittal of the Structural Design Criteria **Report** of 4.1.

3.1.6.1 Yield Loads – Yield Loads are Limit Loads multiplied by the Yield Factor of Safety. Unless otherwise specified herein, the Yield Factor of Safety shall be 1.00.

3.1.6.3 Ultimate Loads – Ultimate Loads are Limit Loads multiplied by the Ultimate Factor of Safety, or are loads specifically designated herein as Ultimate. **The Ultimate** Factor of Safety shall be 1.50.

3.1.6.4 Service Loads – Loads to be employed in fatigue strength and crack growth analyses are Service Loads which shall be derived from operational_environments specified in the Detail Specification and from time-related load requirements of 3.2.6 for the foil system and 3.3.1.5 for the hull.

TABLE 3.1-6LOADCONSIDERATIONS

1. 2

Load	Configuration	Weight 3.1.2		H Waves 3.1.4			Speed 3.1.5				
Condition	3.1.1	WM	WAV	WMIN	5	H1/10	Spectra	VM	٧C	VRW	VHB
Hydroelasticity 3.1.8	Foilborne			~				~			
Foil-Strut Force 3.2.2, 3.2.3	Foilborne					-		1	~		-
ManeuverLoads 3.2.4	Foilborne		-				~	~	-	~	~
Debris Impact === 3.2.5	Foilborne				<u>,</u>				~		
Service Loads 3.2.6	Foilbarne & Hullbarne	14 L	~				~		-		V
Hydrostatic Pressure 3.2.7	Foilborne										
Propulsion Loads 3.2.8	Foilborne			3.00	÷					Ne.	
Retraction-Extension 3.2.9	Hullborne		-								
Foilborne Cruise 3.3.1.2	Foilborne	~					~				• • •
Rough Water Takeoff 3.3.1.3.2	Foilborne	1		/					r		r
Emergency Landing 3.3.1.3.3	Foilborne		1						2		
Rough Water Broach 3.3.1.3.4	Foilborne	/		~		~			r		
Rough Water Maneuver 3.3.1.3.5	Foilborne					r			~		
Hull Service Loads 3.3.1.5	Foilborne & Hullborne	1	1				/		~		

3.1.7 Strength Requirements

Adequate strength of proposed structures shall be demonstrated by analyses or tests which **shall be**⁻ fully reported in the Structural Substantiation Report, 4.1. Proposed **deviations** from the following Strength Requirements shall be fully substantiated and approved by the Navy before being incorporated in the design.

3.1.7.1 Yield Strength – The application of Yield Loads shall not cause elastic or permanent deformations which interfere with the intended function of a structural component or require its replacement or repair as a result of their application. Hull plating subjected to yield pressure loads shall not have a calculated permanent set greater than .005 times the distance between stiffeners.

3.1.7.2 Ultimate strength – The application of Ultimate Loads shall not cause structural failure.

3.1.73 Fatigue Life – Fatigue life of structure subjected to Service Loads of 3.1.6.4 shall be no less than the 'specified Service Life. Fatigue life shall be determined by calculations or tests, or, if required by the Detail Specifications for certain structures, by tests only. Fatigue life of structures immersed in salt water or exposed to salt spray shall be calculated using "in sea water" material fatigue data. Cyclic stresses shall include notch factors from pitting or crevices due to sea water corrosion. Fatigue life calculations shall include Fatigue Rating Factors based on consequences of failure and inspectability as given in Tables 3.1.7(a) and (b).

3.1.7.4 Flaw **Growth** ad **Residual Strength** – Calculations shall be made showing that initial undetected flaws **shall** not grow so **large** as to reduce component static strength below that required to sustain all limit loads employed in structural design. Calculations of flaw growth and residual strength for foils and struts and other components made with ferrous materials shall use initial flaw sizes given in Table 3.1.7(c). Minimum size of undetected surface flaws to be expected in non-ferrous materials subject to this requirements shall be reported and substantiated in the Structural Design Criteria Report and shall not be used in the design until approved by the Navy.

. .

The number of service load cycles used for flaw growth analyses shall be multiplied by the Crack Growth Reliability Factor of Table 3.1.7(d). In designing for throughcrack failure, the maximum stress shall be calculated from the the critical plainstrain fracture toughness value (K_{1C}). For 15-5PH stainless steel, K 1 _C is 130 ksi $\sqrt{$ inch.

3.1.8 Hydroelastic and Stiffness Requirements

A hydroelastic analysis report shall be submitted in **accordanc** with 4.1 showing compliance with the requirements of this section.

3.1.8.1 Control Reversal – Foils and struts shall be free of control reversal to speeds at least 1.6 times (V_{MAX}) at all strut immersions with the **vessel at** minimum operating weight.

3.1.8.2 Divergence – Foils, struts and other components subject to high velocity water flow shall be free of hydroelastic divergence to speeds at least 1.6 times (V_{MAX}) at all strut immersions with the vessel at minimum operating weight.

æ

3.1.3.3 Flutter – Each foil-strut configuration shall be free of flutter **to** speeds at least 1.6 times (V_{max}) for all strut immersions with the vessel at minimum operating weight. Analytical or experimental data, or **both**, shall demonstrate compliance with this requirement.

3.1.8.4 Buffeting and Panel Flutter – Plating panels subject to highly turbulent flow, such as from the wake of propellers or in waterjets, shall be checked for excessive stress cycling which would result in early fatigue failures. Assurance of freedom **from** this type of failure shall be verified during underwdy trials.

 Failure Rating	Inspectabili	ity Rating'
	Ι	II
А	2.0	1.5
В	1.5	1.0

TABLE 3.1.7(a): Fatigue Reliability Factor

1

For use with material allowable **S-N** curves representing the 95% probability and 95% confidence level.

TABLE 3.1.7(b): Definition of Failure and Inspectability Ratings

Failure ≷ating	Definition	Inspectability Rating	Definition Requires disassembly of strut/foil system or removal of large equip - ment items on or in the hull; locally uninspect - able area; or inspectable only while dry docked with no more than minor disassembly		
A	Could cause loss of ship, serious injury to personnel, un - availability for more than seven days or cause a mission in progress to be aborted .	Ι			
В	All failures not classified as A.	Π	All component areas not rated I, or for Flaw Growth detectable by scheduled inspections.		

Best Metal	1.2 x 4.32				
	Longitudinal	Transverse			
Standard Weld	1.52 x 12.70 .	1.52 x 12.00²			
	- -	1.52 x 5.08 3			
Blind Weld	<u>,</u> 2.54 x 127.0	2.54 x 12.70²			
		2.54 x 5.08³			

TABLE 3.1.7(c): Initial Flaws in Ferrous Materials (Undetected Surface Flaws)

I All dimensions in millimeters ²Gas tungston Arc and Gas Manual Arc⁻⁻.

³ Plasma Arc and Electron Beam

·.

TABLE 3.1.7(d): Crack Growth Reliability Factors

Failure Rating'	Inspectabilit y Rating'				
	I'	II'			
А	1 . 5	1.0			
В	1.0	0.5			

'The definitions of Table 3.1.7(b) shall apply

3.1.8.5 Static Deflection – Components which rotate or slide shall be free of binding or excessive friction due to deflection of the supporting structure with limit Loads applied. Control flaps, actuation linkages, push rods, etc., shall have self-aligning bearings if necessary to ensure free motion.

2

3.1.9 Shock and Vibration

ſ

Equipment and foundations shall be designed for shock loads caused by hull-wave impacts and for vibrations due to rotating machinery; Shock load factors as shown herein are considered separately from 3.1.10. Equipment weighing 1350 N (300 lbs) or less shall be subject to shock loads shown on Figures 3.1.2 and 3.1.3 which give acceleration levels versus the fundamental natural frequency of the equipment. If natural frequencies are unavailable, the following guideline may be used:

Weight, Newtons	Shock Spectra Frequency (Hz)
Less than 20.0	200
20.0 to 110.0	100
110.1 to 335.0	5 0
335.1 to 00.0	35
670.1 to 1350.0	20

Load factors on Figures 3.1.2 and **3.1.3** are **also** applicable **to** installations of equipment weighing over 1350 N, however for such equipment the factors **used** _____ shall not exceed inertia load factors calculated in accordance with 3.3.1.4.

Lightweight equipment installations shall be designed for vibration load **factors as** well as shock. Figures 3.1.4 and **3.1.5** are typical sinusoidal and random vibration environments. These or **other** data, if more applicable, shall be **used** for evaluation and designing such installations.

Vibration requirements of MIL-STD-1678 are also invoked to the extent they may exceed the above requirements.

FIGURE 3.1.2: SHOCKLOAD ENVELOPEFOR EQUIPMENT INSTALLATIONS IN FORWARD 1/3 LENGTH

FIGURE **3.1.3:** SHOCK LOAD ENVELOPE FOR EQUIPMENT INSTALLATIONS **IN** AFTER **2/3** LENGTH

FIGURE 3.1.4: SINUSOIDAL VIBRATION ENVRIONMENT

17 D321-51322-1

FIGURE 3.1.5: RANDOM VIBRATION ENVIRONMENT

18 D321-51322-1

3.1.10 Weapons Loads

3.1.10.1 Gun Firing — Gun blast pressures shall be as specified for the particular **gun** or **in**: **the** absence of such **data**, shall be calculated from the following expression:

P = DMF
$$\frac{200 (1 + \cos \delta)^2}{(x/d)^{3/2}}$$
, psi

$$P = DMF \frac{1379 (1 + COS \delta)^2}{(x/d)^{3/2}}, kPa$$

where:

• •

- PO limit static equivalent pressure
- **x** = radius vector from gun muzzle
- **d** = gun-bore; same **units** as x
- **5 a** angle between radius vector and gun barrel
- **DMF =** dynamic magnification factor
 - 1.4 for design of plating panels or panel attachments
 - 1.0 for design of framing in support of panels subject to gun blast pressure loads

.--

-

3.1.10.2 Missile Launching – Missile blast **pressures and** temperatures **shall** be as specified by the manufacturer(s) of the weapon and launching system. In the absence of such data, the environmental **characteristics** associated with missile firing shall be in accordance with Section 100a of the General Specifications. Pressures and temperatures and their time histories shall be considered for normal firing. and also for the longer time period associated with accidental missile ignition.

3.1.10.3 Explosive Air **Blast** – Requirements for structure exposed to air blast, in addition to 3.1.10.1, are given in the Detail Specifications.

3.1.10.4 Hullborne Underwater **Explosion** – Requirements for hull structure subject to underwater explosion at given in the Detail Specifications.

3.1.10.5 Foilborne Underwater Explosion – Foils, struts, strut to hull attachments, submerged pods containing foilborne control or propulsion components and submerged structure subject to **underwater** explosion shall be designated as shock Grade A as defined in the General Specification.

3.1.11 Simulations

Simulations shall be designed and used to predict hull and foil system service loads in the design sea conditions. Simulations shall include hull and foil system geometry, mass characteristics, foil system hydrodynamics, control system characteristics, and other physical characteristics of the ship and the **sea**. Loads defined by the simulations shall become part of the loads used for design of **the** ship and shall be used for predicting structural behavior during trials. Justification and validation of the simulations shall be reported in the Structural Simulation Report, 4.1.

At least one simulation shall include responses in six degrees of freedom (surge, side-sway, heave, roll, pitch, and yaw) and shall be capable of predicting variations in forces and moments for each hydrodynamic surface. This simulation shall recognize and be responsive to combined effects of ship heading and speed in sea states. This simulation shall use the same parameters and constants, insofar as practical, as Control Simulations required in Volume III.

3.2 FOIL SYSTEM

3.2.1 General

The foil system shall to support the craft and its contents in the foilborne operating mode and shall withstand loads resulting from operations in *smooth* water and in a 'seaway. In addition, the foil system shall withstand loads associated with integral elements of propulsion and control systems and loads induced by hydroelastic deflections and dynamic responses.

32.2 Foil Maximum Force

3.2.2.1 Lift ad Moment – Maximum upward and downward forces normal to the foil chord plane are the maximum probable hydrodynamic loads on each T-foil semispan or on each span between supporting struts. The loading shall be • cleast as great as given by,

$$\frac{L}{S} = k \left(4180 + 128h + .466 V_{c}^{2} \left(\frac{AR}{AR+3} \right) \right), \text{ psf},$$

or,
$$\frac{L}{S} = k (200 + 20.1h + .466 V_{c}^{2} (\frac{AR}{AR+3}))$$
, kPa.

Where,

h

Strut length from foil-chord plane to hull baseline, feet or meters

à

- k **2 .5** for forward foil system **.6 for** after foil system
- v_c = Rough Water Cruise Speed, knots
- AR = Aspect Ratio, Span²/Area

Spanwise limit bending **moments** shall be calculated with the above pressure distributed according to foil taper ratio as follows:

			Spanwise
		Taper Ratio	Center of Pressure,
а , •	*	(Tip Chord/Root Chord)	% of Semispan
		0.0	41
•		0.2	42
		0.4	43
		0.6 - 1.0	4 4
			~

3.2.2.2 Foil Maximum Drag – Foil maximum drag in the foil chord plane shall be 20% of the total force being considered and shall be so **distributed** as to have the same spanwise center of pressure.

3.23 Strut Maximum Force

(

3.2.3.1 Side Force and Moment – Strut maximum side force normal to the strut chord plane shall be as follows for rough water cruise speed, V_{C} of 40 knots;

Aspect	Maximum Side Load			
Ratio	(kPa)	(psf)		
Ι	32.6	680		
2	52.7	1100		
3	65.3	1360		
4	. 74.8	1560		

Aspect Ratio = Span²/ Area

- **Span** = Strut length from **bottom** of strut including pod, to hull baseline
- Area = Projected area of strut from bottom of strut, including pod, to hull baseline.

For other than 40 knots, values shall be changed in the ratio, $(V_k/40)^2$. Values for intermediate aspect ratios can be interpolated.

Structure side forces shall be distributed such that the spanwise center of pressure fa the strut immersed to the hull baseline shall be 60% of the depth below the baseline.

3.2.3.2 Strut Maximum **Drag** – Strut maximum drag shall be 20% of the total face being considered and shall be so distributed as to have the same spanwise center of pressure.

3.2.3.3 Foil Chord-Plane Loads - With the strut subjected to the maximum side force and drag loads, above, the foils shall be considered loaded as follows:

T-foil semispans shall be loaded as follows with the net bending moment at the foil-strut intersection such as to increase strut bending moment:

Aspect	Vented	Semispan	Wetted Semispan			
Ratio	Load		Load ···			
	(kPa)	(psf)	(kPa)	(psf)		
3	19.6	410	78.8	1645		
4	22.5	470	90.0	1880		
5	24.7	515	98.6	2060		
6	263	550	104.9	2190		
7	27.5	575	110.1	2300		

Drag shall be 20% of the force on each semispan. The center of pressure shall be **located spanwise** in accordance with taper ratio as shown in 3.2.2.1.

ىلان

.

2

A foil supported by two or more struts shall have for each strut, considered separately, all span segments on one side wetted and all span segments on the other side vented. In addition, the span segments which are part of the ship's roll control system shall have their faces directed such as to simulate the most severe combination of loading. Foil drag shall be as for T-foil semispans, above, except that the center of pressure for each span segment between struts shall be at the spanwise location of its center of area.

3.2.4 Maneuver Loads – In addition to the requirements of 3.2.2 and 3.2.3 other toading conditions shall be investigated that might lead to more severe limit load combinations. conditions to be investigated shall include the following, at least, and others which may be unique to a proposed configuration. All speeds of 3.1.5 shall be considered. The results of these investigations shall be included in the Structural Loads Report (4.2).

3.2.4.1 Flat Turn – The ship shall be in a steady flat turn such as to develop maximum forward strut side force. The side force shall be produced by rudder deflection. Roll control surface deflections shall be as required to maintain a bank angle of 0 degrees. Rudder deflections may be reduced if required to avoid exceeding maximum available roil control authority.

...

....

(

33.43 Hardover Heim – The ship shall be in a steady turn corresponding to full helm displacement. With normally operating control system the helm shall be instantly reversed to maximum opposite deflection. Propulsion forces shall correspond to the initial steady turn. Foil system loads resulting from the abrupt helm displacement shall be determined by a dynamic analysis of ship response using simulations as described in 3.1.11.

3.2.4.3 Maneuver in Waves – The ship shall be in equilibrium with a lateral load of 0.2g applied at the center of gravity which is balanced by steady side forces on the struts. Foil depth shall be one-half of the available strut length. The foil system shall be subjected to incremental forces as follows:

- a. The side loads shall be increased by sudden immersion of the foil system to the baseline.
- b. Incremental lift to produce an upward acceleration of 0.25g shall be applied to the foils with a dynamic magnification factor of 2.0.
- c. Steady **state** one-factor loads and the incremental lift of **(b) shall be** redistributed to a 60-40 percent distribution about foil centerlines in the **most adverse manner**.

3.2.5 Debris Impact — Each foil/strut shall withstand without failure of the foil/strut or its foundation, an ultimate, aft acting, 30 millisecond, half-sin load pulse with amplitude equal to its steady lift and applied at the tip. The actuation mechanism of a steerable strut shall be protected from structural failure for the event of the strut being subjected to this loading.

3.2.6 Service Load Spectrum - The occurrence frequencies of foil system loads shall be ascertained for use in fatigue life calculations and shall be reported per **4.1.** Consideration shall be given to hullborne and foilborne operations induding takeoffs, landings and maneuvers in a seaway with equal time at each heading. Ship speeds shall be VC, foilborne, and, V_{HB} , hullborne. Service Loads shall be applied with factors specified in 3.1.7.

Full scale service load measurements from previous data shall be used whenever possible. The development of component service loads by sea state, heading, and operating mode shall be dearly shown; summary curves and tables of service loads alone are unacceptable. Maximum values of service loads shall be compared to the corresponding limit loads. Consideration shall be given to foil system buffet loads due to cavitation cavity shedding as well as all loads associated with control surface deflections. Consideration shall also abe given to the influence of hydroelastic deflections on foil and flag load distribution.

3.2.7 **Hydrostatic Pressure** – Built-up elements of foil system structure, when not flooded or pressurized, shall withstand the hydrostatic pressures associated with their operating depths without leakage, or deflections that affect their hydrodynamic properties. These requirements shall be met in combination with any of the foregoing load conditions.

3.2.8 Propulsion Loads – The foil system shall withstand loads associated with normal operation of the propulsion system for any power setting up to maximum engine rpm and in combination with any of the foregoing load conditions. Foil systems containing propulsion shafting shall be capable of sustaining an ultimate load caused by transmission seizure at the design cruise speed in calm water. Struts containing ducting for waterjet propulsion systems shall be capable of sustaining an ultimate load caused by sudden blockage of the ducting on the discharge side of the propulser.

25

32.9 Retraction and Extension – The foil system shall be capable of withstanding loads associated with extension or retraction at maximum rate while the ship is underway hullborne in a seaway such that the foil system experiences incremental vertical accelerations of $\pm 0.5g$ and relative water velocities of up to 10 knots normal to foil system surfaces. Up-lock mechanisms shall be capable of securing and restraining the foil systems in position against loads associated with the foil system weights and inertia forces due to craft. motion while hullborne in the design sea state and shall not fail if the Retraction-Extension system is inadvertently activated.

X2.10 Foil and Strut Structure

. -

Structural frequencies of less than 6 hz shall be avoided to reduce interference with automatic control system frequencies.

3.2.11 Pods and Fairings

X211.1 Hydrodynamic Loads – Pods and fairings shall withstand hydrodynamic pressures implied in the development of the foil system design loads. Due consideration shall be given to the internal loading of hollow pods and fairings, whether sealed, ventilated, flooded, or pressurized.

f2.111 Deflection Loads – Pods and fairings shall withstand loads arising from deflections of the foil system structure to which they are attached. These loads shall be sustained simultaneously with the pressure loads of 3.2.11.1 associated with the foil system loading condition under consideration.

3.2.11.3 Hydrostatic Loads – Pods and fairing shall withstand hydrostatic pressure loads associated with their operating depths. These loads shall be sustained simultaneously with the other loads of this section.

3.2.12 Control System

ł

The **requirements** of this section shall be applied to all elements of ship control including flaps, incidence surfaces, linkages, bearings, and attachments.

3.2.12.1 Hydrodynamic Loads-Elements of the control system shall be designed to withstand hydrodynamic loads associated with craft speeds and attitudes implied or specified in the foil system design limit and service loads of 3.2. Consideration shall also be given to the limit load associated with the control surface or device fully deflected with full cavitation on the low pressure side.

- 2

N . .

3.2.12.2 Actuation L--Hydraulic actuation loads shall be calculated using the system maximum pressure, which shall be 10% greater than relief valve cracking pressure, increased by dynamic factor of 2.0, or alternatively by a rational analysis of control system response to a step voltage input at the actuator. Actuator applied loads shall be reacted by hydrodynamic and added mast loadings at the control surface.

3.2.12.3 Deflection Loads—Control system elements shall withstand **leads arising f tom deflections** of the foil system **structure** to which **they** are **attached**. These loads shall be **sustained** simultaneously with the **loads** associated with **the foil** system loading condition under **consideration**.

a. ma'a

3.3 HULL

The hull shall be capable of operating in all combinations of design sea state and speeds as provided by the Detail Specifications, without exceeding the structural limitations-of 3.1.7. To ensure that this capability is achieved, loads used for structural design shall meet or exceed loads associated with the following load conditions.

3.3.1 Lond Conditions

3.3.1.1 Hullborne Loads – The hydrofoil vessel shall be capable of withstanding all loads included in the General Specifications for **Building** Ships of the U.S. Navy applicable to a conventional vessel of similar size and hullborne capabilities.

x3.1.2 Foilborne Cruise Loads – Since a hydrofoil ship hull is supported at two discrete points along its hull when foilborne, unlike the buoyant support of hullborne ships, it is necessary to assure that such point loads can be adequately sustained. For the conditions of this section, it shall be assumed that the vessel is at maximum foilborne weight, W_{M} .

3.3.1.2.1 Straightaway – The hull girder shall withstand, in **foilborne straight**ahead operation, steady-state loads increased by the lift required to produce an incremental vertical acceleration of 1-g.

3.3.1.2.2 Maneuvering – The hull girder shall withstand steady state loads imposed by the foil system, increased by the lift required to produce an incremental vertical acceleration of 0.5 g. Simultaneously, additional loads shall be applied to the foil system to produce a lateral acceleration of 0.5 g.

3.3.1.3 Foilborne Wave Impact Loads

3.3.1.3.1 General – Foilborne rough water operations will result in hull-wave impacts which are the most severe sea state loads a hydrofoil vessel is expected to encounter. The hull shall be designed to minimize impact loads for normal f oilborne operations. However, the hull shall be structurally capable of with

standing ail foilborne wave impacts which may occur with the ship in adverse attitudes and with adverse motions. The following conditions of impact shall be investigated and the resulting pressures, forces and accelerations shall be the basis of hull structural design except as may be necessary to meet requirements of other sections of these criteria. Appendix 10.3 describes typical considerations for hullwave impact analysis.

The ship shall be **considered** to make the following maneuvers which result in hullwave **impact** limit toads while at maximum and minimum foilborne weights (W_M and W_{min}) with normally operating automatic **control system.** hnpact forces shall be **calculated** using the ($H_{1/10}$) wave height-in the foilborne maximum design sea. Wave lengths shall be the most severe for the impact **condition** being considered but need not be less than 15 times wave height.

3.3.1.3.2 Rough water **Takeoff – While** operating in the maximum **sea state for** foilborne **operation as** required by the Detail **Specification**, the ship shall be considered to make a rapid **head-sea** takeoff. The takeoff may be manual or programmed. Wave impacts which may occur during the manuau shall be investigated considering ship speed and pitch-up attitude.

3.3.1.3.3 Emergency Landing – While operating at the speed of (V_C) in **a** head sea in the maximum **sea** state for **foilborne** operation as required by the **Detail** Specification, the ship shall be considered to become rapidly **hullborne** by an emergency landing maneuver. This maneuver shall be investigated for **wave** impacts which occur at **all** possible locations along the length of the **hull** considering the speed and attitude of the ship.

3.3.1.3.4 Rough Water Broach — While at the speed of (V_{RW}) in a head sea, in the maximum sea state for foilborne operations as required by the Detail Specification, the forward foil system shall be considered to have emerged through the surface on the back of a wave completely losing lift. Subsequent ship motions shall result in the fore part of the vessel impacting the next oncoming wave. The impact shall be investigated considering motions and attitudes of the vessel at the instant of impact. If the forward foil system consists of separate port and starboard foils, then only one shall be considered to lose lift and the resulting roil attitude and roil motions shall be included in the impact evaluation.

ł

29 0321-51322-l

4 m. 1

3.3.1.3.5 Rough Water Maneuver - While foilborne in the maximum sea state for foilborne operations as required by the Detail Specification, the ship shall be considered to make a maneuver which results in a head sea impact with an oncoming wave. The conditions of impact shall be at least as severe as the . following:

ship speed:	Maximum rough water foilborne speed, VRW.
Sink Speed:	5 Foot/second (1.5 M/second) at the CG
Roll Attitude:	Consistent with a coordinated turn at the maximum design turn rate, or 12 degrees , whichever is greater
Pitch Attitude:	Up to \pm 5 degrees from design foilborne attitude for ship displacement up to 100 tons, varying linearly from \pm 5 degrees to \pm 3 degrees for displacements between 100 and 200 tons, and \pm 3 degrees for displacements over 200 tons.
Wave:	$H_{1/10}$ wave height and wave length such that the maximum slope is the same as the buttock line slope at the point-of contact but no greater than 12 degrees.

3.3.1.4 Wave Impact Acceleration – Acceleration envelopes shall be es&shed 'for vertical, lateral and surge accelerations which result from 'wave impacts.' Consideration shall be given to the probable structural overshoot caused by impulsive loading; in lieu of more specific information, a-dynamic magnification factor of 1.5 shall be applied to calculated wave'impact accelerations.

3.3.1.5 Service Loads – Load spectrums shall be generated in sufficient detail to allow fatigue life evaluations for the locations noted in 3.3.3.4. In lieu of more specific data it may be assumed that load peak values are Ray leigh distributed such that,

$$P(n > x) = e^{-x^2/2^2}$$

÷.

i

where:

P(n > x) is the probability that a load peak, n, exceeds x, and σ is the standard deviation of loading.

Loads that be **described** in **tables** or curves indicating load. magnitudes **versus** occurrence rates and shall be reported in the initial submittal of the Structural Design Criteria Report.

3.3.2 Hull Structural Capability

The hull as a girder and hulf components that" form framing, shell and interior support structure shall be capable of sustaining pressures, forces and accelerations for each load condition of this specification without exceeding the yield, ultimate, and fatigue strength requirements of 3.1.7.

3.3.3 Hull Girder

333.1 Hullborne – The hull as a girder shall be capable of sustaining bending moments and sheers associated with hullborne speeds of 3.1.5.4, foils up and foils down, in the sea states required by the Detail Specification.

Although hullborne bending moments are expected to be less than for **follborne**, assurance **of** this fact must be established for each design.

3333 Foilborne Cruise – The hull girder shall be capable of sustaining the foilborne loads of 3.3.1.2 and simultaneously, the reaction and pressure loads from weapons firing as stated in 311.10.

3.3.3.3 Foilborne Wave impacts – Bending moments and sheers due to foilborne hull-wave impacts are expected to be far more severe and varied than those from hullborne or other foilbome operations. Forces from wave impacts may occur anywhere along the length of the hull causing hogging or sagging bending moments. For hull-rolled wave impacts the forces will have both vertical and lateral components so that vertical and lateral bending moments will occur simultaneously. Local stresses due to impact pressures will also be additive to bending stresses.

31 0321-51322-1 Maximum values of **positive** and negative bending moments and sheers for the loading conditions of 3.3.1.3 shall be developed for sufficient locations along the **-** length of the hull to ensure the adequacy of the hull girder. Consideration shall be given to the following concurrent loads:

positive or negative vertical **bending** moment, lateral bending moment, **positive** or negative vertical sheer, **lateral** sheer, and impact pressure.

Wave impact forces and inertial responses shall be applied to the hull girder with a dynamic magnification factor of 1.5.

- -

The vessel shall be in static equilibrium considering impact forces, foil system forces, and inertia forces.

3.3.3.4 Fatigue – Bending moment spectra shall be generated from the load spectra of 3.3.1.5 for sufficient locations to allow evaluation of the fatigue life of the hull girder. The locations selected shall include strut foundations, stepped decks, ends of fore and aft tunnels and other potential discontinuities in the hull girder.

33.4 Shell **Bottom** Plating

Hull bottom plating and stiffeners below the chine or turn of the bige shall be capable of withstanding wave impact pressures that occur at the speed of V_{RW} with the hull rolled and pitched within the following limits:

Pitchup to \pm 5 degrees from design foilbome attitude for ship displacement up to 100 tons, varying linearly from \pm 5 degrees to \pm 3 degrees for displacements between 100 and 200 tons, and \pm 3 degrees for displacements over 200 tons.

Roll: Local deadrise angle or 12°, whichever is less.

The wave impacted shall have a slope parallel to the shell plating being considered, that is

· ·

local buttock **line** slope + pitch, but not greater than 12 degrees.

The wave height shall be the $H_{1/10}$ for the design sea.

Limit **lond** pressures shall be **equal** to or greater than those calculated by the following expressions:

for **b'< 7°**. $\mathbf{p} = \mathbf{A} \frac{\pi}{2} \quad \dot{\mathbf{z}}^2 \left((0.0129 - 0.1348 \ \mathbf{\beta}') \ 8' + x5020 \right)$ and for $\beta' \geq 7^{\circ}$, $p = A \zeta^{2} (\frac{90}{B'} - 1)^{2} (\tan \beta')$ = limit pressure, psf or kPa= where, P = 10.05 for metric units, А **= .0138** for English units A B' $= \beta \bullet \phi$, degrees ß = local hull deadrise, degrees • = ship roll angle, degrees ź = relative normal velocity, fps or mps $= V_{RW} \sin \tau + V_s \cos \tau + V_o \cos (\omega - \tau)$ **VRW** = ship speed, f ps or m ps = sink speed, 5 fps or 1.52 mps ۷, = $\sqrt{g \frac{\pi}{2} \frac{H^2}{I}}$ = wave orbital velocity, fps or mps τ = t - Q = local trim angle ۲ **=** ship pitch angle 8 = wave length such that $\gamma = \tau$ unless $\tau > 12^{\circ}$ L = wave slope = Sin⁻¹t- $\frac{\pi H}{t}$) $\leq 12^{\circ}$ Y

<u>_</u>;

 $\begin{array}{ll} H \\ \omega \end{array} = \frac{H_{1/10} \text{ wave height, design sea state}}{\text{ sphase angle of } V_{0}} \end{array}$

Pressures derived for this condition shall not be combined with other loading conditions.

Shell plating response to these' pressures shall take advantage of the membrane capability of the plate **between longitudinals** and frames; **however**,² permanent deformation normal to the plate under Yield Load shall not exceed .005 millimeter per millimeter (0.005 inch per inch) of stiffener spacing.

3.3.5 shell Topsides, Weatherdeck and Superstructure

3.3.5.1 Wave **Pressure Loads** – The shell plating above the design waterline, the weatherdecks and the superstructure shall be capable of **withstanding** pressure loads from boarding seas when the ship is hullborne. The forward **sideshell plating** shall also be capable of withstand* pressure loads which may **occur** from foilborne wave impacts in oblique seas or when the ship is **rolled as in a coordinated** turn in a head sea. These capabilities shall be considered assured for structure designed to meet the requirements of this section.

The wave pressure loading applicable to the sideshell, **weatherdecks and super**structure shall be equal to or greater than those indicated on Figure 3.3.1.a or **.b** for the design **sea** state.

 $PS_{f} = 1.5 PD_{m}$, to L/4

 $H_{s} = Significant Wave Height, ft$ $8 ft <math>\leq H_{s} \leq 12$ ft

FIGURE 3.3.1a . Limit Pressure Loads for Sideshell,

Weatherdeck and Deckhouses (English)

> 35 D321-51322-1

 $\begin{array}{l} {}^{PD}_{f} = 3060 \ H_{s} \\ {}^{PO}_{m} \ From. \ Figure \ A \\ {}^{PH}_{m} = PD_{m} + 3060 \ (h-t) \ z \ge h; \ PH \ge 12000 \ Pa \\ {}^{m}_{m} \end{array}$ $\begin{array}{l} {}^{PH}_{f} = PO_{m} \\ {}^{PS}_{m} = PD_{m} + 3060 \ (h-t), \ z < h \\ {}^{PS}_{f} = 1.5 \ PD_{m}, \ t \ o \ L/4 \end{array}$

 $H_s = Significant Wave Height, meters$ $2.62 m <math>\leq H_s \leq 3.94$ m

(

FIGURE 3.3.1b Limit Pressure Loads for Sideshell, Weatherdeck and Deckhouses (Metric)

36 D321-51322-1 3.3.5.2 Weapon Firing Loads – Decks and superstructures in way of weapon installations shall be capable of withstanding blast pressure loads from weapon firing. These pressure loads shall be sustained. in combination with loads from toilborne loading conditions of 3.3.1.2.

3.3.6 Frames and Builcheads

Hull frames and bulkheads shall react pressure loads on the bottom, **sideshell** and **decks caused by boarding seas** and hull-wave impacts. Separate loading combinations for these conditions are **defined** below. Recognition shall be given to the loading on transverse bulkheads **due to** reacting deck **loads** and longitudinal framing loads. Watertight bulkheads shall be capable of **withstanding pressure** loads in accordance with General Specifications for Ships of the United States Navy.

3.3.6.1 "Hullborne - Framing supporting sideshell, weatherdecks and superstructure shall withstand pressure loads described in 3.3.5 with the loads applied simultaneously to one side of the hull, weatherdeck and superstructure. Where the weatherdeck is continuous across the beam, the weatherdeck shall be loaded from one side to the other.

3.3.6.2 Foilborne – Hull framing supporting shell areas subject to the wave impact conditions of 3.3.1.3 shall be capable of withstanding the associated pressure loads from those conditions. For framing design, the pressure loads shall be applied with a dynamic factor of 1.25.

3.3.7 Keel

3.3.7.1 Docking – The keel shall be capable of supporting the vessel when resting on keel **blocks.**

3.3.7.2 Foilborne – The keel supporting frames, bulkheads and shell plating shall be capable of withstanding pressures and hull girder loads from the wave impact conditions of 3.3.1.3. The keel shall be capable of withstanding the hull girder loads of 3.3.1.2. *

Various hull recesses, such as for bow thrusters, inlets for waterjet propulsion units, and strut foundations shall have a pressure capability at least equal to the surrounding structure. The boundaries of hull recesses that can be completely filled with water with no egress, and exposed to direct hydrodynamic flow, shall be capable of withstanding stagnation pressure,

P = 2834
$$V_c^2$$
 (psf) = .136 V_c^2 (kPa)

where:

Р

= Limit Pressure = Rough water foilborne cruise **speed**, knots _. ٧

Boundaries of recesses open to the air, or with other means of water egress, and exposed to direct hydrodynamic flow, shall be capable of withstanding the design pressure of hull sideshell amidships as specified in 3.3.5.

3.3.9 Foundations

3.3.9.1 Foil System Foundations - The hull attachments for struts shall be capable of reacting limit and service loads on the foil system for the load conditions of 3.2. Since it is likely that the material of the foundations will be different than the material of the struts, with different modulus of elasticity, care shall be taken to ensure that both strength and deflections of the foundations are compatible with strut retraction/extension and with f oilborne operation.

X3.9.2 Machinery and Equipment Foundations – Foundations for machinery and equipment shall be capable of withstanding shock and vibration requirements of 3.1.9 and inertia loads of 3.3.1.4 in addition to normal operating loads of such machinery and equipment.

3.3.9.3 Weapon Foundations - Weapon foundations shall be capable of supporting the weapon weight for the inertia forces of 3.3.1.4. These loads shall not be combined with firing loads.

weapon foundations shall be capable of sustaining weapon firing loads in combinations with weapon weight and inertia forces associated with foilborne operation specified in 3.3.1.2.

3.3.10 Tanks

.....

. •

Tank boundaries shall be designed to withstand the following limit load conditions:

a. Pressure caused by overfilling the tank and discharging through the overflow at the maximum allowable pumping rate of the system.

۰,

b. Dynamic pressures associated with the inertia forces of 3.3.1.4. For these conditions the tank shall be full, with no liquid in the fill piping above the tank top.

3.3.11 Interior Decks

3A11.1 Watertight Decks – Watertight decks shall be capable of withstanding a head of water to the height of the uppermost watertight deck above. These decks shall also be capable of withstanding the loading imposed by equipment installed on the deck with inertia loads of 3.3.1.4. In either case, the minimum load shall be as shown in Figure 3.3.2.

3.3.11.2 Non-Watertight Decks – Interior non-watertight decks shall be capable of withstanding the same loads as for watertight decks except for hydrostatic loading which shall be **bmitted**.

X3.12 Non-Structural Bulkheads – Non-structural bulkheads shall be capable of sustaining either of the following loads, applied separately:

- a. **250 lbs** (1110 N) applied on any square foot (0.09m²) of the bulkhead.
- b. 15 psf (0.72 kPa) pressure uniformly distributed over the bulkhead.

3.3.13 Masts

Masts shall be capable of withstanding the inertia loads of **3.3.1.4** in addition to **wind loads** on the mast and the equipment mounted thereon. The wind loads shall be taken as 30 psf (1.44 **kPa**) on projected areas.

3.3.14 Watertight Compartment Tests

The **enveloping structure** of each watertight compartment shall be capable **of** withstanding watertightness test pressures **without** excessive: deflection or permanent set. Unless otherwise specified the test pressure **should** be the hydrostatic head from the mid-height of the compartment to the uppermost watertight deck.

3.3.15 Mooring and Towing

l

Mooring fittings, bitts, chocks, and cleats, shall be light weight and capable **of** withstanding a load equivalent to twice the breaking strength of the specified mooring lines.

An arrangement for towing shall be provided which shall be capable of sustaining loads from towing with foils down, at 10 knots in calm water.

	. TYPICAL LIVE LOADS							
	TYPE OF COMPARTMENT	LIVE LOADING (LBS/SQ. FT.)	DESIGNATION USED IN FIGURE 4-3					
ę.,	Living and control spaces, offices and passages, main deck and above	75	× 23					
• •	Living spaces below main deck	• 100						
	Offices • dcontrol spaces below pain deck	130	30002					
	Shop Spaces	200						
	Storeroous/Magazines	300'''						

ъ.

41 D321-51322-1

-

FIGURE 3.3.2: Interior Deck Loads --

4.0 QUALITY ASSURANCE

The following **reports** shall be submitted by the **contractor** for Navy approval:

4.1.1 Structural Design Criteria Report

The factors which affect design of structural components of the proposed hydrofoil ship shall be set forth in this report in detail. The report shall include structural requirements from the criteria herein, from General Specifications for Ships of the U.S. Navy, from Detail Specifications for the Ship, from special mission requirements and other considerations. The information presented shall include, but not be limited to:

Ship- DimensionsControl MethodDisplacementSea State RequirementsArrangementAnnual usageSpeedExpected Life

4.1.2 Structural Load Simulation Report

This report shall describe each simulation used to generate structural **loads**. In this **context** a simulation is a complex digital or analog mathematical modeling of the ship in the sea which is capable of calculating ship motions **and** force. The equations **of** the mathematical models shall be given **and** the form of the output shall be described, whether force-time histories, frequency responses, statistical data **or** other. Data and or analyses substantiating the validity of the simulations are considered of primary importance and shall be included. The following simulations are required. Additional simulations may be used at the contractors option.

4.1.2.1 A six degree-of-freedom simulation capable of calculating foil system loads in calm water for all possible automatic control system inputs.

4.1.2.2 A six degree-of-freedom simulation capable of calculating foil system loads in a seaway.

4.1. A six degree-of-freedom simulation capable of calculating hull-wave impact forces.

AL.3 Structural Loads Report

This report shall contain the loading conditions and design lads to be used for the proposed hydrofoil ship. Design loads shall be in the form of appropriate tables, diagrams, summary curves, or equations. Calculation assumptions and rationale shalt be clearly shown. Where loads are based on test data, the test philosophy, scaling, accuracy, conditions, applicability, and data shall be fully described.

......

4.1.4 Structural Substantiation Report

i

This report shall contain predictions of structural component responses to the design loads of the proposed hydrofoil ship. Such responses, determined by &al)!?&-- or tests, in accordance with 4.3, shall be described in detail showing, finally, in each instance, the margin of compliance with the requirements of the Structural Design Criteria.

All information necessary to substantiate each conclusion shall be shown, including:

analysis assumptions support reactions material properties column stability limitations data from special tests

, reference to pertinent **commonly** available data.

Compliance with the Structural Design Criteria shall be considered assured if analysis by accepted techniques shows that the structure under consideration is not stressed beyond yield or ultimate stress for conservative combinations of Yield or

> 43 _ D321-51322-1

Ultimate Loads respectively. Similarly, compliance i s assured if analysis by accepted technique shows that the structure has capability Of accepting the Yield Load without permanent set. Allowable yield and ultimate stresses for the material shall be the "A" probability stresses given in MIL HDBK 5 unless otherwise stated in the detail specifications. The calculated stress shall account for combined stresses due to bending, torsion and axial tension (or compression) using appropriate interaction formulas such as given in DDS 100-4.

4.1.5 Hydroelastic Analysis Report

This report shall contain information concerning divergence, control reversal and flutter **speeds of foil** systems and other hydrodynamic surfaces of the proposed hydrofoil ship. All data **used** in the analyses **shall** be clearly **shown** including distributed and **nodal** stiffnesses and masses. **Analysis** methods **shall be described** in detail. Calculated in-air and in-water vibration modes **and frequencies shall** be listed.

÷.

4.2 (Blank)

-

4.3.3 Structural Tests

Test articles shall duplicate the design for the ship; they shall be constructed of the same materials and use the same fabrication methods. The tests shall use Yield, Ultimate, or Service Loads, as applicable, and, to be acceptable, must show **compliance** with 3.1.7. Sufficient numbers of the same article shall be **tested** to demonstrate high probability of achieving test results on the ship. Structural tests shall be reported in the Structural Substantiation Report (4.1).

10.0 APPENDIX 10.1 WAVE SPECTRA

The statistical distribution of wave heights and periods which occur in a particular ocean area can be described by the long term occurrence frequencies of significant wave heights and significant periods. Table 10.1.1 is an example of the annual distribution of waves in the North Sea. Each block within the table can be represented by one discrete unidirectional wave height spectrum defined by the following formula:

$$S(\omega) = 0.11 \left(\frac{2\pi}{T_s}\right)^4 \text{Hs}^2 \bar{\omega}^5 e^{-.44 \left(\frac{2\pi}{T_s}\right)^4}$$

- S(w) = energy density spectrum of the long-crested seaway
- ω = wave frequency (radians per second) as observed from a monomial point
- H_s = significant wave height, average of one-third highest waves
- T_{s} = significant period, average period of one-third highest waves

Figure 10.1.1 shows spectral distributions of wave heights for a significant wave height of 3 meters and for average significant periods.

Wave heights in the random sea are **Rayle**igh distributed and have commonly used wave height ratios given in Table 10.1.2.

r	Tabulated	Num	bers Show	w the P	ercenta	ge of 1	Expected	Seas	Within Eac	:h
]	Height a	nd Per	iod Sec	tion			
Signifi	cant			Signif	icant w	vave pe	riod (se	conds)		
wave h	eight									
(Meter	s)	*	5	6-7	8-9	10-11	12-13	14-21	21	Totals
0.25	6 .	.33	4.13	0.24	0.09	0.05	0	0.01	0.07	10.92
0.5	0	.45	11.26	1.31	0.34	0.09	0.01	0.02	0.34	13.94
1.0	0	.50	16.75	6.17	1.07	0.26,	0.09	0.13	0.16	25.14
1.5	0.	38	7.42	8.28	2.15	0.68	0.16	0.12	0.01	19.20
2.0	0.	29	2.04	5.18	2.46	0.64	0.11	0.0s	0.04	10.80
2.5	0.	16	0.97	2.81	2.18	0.80	0.18	0.04	0.01	7.15
3.0	0.	05	0.52	1.74	1.16	0.75	0.18	0.08	0	4.49
3.5	0.	14	0.17	0.92	1.36	0.59	0.26	0.02	0	3.47
4.0	0.	05	0.17	0.47	0.59	0.39	0.14	0.05	0	1.87
4.5	0.	05	0.08	0.41	0.47	0.26	0.16	0.10	0	1.53
5.0	0.	01	0.03	0.04	0.05	0.08	0.03	0	0	0.23
5.5	0.	04	0.01	0.05	0.11	0.09	0	0	0	0.30
a. 0	0.	03	0.01	0.05	0.11	0.05	0.04	0.02	0	0.31
6.5		0	0	0.07	0.06	0.11	0.04	0.01	0	0.29
7.0	0.	01	0.01	0	0.03	0.01	0.03	0	0	0.09
7.5	·# *	0	0	0	0.03	0.03	0.01	0.01	0	0.08
8.0	0.	01	0.01	0.03	0.04	0	0	0	0	0.09
8.5		0	0	0	0	0.01	0	0.01	0	0.03
9.0		0	0	0	0.01	0.01	0	0	0	0.03
9.5		0	0	0	0.03	0.01	0	0	0	0.04
Total	s 8.	50	43.59	27.87	12.33	4.92	1.44	0.71	0.63	100.00

*Caim or period undetermined

Table 10.1.1 Typical Specification for Sea Conditions in the North Sea

^

.

Table 10. I .2

Figure 10.1 Spectral Distribution of Wave Heights

47 D321-51 322-1 10.2 (Blank)

(

-

-

, •

. .

٩.

•-

4

10.3 CALCULATION OF WAVE IMPACT LOADS

Refer 19.1 Presents a method for calculating the instantaneous impact force of a hydrototil hulf-immersed in a wave. This method-takes into account the hull shape by replacing the immersed hull with a series of equivalent, prismatic, wedges normal to the keel with deadrises and local trims dependent upon the actual hull. The equivalent wedges have impact velocities dependent upon the actual hull. The equivalent wedges have impact velocities dependent upon craft motions and wave water particle velocity. A term for longitudinal keel shape is also included which accounts for increase or decrease in pressure associated with flow along a curved keel. The computation as presented in the Reference results in an impact force distribution which when integrated along 'the wetted length gives the instantaneous impact force on the hull. A force time history of at impact occurrence can be generated by successive application of the instantaneous force calculation, accounting at each calculation for the changes of attitude and motion of the hull and of its position in the wave.

The equation for calculating the impact force on a symmetrical wedge as gives an Reference 10:3-1 uses the Wagner-Sydow expression for virtual mass (see Reference 10.3.2 for instance) as follows:

$$m = \rho \frac{\Pi}{2} \left(\frac{90}{\beta} - 1\right)^2 \zeta^2$$

Where ρ is the mass density, β is the effective deadrise and ζ is the immersion of the wedge to the wave rise line. Comparisons of predicted and measured pressures using the Wagner-Sydow virtual mass show good agreement for deadrises above about 7 degrees. For lower deadrises the added mass must be modified to agree more closely with test data. The following empirical expression for added mass gives good agreement with average pressures for wedges with less than 7 degrees deadrise:

$$m = \rho \frac{\pi}{2} (.0129\beta - .1348\beta^2 + 17.502) \zeta^2$$

Where $\beta > 7^{\circ}$.

Ĺ

The constants for this equation were **deduced** from pressure data such as presented in Reference 10.3.3.

In order to calculate a wave impact force-time history values of ship motion variables are selected within the limits of the criteria in a combination that would cause the most severe impact force for the location of impact. For instance, if the hull of a ZOO-ton hydrofoil has 10-degree deadrise at a location along the hull where an impact is assumed to occur, then the hull roll angle should be 10° so that the effective deadrise for calculations is zero at the point and is minimized elsewhere. Also, at the lo-degree roll angle, if the keel trim is 3 degrees then the wave length would be selected such as to give a maximum wave slope of 6 degrees (the keel trim of 3 degrees plus the ship pitch angle of 3 degrees).

A hand calculation of a hull-wave impact force time-history is impractical because of the necessity to use very small time increments (about 1/15 of the impact period) and the number of variables involved. The calculation has been computerized taking into account three-dimensional ship form, rolled impacts in trochoidal waves, ship motions in six degrees of freedom, buoyancy forces and foil system forces with appropriate responses of the latter to an active automatic control system.

Typical inputs (with limits specified by the criteria) are:

- 1) A computer representation of the hull form
- 2) Ship weight and mass inertias
- 3) Ship attitude and motion at the instant of impact
- 4) Wave size
- *5)* Point of hull-wave contact
- 6) Hydrodynamic characteristics of the foils and struts

7) Automatic control system characteristics

Site inpacts are a prime source of hull structural loads the OUtpUt of the first program includes loads data applicable to various structural components for each iteration. Typical output consists of the following:

- 1) Axial forces at the cg
- 2) Moments about the cg
- 3) Translational and rotational accelerations
- 4) **Translational** and **rotational** velocities
- 5) Distribution of impact and buoyancy forces along the wetting length
- 6) Average pressures along the wetted length
- 7) Wetted beams and immersed **depths** along the wetted length
- 8) Roll and pitch angles of the ship relative to an **earth axis system**.

Further, for rolled **impacts the values along the** wetted **length** are given port and starboard.

The application of wave impact loads data to particular elements of the hull . structure is covered in the criteria. Since acceleration data are necessary for establishing inertia factors for deck loads, foundation loads, hull girder loads, tank loads, for other classes of structure, an envelope of accelerations is derived from the impact calculations. The information for this envelope comes from impacts that' have initiated at several points along the hull. Figure 10.3.1 shows fully factored accelerations based on the impact calculations made for the PEGASUS (PHM-1). The acceleration at each point along the hull is the sun of the lg acceleration component (the ship was initially rolled 15 degrees) and incremental translational and rotational accelerations. The incremental accelerations have – been multiplied by a dynamic factor Of 1.5, as rquired by the criterion, and the summed values are to be multiplied by a safety factor of 1.5. In equation form, the acceleration in g's is:

$$\vec{Z} = \begin{bmatrix} \cos \phi & \cos \theta &+ (\vec{Z}_{cg} - Qx + Py) & \frac{1.5}{32.2} \end{bmatrix} 1.5$$

$$\begin{bmatrix} \sin \phi & \sin \theta &+ (\vec{Y}_{cg} + Rx - Pz) & \frac{1.5}{32.2} \end{bmatrix} 1.5; (\psi = 0)$$

$$\vec{X} = \begin{bmatrix} -\sin \theta &+ (\vec{X}_{cg} - Ry + Qz) & \frac{1.5}{32.2} \end{bmatrix} 1.5$$

The symbols for these equations are identified in Figure 10.3.2.

LIST OF REFERENCES

- 10.3.1 Jensen, Wm. R., "Hydrofoil Boat Hull-Wave Impacts," ASME 60-WA-326, 1961
- 10.3.1 Pierson, J. D., **"On** the Virtual Mass of Water Associated with an Immersing Wedge," JAS, June 1951.
- 10.3.3 Lewison, G., and Maclane, W. M., "The Effect of Entrapped Air Upon the Slamming of Ship's Bottoms," University of California, Berkeley, Col. of Eng., NA-66-5, March 1966.

NOTES AR AFE LONDING) -wy APPLY. LOAD FA6. HEIGHT ABOVE BASE I.INE ~ *m* INERTIA. AND. GRAV Figure. USE SAFETY FACTOR 10.3.1 PHM VENTICAL DUWNWIND LOADING) HUII Load Factors F J V C Y 'PV.4T OADING /WIT 2. 5/51 (UPWARD LAAWNG) ۵ 28 36 24

53 D321-51322-1 Note from IHS: Although this file is supposed to contain Vols IVA and V, they are missing from the scan. We will attempt to locate and restore them in a future edition of the AMV CD-ROM.

Looking Forward

Looking Port

Loo ki ng Down

Ship Axis System

Figure 10.3.2 Coordinate Systems for Ship Motions

54 D321-51322-1