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THE  DESIGN ‘OF HYDROFOIL CMSS  SECTIONS AS A FUNCTION OF
CAVITATION NWBER,  LIFT, AND  SIMNGIH

Thomas G. Lang, Pm
Naval Undersea Research and Development  Center

San Diego, California

Abstract

A set of graphs and equations is developed for
quickly determining the mininnn-drag  form of non-
cavitating and supercavititing hydrofoils designed
for high Reynolds numbers where the bumdary  layer.
is fully turbulent. A single classification para-
meter is derived which simplifies design selection.
‘Ihe  results are applicable-to the design of pro-
pellers, struts,  lifting surfaces, and fins for
both submerged vehicles and surface craft. It is
shown that hydrofoil cross sections can be classi-
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fied into six basic types of design
which are cavitating.
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‘Hydrofoil span (L)
Chordlength of a hydrofoil
Hydrofoil drag coefficient
Cavity drag coefficient

L , and time T)

(L)
- D/p&x/2

Cavity drag coefficient when u
Skin friction drag coefficient
Lift coefficient = L/&bcIZ
Lift coefficient at a - 0; CL0

-0

= f+ -2a
Section modulus coefficient - 21/tJc
Hydrofoil drag (F)
Cavity drag of a hydrofoil (F)
Desip. bending stress, including load

factor and factor of safety (n-2)
Area moment of inertia CL’)
Designates the amount of camber of a 2-

term hydrofoil camber line
Hydrofoil classification uarameter  -

(cl - c;/Z)/m-  - cl&w  9’ -CIJ24!r
I8ingth  of a cavity (IJ
Hydrofoil lift (F)
Applied bending mcanent  about some CIY)SS

section of a hydrofoil (FL)

Free-stream pressure (FL-‘)
Vapor pressure of the fluid (FL-‘)
Minirum  pressure on a hydrofoil (FL”)
Characteristic roughness height (L)
r/c
Reynolds rnarber  - Uc/v
Maximu  thickness ,of a, hydrofoil (L)
t/c
Hydrofoil base thickness (L)
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Velocity at the *ti  pressure point on
a hydrofoil (LT )

Chordwije  distance to a specific point on
a hydrofoil from its leading edge (L)

x/c
Distance from the chordline to a specific

point on a hydrofoil surface (L)
y/c’
Local nondimensional lower surface height

above the chordline
Local nondimensional meanline  height above

the chordline
Nondimensional meanline  of the NACA uniform

pressure (a - 1.0) meanline  designed
for a unit lift coefficient

Local nondimensional upper surface height
above the chordline

Nondimensional heights of hydrofoil para-
meters listed in Table 2

Angle of attack used for generating
thickness for a supercavitating hydro-
foil (radians),

Kinematic viscosity of the fluid (L2T-1)
Mass density of the $pd (FLa4T2)
Cavitation number = - V

TJW
b

Incipient cavitation number, i.e., value
of a when cavitation is about to begin
as a reduces

Pepresents u when CL - 0; a0 ,=  a - CL/2
Designates amount  of-parabolic thickness

added to a hydrofoil
Terms with a bar over them are &fined in

Equation 37

Introduction

This paper is an abstract of the sect+ titled
‘“Ihe Design of HydrpfPal
author’s PhD  thesis

Cross .Sect?ons”  in  the
on engineering design  theory.

Cons uently, any background information and de-
tail1 explanations that have been cnnitted from
this paper may be found in Reference (1).

Hydrofoils are found in a wide variety of
cammxrly  encountered situations. They are used
as propeller blades on boats, as sailboat keels,
ship rudders, submarine and torpedo fins, lifting
surfaces of hydrofoil boats, underwater cable
fairings, shroud ring stabilizers for missiles,
rotor blades for water jet propulsion units, im-
peller blades in many kinds of pumps, support
struts, etc. The many different uses of hydrofoils

‘have resulted in the development  of a wide variety
% nu&ers  in parenthesis denote references
&hi&  are listed at the end of this paper.
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of hydrofoil  lorms. The streamlined fully-wetted
hydrofoils are the most cumaonly  encountered trpe,
and have excellent performance characteristics at
speeds up to the beginning of cavitation. Cavi-
tation is characterized by the formation of small
cavitites  filled with water vapor which appear and
collapse in the low pressure region of the hydro-
foil surface. As cavitation increases, there is a
corresponding increase in the number and degree of
such undesirable characteristics as noise, drag,
surface pitting, reduction in lift, and unsteady
performance. Cavitation can be avoided in certain
situations by reducing speed, reducing the hydro-
foil thickness or lift coefficient, improving the
cross-sectional shape, increasing the free-stream
pressure, or by operating closer to the design
angle of attack of the hydrofoil.

If cavitation cannot be avoided, an entirely
different type. of hydrofoil can be utilized which
provides steady performance, but has somewhat more
drag than the best fully-wetted hydrofoils, and
produces more noise. One form is called a super-
cavitating

w
rofoil which is analyzed by Tulin

and Rurkart and operates with its upper surface
entirely imnersed  in a cavity and with its lower
surface fully wetted. Another form is a cavitating,
non-lifting strut which is analyzed by ‘Win(J)
and which is entirely imnersed  in a cavity, except
for the nose section.

A third type of hydrofoil is called a venti-
lated hydrofoil arious forms of which are de-
scribed by Langt4y.  Ventilated hydrofoils charac-
teristically operate with a steady cavity of non-
condensing gas in contact with the surface. At
cavitation numbers greater than zero, this type
has lower drag than a cavitating hydrofoil, and it
operates more quietly. Its use requires a gas
source to maintain the cavity.

For the purpose of this paper it is assumed
that a gas source is not available and that the
hydrofoils are either fully wetted or else designed
for cavitation. Some of the advantages and dis-
advantages of the various hydrofoil cross sections
will become evident later.

Specification of the Design Problem

Many hydrofoil design problems can be’reduced
to the need for a hydrofoil cross section which
provides a certain lift coefficient, sustains a
given bending moment, and operates well at a given
cavitation number, Reynolds number, etc. ‘Ihe  ob-
‘ective  of this design problem is to determine theivdrofoil
drag.

cross-sectional forms which have mininssn
For sin@icity,  it is assIpIIcd  that the flow

is steady, that the only critical stress is bend-
ing stress, that all cross sections are solid,
that the water surface is sufficiently far away so
that it has no hydrodynamic effect. and that the
angle of attack is fixed at the &sign angle.

Design Problem Variables. The design problem
variables are assmd  to be the design stress f of
the structural material*, h drofoil chordlength c,

incharacteristic surface rcug ess r, free-stream
speed U,  free-stream pressure P, fluid viscosity v,

Whe  design stress includes the load factor and
the factor of safety.

fluid densi
unit  span Lx

o, fluid vapor pressure P lift per
and applied bending mcrneK{  M. In

sutmrary,  the ;en design problem variables are f, c,
r, U, P, v, 0, P , L/b, and M. Applying the design
procedure of Refgrence  (l), the dimensional vari-
ables are reduced to five nondimensional design
mission variables. These new variables characterize
a nondimensional design problem, and are the lift
coefficient C moment coefficient M’,  cavitation
number O,  Reyk’
where  :

olds number R, and roughness ratio r’

L/bC L - - - (1)
c J@J*

H’rn
fc’

(2)

P-P”
U.-

W”
(3)

r' - r/c (5)

Optimization Criterion. The objective of the
nondunenslonal  design problem is to minimize the
drag coefficient Cd, where

D/bCd --’
c&pu’

(6)

where D/b is the drag per unit span.

Possible Design Forms

Typical hydrofoil cross sections are sketched
in Figure 1.

Cully-rtt.d  h y d r o f o i l s
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, . i?:rsical Relationships

The relat’lm,hip  for bending stress is con-
,_ sidered first. The  design bending stress of the

mininum-drag  hydrofoi 1 cross section muSt  be equal
to the actual bending 5 tress, so

nf B -.e (7)
c,  ($c3

where t = hydrofoil thickness, and C is the sec-
tion modulus coefficient. RearrangiAg,

0,

Cavitation is considered next. Let P be the
mininaaa  pressure at sane point on a fullyLatted
hydrofoil where the local velocity is Ul. Accord-
ing to the Bernoulli equation, Pl is- 2.

“ 1p, m p +  I& - *pu,*  - P + w*  1  - (F[ 1 (9)

Cavitation will occur when P reduces to the vapor
pressure of the fluid P (as.&ming  no tensile
stress in the fluid). Yhe  critical (incipient)
cavitation rnxber  is defined as

Cavitation will occur whenever 0 < ccr  where a is
the cavitation number.

It will naw  be shown that R and r’ can be Aim-
inated fran the list of important variables. The
Reynolds number R determines hm  the hydrofoil
should be formed to best utilize laminar flow, pre-
vent laminar separation, prevent turbulent separa-
tion, and minimize skin friction dtig.  However, R
is not normally critical in the range R > 107 be-
cause the boundary layer is generally fully tur-

. bulent,mdchangesinlkynoldsnunberinthis
range have cmly  a small effect on hydrofoil form.
Also, it is lamm  that the rmghness  ratio r' has
little effect on hydrofoil form if it does not ex-
ceedcertain criticalvalueswhichdependqon  R;
the roughness cangenerallybe keptbelm  these
values.

lnv+mofthis  discussion, it is seen that
thexmndmemiaral  &sign@roblemcanbe7siapli-
fiedbyassuCngthotr*  - Od R= 10 ;the re-
sults will still be very gewral and useful. The
designvariables areamwquentlyreQredt0

d&n
,

M'. ad Q. lnorderto~machthisthree-'  -
s&al designpmblen. t&-sinpler  two-dimensional
desim  ~roblemsuill  becadderedfirstuhereone---
of ~rLreevariablesisasswxitobe  zero.

DesignProbleaNhereC,-0

The firsttwo~iawd  designprob!emis
t&era

?
-0ondwhereM~andaarevariable.

Since -O,allpointsinthetwo-dimensional
proble5spacerepresentedbyagraphofoversus
M' will be satisfied by dred hydrofoils,
calledhydrofoil  struts. Alllaminarbandary
layereffectscanbedisregadedsincethe~-
ary layerwill be fully turbulent at% >> 10 .

The problem reduces to finding the mininnan  drag
hydrofoil strut section as a fuuction of (J  and M’,
where the boundary layer is turbulent and C is
very small in view of the high Reynolds um&er.n

As  shown in Reference (l), if the cavitation
number is sufficiently high, an efficient fully-
wetted streamlined hydrofoil can be designed to
satisfy the strength requirement. However, if the
cavitation number is low, the most efficient (i.e.,
minimum-drag) strut is bluff ended and cavitating.
Consequently, the graph of M’  versus 0 will split
into two regions where the upper region is satis-
fied by fully-wetted struts, and the lower region
is satisfied by less-efficient cavitating struts.

Fully Wetted Region. Assuning  that the fully-
wetted stiuts have no boundary layer separation,
the minirum  drag form is shown by (1) to have an
elliptical cross section. The pressure is theo-
retically approximately uniform on both surfaces
fran a point near the leading edge to a point near
the trailing edge. Since the boundary layer will,
in actual practice, separate near the trailing
edge, a short cusp-shaped or wedge-shaped trailing
edge can be added to the basic ellipse to minimize
its drag. For the purpose of this paper, however,
it will be assumed that the values of

Ck
, 0s  and

Ml  are based upon the chordlength c o f e basic
elliptical section. Reference (1) shows that the
stress relationship, Equation 8, for an ellipse
bW3XlfS

( e l l i p s e ) . :  = n0.2.

also, the &itation  relationship, Equation 10,
becOIM?S

( e l l i p s e s )  ucr  I 2 s

Let Region I be the portion of the a versus M’
graph which is best satisfied by fully-wetted
hydrofoils, and Region II be the portion which is
best satisfied by cavitating hydrofoils. ‘Ihe
boundary between the two regions is obtained from
Equations 11 and 12 by letting acr  = a0  which gives .

(
Boundary between
Regions  I  a n d  IIa 1 u,,- 6.39 m (13)

where a designates the value of a when C is
assuaed”to  be zero. Equation 11 gives thk  ellipse
ratio, t/c, as. a function of M’ for Region I where
the form is independent  of 0.

The  drag coefficient for the Region I forms is
due to skin friction only, and is shown by (1) tote

(R;pLlon  I)
-0

Cd  - 2cf(6.39 dF  +I)

where C is the-drag coefficient of a flat plate
at the bIds nlnnber  R.

Cavitating Region. The cavitating strut family
a& c~rrqmds  to Region II is shown by Refer-
ence (1) to be family of truncated ellipses where
the strut lies just inside the cavity formed be-
hind its leading edge.
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‘Ihe  cavity drag coefficient of a full cavity is
shown by (5) to be

*. 'dc - 051

where D /b is the cavity drag per unit span, and ~c
is the Eavity length. Assming  that  (J  is small,
Reference (5) also shows that the shag  of a full
cavity is an ellipse,

The mininum  drag strut form is a truncated
ellipse and is shown by (1) to be expressed by the
following relationships:

where y’ and x’ are the nondimensional semi-thick-
ness and distance fran the leading edge, re-
spectively, and where Region IIa corresponds to
those struts whose chordlengths are greater than
half the cavity length, arId  Region IIb corresponds
to those struts dose chordlengths are less than
half the cavity length.

Because of the mathematics involved! two
different equations are required to define the
strut form, and these are called regions IIa and
IIb.  The equation for the boundary between Regions
IIa and IIb is seen from the region expressions in
Equation 16 to be

(Region IIa to
IIb boundary) ‘o

2 - 10.2 H' 07)

The  value of the section modulus coefficient C
for the two families of truncated ellipses is s&
in Figure 2 as a function of the parameter a /Ml.
This relationship was obtained by: (a) inte$ating
over a truncated ellipse to determine  the moment  of
inertia, I, as a function of c/
the va ue  of C where C

iing o. /Ml
= 21/t E, and (c) obtain-

3 ; (b) calculating

as $ functioA  of c/a,.

The struts cavitate from their leading edges
rearward because their surfaces are designed to
lie just inside the cavity in order to eliminate
friction drag. Their drag is therefore cavity drag
only, and is obtained from Equations 15 and 16 as

where Cl is obtained fran  Figure 2.

The upper expression of Equation 18 nust  be re-
duced sanewhat  to include the effect of the thrust
produced by impingement of the reentry jet (which

0.1

0.1

C,

0.0

IO 20 30

52
h l ’

exists at the rear of all cavities) on the strut
trailing edge. In view of the lack of experimental
data on the reentry jet effect, it is assumed that
half the cavity drag is recovered as thrust when
the strut almost fills the cavity, and that the
effect tapers to zero recovery when the trailing
edge of the cavity is located more than one-quarter
of a cavity length behind the strut.

Illustration of the Design Result. Figure 3
consists of two graphs of a versus M’ which illu-
strate the design result. Both graphs show the
boundaries between Regions I, IIa,  and IIb.
Sketches of the corresponding design forma are
superimposed on the lower graph at various selected
points. The corresponding value of C is plotted
on the upper graph of (I  versus M’. de dashed
lines represent the regions where the reentry jet
influences cavity drag.

Dosign  Problem Where MI =  0

This two-dimensional problem is represented by
a graph of a versus C , where C is selected as
the abscissa. Since k*  = 0 th&re  is no strength
requirement, so all forms All  have minimum thick-
ness because minisurn  thickness produces minimum
drag. As  in the previous design problem, the graph
will split into a fully wetted Region I and a cavi-
tating Region II.

regE%P
Consider first, the noncavitating

ere 0 is so large that cavitation will not
occur. As shown in Reference (1))  all minimum-drag
fully-wetted hydrofoils which correspond to this
region are cambered meanlines which have a uniform
pressure distribution. These cambered lines are
the set of N4CA  a - 1.0 meanl’
sented by Abbott and Doenhoff87

s which are pre-
.
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‘Ihe  nondimensional meanline  height is expressed
a s

y$x’) - y;(x’) ’ C‘ (19)

where y’ (x’)  is the meanline  height for
Some  val&s for yVo(xi) are reproduced in5

- 1.0.
able I

from (6).

The drag is ass&  to consist solely of tur-
bulent skin friction drag. Utilizing the velocity
distribution as a function of CI,,  Reference (1)
shows that the drag coefficient is

Cd i 2 Cf cw

Also from the velocity distribution, Reference (1)
shows that the critical cavitation nwnber  of the
Region I forms is also the boundary expression be-
tween Regions I and II, which j.s

*Call  d 2-tens in view of the nwnber of terms in a
certzin  trigonometric series used in &fining the
pressure distribution

(Region I and II
lknmdary,M  = 0 )  Q ;w~(211

and which is valid for CI, small relative to 1.6.

hy dr%%?’
The general form of the cavitating

amrly  is shown by Reference (1) to be a
supercavitating profile whose lower surface is fully
wetted and whose upper surface is entirely covered
by a cavity which springs from the leading edge.

The design of hydrofoil forms for a = 0 is con-
sidered first. Utilizing the results of References
(7))  (8))  and (9))  the supercavitating forms which
have lowest drag when a - 0 (for nearly all values
of reasonible strength) is described by the para-
meters k and 6 of these references. The  parameter
k indicates the amount of Z-term camber*, and 6 in-
dicates the amount of thickness introduced by angle
of attack where

k = 0.875 cLo (22)

6 - 0.0787 cLo
(23)

and where CL0 represents Cl  when 0 - 0.

The  upper and lower coordinates of the hydro-
foil surface (assuming that the hydrofoil just fills
the cavity) are

(0 - 0 y : - yi(X’) *‘k  +  y$(x’)  * 6

M’  - 0) (24)

y i - y;(x’)  . k + y;(x’)  * 6

where approximate value’s of y’(x’)  through y’(x’)
are obtained from  (8) and presented in Table42,  to-
gether with the values for y;(x’)  which will be
utilized later.

s’ 0.0 0.4 0.1 0.0 0.4 0.6 0.8 1.0

Ti O o.oog 0.07 0.033 o.a3 0.073 0.090 0 .107

r;  0 o.oob  0 . 0 3 7  0.07l o.lll  O.loa  0.a -o.ces

Tj 0 0.10 0 .1 6 0.9 0.D 0.S 0 .5 9 0.6B

Vi 0 .o.oy 9.10 -o.a, - 0 . 4 0 -0.60 -0.80 -1.00

‘4 0 0 .2 2 0 .3 2 0.C 0 .6 3 0.77 0.W 1.00

The next problem is to determine the best forms
for points in Region II where u > 0. Although both
nonlinear and linearized theories exist for deter-
mining the’  lower surface shape, cavity shape, and
lift and drag coefficients for the case when o > o
(Wu,  References 10 to 12 ), the results would re-

8”
ire a lengthy computer study to determine which

ens  has the lowest drag for a given Cl,, o, and
strength.

A relatively siqrle  solution to this problem is
to linearly add the appropriate NACA a = 1.0 uni-

.form  pressure meanline  to the appropriate two-term
supercavitating hydrofoil form (and cavity) de-
signed for 0 - 0. The result is a minimum drag

5



hydrofoil form fc,i- J P  0. Letting u be the in-
cipient ca~itatidi, nunber  of an NACA  a - 1.0 mean-

‘, . line, and C be the lift coefficient of a Z-tern
hydrofoil f&m  at J - 0, the lift coefficient CI
of the linearized combination is approximately

(Region IIe)  CL  - CL0  I 20

where
5

is assuqed  small; Region II is now called
Region Ie for reasons which will be presented
later. Notice that the pressure along the upper
surface of the linearized combination, which shall
be called the Region IIe form, is exactly cavity
pressure when u - 0 . The nondimensional pressure
along the lower surE&e  is approximately the non-
dimensional pressure at u - 0 for the Z-term  hydro-
foil designed for CI - (&,  plus the pressure ecr.

Notice that the NACA a - 1.0 meanline  is de-
signed for a lift coefficient of CL - CL0  = 20.

The  Region IIe form are seen to satisfy the
necessary boundary conditions for minima  drag,
which are: (1) the upper surface pressure is uni-
form and matches the cavity pressure, (2) the low-
er surface is fully wetted, and (3) the resulting
form  has minims  thickness and mininum  cavity drag.
Furthemore,  the Region IIe forms  are seen to urge
into the Region I forms at the boundary between
Regions I and IIe,  since - 0 along the boundary
line where Cb - 20. 58There re, the Region IIe
foxms  change smoothly from supercavitating 2-term
forms  designed for u - 0 to the NACA  a = 1.0 mean-
lines corresponding to the boundary line a - CL/Z..

The nondimnsional  heights of the upper cavity
wall and the lower hydrofoil surface y; and y;
respectively, are

y : - y;m - k'+ yj(x')  - 6 + y;(d) - 2~

(Region IIe) (26)

y; - y;od . k + yi(x’)  * 6 + y;h’)  * 2~3

Equation  26 is valid only for low values of
%a

be-
cause of the assmptions made in the lineariz
t$;ry; Reference (9) feports  negligible erfOr  up

= 0.2, but considerable error may exist for

iill
kO.6. Therefore, the value of CI, in this

lysis is limited to a maximsa  of 0.6.

The  drag coefficient for the Region IIe fornts
is shown by (1) to be

Cd - 0.142(CL-2a)'  +
0.236~~ (CL-20)

5
2

0+0.71(~~-2~1  + cf(’  - T + ;I

(Region  11~) c.271
where the last term is friction drag and the other
tems are cavity drag.

Illustration of the Resign Result. SalE  of the
hydrofoil forms  corresponding to the graph of u
V&US

c
where M’ - O-are  shown superimposed on

the lowe  graph of Figure 4 together with the
boundary line between Regions I and IIe.  lhe
corresponding values of C are plotted in the upper
IF@* Only the cavity dgag  is plotted in Region
IIe sine  C is negligible relative to C when
R >>  10’.  *Values of
0?60  due to the limitat ohs of the 1ineJrised5

are plotted onl&xp ‘to

-ry* Ihe  most practical range of
5

for super-
cznfit.ating  hydrofoils is around 0.20, 0 the cover-
age is adequate.

REGiON  I:

6

FI2ue  4 - Hydrofoil form  and drq  cceff$icnts  for tha
cue uhen M’  * 0

Resign Problem Where  (I = 0

Since a - 0, all points in the paph of
versus M' will correspond to supercavitating?k? -
sign foxms  consisting of different combinations of
the 2-tern camber configuration represented by k,
parabolic thickness represented by T,  and angle-of
attack thickness represented by 6.

Reference (1) shows that Region II splits into
the following families of supercavitating hydro-
?oils  :

fk  - 0

0.0S02CL~  I n' I6 = (&)CLo (28)

T = 1.93 hi' - 0.0014CL:,  - 0.426CLo

:

0.0016~~~  : n' (29)

2 0.0502cLt
- 4.35 m-o.o012c,;

16 - 0.024CLo + 2.76
Region Ild

( .

m-o.oo12cL~

0-O

6



. .
Solution of the Entire Three-Dimensional

Design problem
r-0*. *

(.
0 : H' : 0.0016tL;

(Region IIe)
k - 0.875CLo

(30)

6 - 0.079CLo

where CL0 is defined as

C Lo - CL k 20
(31)

The upper and lower surface coordinates are

vll - y/(x’)

I

- k + yj(x’) * 6 + yi(x’) - T

y k - Qx’l - k + yi(x’) - 6 - y;(x’)  - T

(
Regions IIC,
IId, and IIe1 (32)

where the values of yi(X’)  through y;(x’)  are
listed in Table 2.

The drag coefficient for all Region II forms
when o - 0 is shown by (1) to be

'd
I [0.319k  t 1.25h+6)12  t $(I -.&

2 I2

(Region II
cl - 0) (33)

The lower graph of Figure S illustrates the de-
sign result where a - 0,and  M’ is plotted against

Sketches of the corresponding design forms
k superimposed. The upper graph of Figure 5
shows the values of the cavity drag coefficient,
which is Equation 33 less the last term.

0

‘\
REGION  lIc

The solutions to the three previous two-di-
mensional design problems can be used as guides in
solving the three-dimensional problem represented
by the three coordinates, CL,  M’ , and 0. The same
physical equations are used, and the same general
design concepts are applied: The  expressions for
the hydrofoil forms, their drag coefficients, and
the boundaries between regions I, IIa,  IIb,  Ilc,
IId,  and IIe in the three-dimensional space of C
versus M’ versus u, will be presented later. Th&!
boundaries, as derived in Reference (l), are shown
in Figure 6, and the corresponding hydrofoil forms
are shown superimposed in five different planes of
the three-dimensional space in Figure 7. Notice
how-the  hydrofoil forms change continuously between
any two points in the three-dimensional space,

Transformation of the Three-Dimensional Design
Problem r.nto  a One-Dimensional Design Problem

As a result of solving the three-dimensional de-
sign problem, Reference (1) shows that a significant
simplification takes place by introducing the para-
meter K where

0 - CL/Z

K- w (34)

Alternatively, K may be expressed as

(I

K I -
f &

or

(35)

(36)

The equations for the region boundaries are ex-
pressed solely as a function of K in Table 3.

Firm  5 .  ltydmfoil  form  and dnl  cceffichtr  f o r  t h e
C.S.  bimn  0 l 0
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Fipn  7 - Illurtn\lon  of th  rolutlon  to the three-
dImensiona  darlp~  problem

TABU  s

RfEION BOUNOARIES  fOR SUIS?ACL (f)  AS A fUH:,,ON  Of K

Ka9lon Boundarv Iquat  ton
- -

1 to x1* K l 6.39

Ila to IIb K - 3.19

IIb to Ilc K - O

Ilc  to Ild K - -2.23

IId to II* I- -12.5

- - 2

The simplification introduced for the descrip-
tion of the boundaries can be extended to the de-
scription of the hydrofoil foms and the drag co-
efficients. The following definitions are intro-
duced:

Entice  the difference in definition between the
lower case k and the capital K symbols in Table 4.

(37)

where

;k;)’
‘dc = ‘do +-t

u ;+ 1 . 5  cd0
(38)

Equation 38 is an empirical relationship developed
in (1) from theory presented in References (13) and
(14)  -

The  hydrofoil foms as a function of K, C a n d
the new variables defined by Equation 37 are &ted
in Table 4”. The values for C are shown in Fig-
ure 2 as a function of K*. Thi  form and drag
coefficients for the truncated ellipses of Regions
IIa and IIb  are presented in Figure 8. The ex-
pressions for C and the frictional drag co-
;Ez:;iyt  Cdf a &9 listed for all hydrofoils in

.

HYDROFOIL FORM CHAPACTERISTICS- - - - -
R*plo,, Form Equation

- -
3.19

, %&

T

I .o
L
q

-0.436K I .o

l 3.06h-0.0056K~

-0.451K I .o

+3.&,!=0.004BK~

-0.602K I .o

The basic form characteristics Rich  consist of
F = (t/cl/m,

“e
/t,  7, WlOand  T are plotted in

Figure 9 as a fuu tion of K. Also shown in Figure
9 are typical hydrofoil shapes superimposed along
vertical lines which represent the region boundar-
ies . Notice how clearly and precisely Figure 9
presents all of the hydrofoil forms  and how the

8
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three-dimensional illustration in Figure 7 has been
condensed into a single one-dimensional graph
where the only parameter is K. The parameter K
classifies all cavitating hydrofoils and the sim-
pler fully-wetted hydrofoils-such  like the specific
speed parameter classifies ~turbomachinery.  The
nature of the parameter K is somewhat broader
than the specific speed parameter, however, be-
cause it includes the effect of cavitation and
structural strength on design form which the latter
&es not.

Figure 9 can be utilized together with Tables 4
and 5, Equations 57 and 38, and Figures 2 and 8, to
completely specify the lawest-drag  hydrofoil cross
section as a function of CI,,  Ml, and u.

General Cumnents  on the Design of
Hydrofoil Cross Sections

The results of this hydrofoil design problem
are applicable to a wide variety of operating situ-
ations. The restrictions that R >>  107 and r1 - 0
are not necessary as long as theeboundary  layer is
turbulent; an expression for the frictional drag
zr rsyluded  to correct all drag coefficientsI . Not even the boundary layer state
restriction is needed for the case of the cavi-
tating Region II forms. The  design assqtion  that
there is negligible effect of the water’surface on
performance is also not important, in general,
since very few hydrofoils are designed to operate
steadily within about two chordlengths of the,sur-
face where depth affects become significant.

OWKATING  -

The restsiction  that Aa  - 0 can be relaxed to
Aa - f 3 or mere, in general, for fully-wetted
hydrofoils when the boundary layer is turbulent,
without seriously influencing the performance or
design fom,  Mless  cavitation is very critical.
The effect of short periods of positive values of
AG  on supercavitating hydrofoil performance or

. design form  is small; however, if Aa  is to be nega-
tive, the upper surface should be undercut so that
the cavity clears it at negative angles of attack.
The  restriction to solid sections is not serious
because the designer can easily modify the speci-
fied M' to account for any amount of hollowness by
using a fictitiously high value of M’.  Similarly,
the assumption that the separation drag of the
fully-wetted hydrofoils is negligible can be com-
plied with by adding a cusp-shaped or wedge-shaped
trailing edge to reduce separation of the turbulent

9



boundary layer*. A final coasaent  is that the re-
sults of this analysis can also be made  to apply to
a relatively new kind of hydrofoil form introduced
by Hydronautics, Incorporated, called a super-
cavitatinn hvdrofoil with an annex.(lS)  This form
is essentyally  a typical Region II-hydrofoil form
with an unwetted annex extending rearward into the
cavity from the trailing edge to increase the bend-
ing strength without changing any of the performance
characteristics. Such a foil cti be treated in
this analysis bv artificially reducine  the reauired,
value of M’ by perhaps thirty percent”or  whatever -
value the designer finds reasonable in view of the
anticipated form of the hydrofoil and cavity. When
the design of the Region II form has been completed,
the designer can add the annex and check his ear-
lier estimate of approximate annex size and strength
change. By applying these modifications, the -
selected conditions for this analysis are found to
be significantly extended.

Notice that the hydrofoil forms split into six
different families in which each family is de-
scribed by a different set of equations. Although
some of the families and their boundaries in
P+obla  space are uniquely detezmined,  while the
determination of others is arbitrary and depends
upon the variables used in describing the hydrofoil
form. For exarmle,  the boundary between Regions I
and II is uniquely determined because it results
front  a fundas@ntal  change in physical flow condi-
tion, On the other hand, the boundaries between
Regions IId,  IIe,  and IIf are not unique because
instead of using the variables k, T,  and 6 to re-
present the amount  of two-term  camber, parabolic
thickness distribution, and 6-thickness  distri-
bution, other variables could have been used to re-
present other kinds of basic camber and thickness
distributions. Essentially the same hydrofoil
form  would be found  to correspond with each &sign
problem, but the equations &scribing the forms
would be different. Slight form changes and ~~11
improvements in performance will probably be found
for Regions IIc,  IId,  and IIe as a result of fur-
ther research into new forms. No changes are
anticipated in the forms or boundary description
corresponding to Regions I, IIa,  and IIb within
the framework of the stated assrmrptions.  Also,
the classification parameter K which resulted from
this analysis should remain unique.

me  low-drag hydrofoil forms  are very close in
shape to an ellipse with either a cusp-shaped or a
wedge-shaped trailing edge.. For example, see the
NACA 16-series  and 65series  airfoils of Refer-
ence (61  Also, a sha
in order to satisfy

trailing edge is necessary

lifting hydrofoils:
3: e Kutta condition for the
Notice that the value of M’

reduces when such a trailing edge is added; this
reduction in M’ can be accounted for by reducing
the specified value of chordlength about 20 per-
cent, or whatever value appears reasonable for
the thickness-to-chord ratio. Notice that the
specified value  of has

?kl
to be changed accordingly.

This trailing edge a ition  affects only the
Region I forms.
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