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THE DESIGN ‘OF HYDROFOIL CROSS SECTIONS AS A FUNCTION OF
CAVITATION NUMBER, LIFT, AND STRENGTH

Thomas G. Lang, PhD
Naval Undersea Research and Development Center
San Diego, California

Abstract

A set of graphs and equations is developed for
quickly determining the minimm-drag form of non-
cavitating and supercavititing hydrofoils designed

for high Reynolds numbers where the boundary layer.

is fully turbulent. A single classification’ para-

meter Is derived which simplifies design selection.

The results are applicable-to the design of pro-
Bellers, struts, lifting surfaces, and fins for
oth submerged vehicles and surface craft. It is
shown that _hydrofoil cross sections can be classi-
fied into six basic types of design forms, five of
which are cavitating.

List of Symbols

(Dimensions are in force F, length L, and time T)

(=

‘Hydrofoil span (L)
Chordlength of a hydrofoil (L)

o

cd Hydrofoil drag coefficient = D/pUZbC/Z

Cdc Cavity drag coefficient

Cao Cavity drag coefficient when ¢ = 0

(:f Skin friction drag coefficient

c Lift coefficient » L/oU’bc/2

Clo Lift coefficient at a » 0; €, = Clj -2a

C1 Section modulus coefficient s 21/t c

D Hydrofoil drag (F)

D. Cavity drag of a hydrofoil (F)

f Design bendin? stress, including I_ozad
factor and factor of safety (FL-4)

I Area moment of inertia(L4]

k Designates the amount of camber of a 2-
term hydrofoil camber line

K Hydrofoil classification parameter =
(o - CL/Z)/"W' = qo/»ﬂ" - -CLO/ZM"

L. length of a cavity (L)

Hydrofoil lift (F)

M Applied bending moment about some Cross
section of a hydrofoil (FL)

M! M/fc3

P Free-stream pressure (FL'Z)

P, Vapor pressure of the fluid )

Py Minimm pressure on a hydrofoil (FL”)

r Characteristic roughness height (L)

r! /¢

R Reynolds mmber s Uc/v

Maximm thickness df a, hydrofoil (L)
t! t/c

a Hydrofoil base thickness (L)

*The wmbers N _parenthesis denote references
which are listed at the end of this paper.

t. Maximam thickness of a cavity (L)

U Free-stream velocity ard

Ul Velocity at the m;_gmm pressure point on
a hydrofoil (LTT™)

X Chordwise distance to a specific point on
a hydrofoil from its leading edge (L)

x/c
Y Distance from the chordline to a specific

point on a hydrofoil surface (L)
Y’ y/<t

yi(x') Local nondimensional lower surface height
L above the chordline
y'(x')  Local nondimensional meanline height above
m the chordline
y'(x'}  Nondimensional meanline of the NACA uniform
° pressure (a = 1.0) meanline designed
for a unit lift coefficient
ya(x')  Local nondimensional upper surface height
above the chordline
Y1 to 5 Nondimensional heights of hydrofoil para-

meters listed in Table 2

6 Angle of attack used for generating
thickness for a supercavitating hydro-
foil (radians),

v Kinematic viscosity of the fluid (LZT-I)
P Mass density of the fluid (FL‘4T2)
a Cavitation number £B '
p
- Incipient cavitation number, i.e., value

of o when cavitation is about to begin
as a reduces

% Pepresents ¢ when CL = 0; o, = o = CL/Z

1 Designates amount of-parabolic thickness
added to a hydrofoil

Terms with a bar over them are &fined in
Equation 37

Introduction

This paper is an abstract of the section titled
"*fhe Design of Hydr?f?il Cross_Sections™in the
author’s PhD thesis on engiheerihg design theory.
Consequently, any background information and de-
tailed explanations that have been cnnitted from
this paper may be found in Reference (1).

Hydrofoils are found in a wide variety of
commonly encountered situations. They are used
as propeller blades on boats, as sailboat keels,
ship rudders, submarine and torpedo fins, lifting
surfaces of hydrofoil boats, underwater cable
fairings, shroud ring stabilizers for missiles,
rotor blades for water jet propulsion units, im-
peller blades in many kinds of pumps, support
struts, etc. The many different uses of hydrofoils
‘have resulted in the development of a wide variety



of hydrofoil forms. The streamlined fully-wetted
hydrofoils are the most commonly encountered type,
and have excellent performance characteristics at
speeds up to the beginning of cavitation. Cavi-
tation is characterized by the formation of small
cavitites filled with water vapor which appear and
collapse in the low pressure region of the hydro-
foil surface. As cavitation increases, there is a
corresponding increase in the number and degree of
such undesirable characteristics as noise, drag,
surface pitting, reduction in lift, and unsteady
performance. Cavitation can be avoided in certain
situations by reducing speed, reducing the hydro-
foil thickness or lift coefficient, improving the
cross-sectional shape, increasing the free-stream
pressure, or by operating closer to the design
angle of attack of the hydrofoil.

If cavitation cannot be avoided, an entirely
different type. of hydrofoil can be utilized which
provides steady performance, but has somewhat more
drag than the best fully-wetted hydrofoils, and
produces more noise. One form is called a_super-
cavitating }H?rofon which is analyzed by Tulin
and Burkart and operates with its upper surface
entirely immersed in a cavity and with its lower
surface fully wetted. Another form is a cavgt?ting,
non-lif‘ti_n% strut which is analyzed by Tulin(3
and which is entirely immersed in a Cavity, except
for the nose section.

A third type of hydrofoil is called a venti-
lated hydrotsis, yaious forms of which are de-
scribed by Lang(“ . Ventilated hydrofoils charac-
teristically operate with a steady cavity of non-
condensing gas in contact with the surface. At
cavitation numbers greater than zero, this type
has lower drag than a cavitating hydrofoil, and it
operates more quietly. Its use requires a gas
source to maintain the cavity.

For the purpose of this paper it is assumed
that a gas source is not available and that the
hydrofoils are either fully wetted or else designed
for cavitation. Some of the advantages and dis-
advantages of the various hydrofoil cross sections
will become evident later.

Specification of the Design Problem

Many hydrofoil design problems can be'reduced
to the need for a hydrofoil cross section which
provides a certain lift coefficient, sustains a
given bending moment, and operates well at a given
cavitation number, Reynolds number, etc. The ob-
jective of this design problem is to determine the

drofoil cross-sectional forms which have minimum
drag. For simplicity, it is assumed that the flow
is steady, that the only critical stress is bend-
ing stress, that all cross sections are solid,
that the water surface is sufficiently far away so
that it has no hydrodynamic effect. and that the
angle of attack is fixed at the &sign angle.

Design  Problem  Variables. The design problem
variables are assumed to be the design stress f of
the structural material*, hﬁjrofoil chordlength c,
characteristic surface roughness r, free-stream
speed U, free-stream pressure P, fluid viscosity v,

®The design stress includes the load factor and
the factor of safety.

fluid density o, fluid vapor pressure.R_, lift per
unit span L/b, and applied bending momefit M. In
summary, the ten design problem variables are f, c,
r, U P, v, p. P, L/, and M. Applying the design
procedure of Ref¥rence (1), the dimensional vari-
ables are reduced to five nondimensional design
mission variables. These new variables characterize
a nondimensional design problem, and are the lift
coefficient C;, moment coefficient M', cavitation
nlﬂ]mber 0, Rey}iolds number R, and rougﬁness ratio p!
where :

c . L/b (9]
C }pu?

M- ;—:; (2)
PP,

o= :p“d; (3)

R = O]

r' = r/c (5)

Optimization Criterion. The objective of the
nondimensional design problem is to minimize the
drag coefficient Cd' where

D/b
C, == 6
d prw) (6)
where D/b is the drag per unit span.
Possible  Design  Forms

Typical hydrofoil cross sections are sketched
in Figure 1.

Fully-wetted hydrofoils

Cavitating hydrofolls

Figure 1| - Typical hydrofoil forms



itvsical Relationships

The relationship for bending stress is con-
sidered first. The design bending stress of the
minimm-drag hydrofoi 1 cross section must be equal
to the actual bending 5 tress, so

fa ...J:_T... (7)
s
c\ (E) c

where t = hydrofoil thickness, and . ¢ ds the sec-

tion modulus coefficient. Rearrangiﬂlg,
M t, 2 :
M > =
" fe!? o (c) (8)
Cavitation is considered next. lLet P, ke the
minimum pressure at sane point on a _fullylmtted
hydrofoil where the local velocity is Ul. Accord-

ing to the Bernoulli equation, Pl 1s

2
P =P+ Lou? - lng]‘ =P+ l,pu’[l . (U—'Li )

Cavitation will occur wher B radiwces to the vapor
pressure of the fluid P (as§uming no tensile

stress in the fluid). e critical (incipient)
cavitation mumber is defined as
PP, U2
. e (—) -1
%r " ot G (10)

Cavitation will occur whenever ¢ <o_. where a is
the cavitation number. cr

It will now be shown that R and r' can be e¢lin-
inated fran the list of important variables. The
Reynolds number R determines how the hydrofoil
should be formed to best utilize laminar flow, pre-
vent laminar separation, prevent turbulent separa-
tion, and minimize skin friction drag. However, R
is not normally critical in the range R > 107 be-
cause the boundary layer is generally fully tur-
bulent, und changes in Reynolds number in this
range have only a small effect on hydrofoil form.
Also, it is known that the roughness ratio r' has
little effect on hydrofoil form if it does not ex-
ceedcert ai ncritical values which depend upon R
thle roughness cangeneral | ybe kept below these
val ues.

In view of this discussion, it is seen that
the nondimensional design problem can be7sinp1i-
fied by assuming that r* = 0 and R >> 10" the~re-
sults will still be very general and useful. The
desi gnvari abl esare consequently reduced to C ,

. ad o. In order to approach this ;hree-dg_ hen-
sional design problem, the simpler t wo- di nensi onal
design ,oroblems will ha considered first where one
Of the three variables is assumed to be zer 0.

Design Problem Where C, = 0

The first two-dimensional design probiem is
where = 0 and where M' and ¢ are variable.

Since = 0, all points in the two-dimensional
problem represented by a graph of o versus

M owill ge satisfiéd by uncambered hydrofoils,
called hydrofoil struts. A1l laminar boundary
layer effects can be dis since the -
ary tayerwiTr>be- Ty turthi2nr= at Ry s> 16",

The problem reduces to finding the minimum drag
hydrofoil strut section as a function of ¢ and M/,
where the boundary layer is turbulent an”.g is
very small in view of the high Reynolds number.

As shown in Reference (1}, if the cavitation
number is sufficiently high, an efficient fully-
wetted streamlined hydrofoil can be designed to
satisfy the strength requirement. However, if the
cavitation number is low, the most efficient (i.e.,
minimum-drag) strut is bluff ended and cavitating.
Consequently, the graph of M' versus ¢ will split
into two regions where the upper region is satis-
fied by ful(ljy-wetted struts, and the lower region
is satisfied by less-efficient cavitating struts.

Fully Wetted Region. Assuming that the fully-
wetted struts have no boundary layer separation,
the minimum drag form is shown by (1) to have an
elliptical cross section. The pressure is theo-
retically approximately uniform on both surfaces
fran a point near the leading edge to a point near
the trailing edge. Since the boundary layer will,
in actual practice, separate near the trailing,
edge, a short cusp-shaped or wedge-shaped trailing
edge can be added to the basic ellipse to minimize

its drag. For the purpose of this paper, however,
it will be assumed that the values of o, and
M' are based upon the chordlength ¢ of the basic

elliptical ~ section. Reference (1) shows that the
stress relationship, Equation 8, for an ellipse
becomes

0.2 4 (11)

(ellipse).: = .
also, the cavitation relationship, Equation 10,
becomes

(ellipses) ocr.Z% 12)

Let Region | be the portion of the a versus M'
%rfi\fh which is best satisfied by fully-wetted
ydrofoils, and Region Il be the portion which is
best satisfied by cavitating hydrofoils. The
boundary between the two regions is obtained from
Equations 11 and 12 by letting Ier =9 which gives .

Boundary between
(Reg!ons I and Ila) o= 6.33 /N" (13)

where a designates the value of a when £ is
assumed to be zero. Equation 11 gives th ellipse

ratio, t/c, as, a function of M' for Region | where

the form is independent of o.

The drag coefficient for the Region | forms is
due to skin friction only, and is shown by (1) tote

(R::l:nol) €y = 24(6.39 AT +1) aa
where C, is the-drag coefficient of a flat plate
at the 1ds number R.

Cavitating Region. The cavitating strut family
which corresponds 10 Region Il is shown by Refer-
ence (1) to be family of truncated ellipses where
the strut lies just inside the cavity formed be-
hind its leading edge.



The cavity drag coefficient of a full cavity is
shown by (5) to be

-

n 2°¢ 0
Cec " T % z--:c——f;;; (15)

where D /b is the cavity drag per unit span, and £
is the Eavity length. Assuming that a_is small,
Reference (5) also shows that the shap® of a full
cavity is an ellipse,

~ The minimm drag strut form is a truncated
ellipse and is shown by (1) to be expressed by the
following relationships:

o Reglon Ila
Y -

o I'M 10.2 g 7 S ho.8
o'l/ M! 16
=)

1%

(
+l) x'=(x')2[Reglon 1Ib
o 2
0 & g s 10.2
where y' and x' are the nondimensional semi-thick-
ness and distance fran the leading edge, re-
SEectlvely, and where Region IIa corresponds to
those struts whose chordlengths are greater than
half the cavity length, afd Region IIb corresponds

to those struts whose chordlengths are less than
half the cavity length.

I+

Q

(R

__Because of the mathematics involved! two
different equations are required to define the
strut form, and these are called regions IIa and
IIb. The equation for the boundary between Regions
IIa and IIb is seen from the region expressions in
Equation 16 to be

(Region Il1a to , 2 oM
IIb boundary) % * 10-2 K an
The value of the section modulus coefficiend £
for the two families of truncated ellipses ig s
in Figure 2 as a function of the parameter w=/M' .
This relationship was obtained by: (a integratin
over a truncated ellipse to determine the moment O
inertia, 1, as a function of c/§ 4 (b) calculating
the vajue of C whera G, = 21/t &, and (c) obtain-
ing 0, M as l functioh of c/zc.

The struts cavitate from their leading edges
rearward because their surfaces are designed to
lie just inside the cavity in order to eliminate
friction drag. Their drag is therefore cavity drag
only, and is obtained from Equations 15 and 16 as

=

%coz H Reglon Ila
o % C, =0
o.1 L

. " ' 18)
o? +1§ [Region 1Ib
.g. o ( OOZCI ) ( gL =0 )

where ¢, is obtained fram Figure 2.

The upper expression of Equation 18 must be re-
duced somewhat to include the effect of the thrust
produced by impingement of the reentry jet (which

ors :
S—

O.IOF

)| £-3
0.0

& [ 20 30 )
2

i

Flgure 2 - Sect(
“r"t:n modulus cosfficlent of truncated elllptica)

exists at the rear of all cavities) on the strut
trailing edge. In view of the lack of experimental
data on the reentry jet effect, it is assumed that
half the cavity drag is recovered as thrust when
the strut almost fills the cavity, and that the
effect tapers to zero recovery when the trailing
edge of the cavity is located more than one-quarter
of a cavity length behind the strut.

lllustration of the Design Result. Figure 3
consists of two graphs of a versus M' which illu-
strate the design result. Both graphs show the
boundaries between Regions I, ITIa, and I1b.
Sketches of the corresponding design forma are
superimposed on the lower graph at various selected
points. The corresponding value of.¢ is plotted
on the upper graph of g versus ™', e dashed
lines represent the regions where the reentry jet
influences cavity drag.

Design Problem Where M' = 0

This two-dimensional problem is represented by
a graph of a versus ¢,, wherg, (% is selected as
the abscissa. Since M' =.) thére is no strength
requirement, so all forms will have minimum thick-
ness because minimum thickness produces minimum
dr_ai]. As in the previous design problem, the graph
will split into a fully wetted Region | and a cavi-
tating Region II.

Pegion I  Consider first, the noncavitating
region whére ¢ is so large that cavitation will not
occur.  As shown in Reference (1), all minimum-drag
fully-wetted hydrofoils which correspond to this
region are cambered meanlines which have a uniform
pressure distribution. These cambered lines are
the set of NACA a = 1.0 meanlitg?s which are pre-
sented by Abbott and Doenhofft®J .
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Figure 3 - Hydrofoll struts and dra;
Hydrofoll N g coefficients for the

The nondimensional meanline height is expressed

(Region I and 11 .
Boundary, M' 5 0 ) o = 3{21)

and which is valid for (;L small relative to 1.6.

Region II. The general form of the cavitatin
hydrEfg'ﬂ—fa‘mily is sﬁown by Reference (1) to be %
supercavitating profile whose lower surface is fully
wetted and whose upper surface is entirely covered
by a cavity which springs from the leading edge.

_ The design of hydrofoil forms for a = 0 is con-
sidered first. Utilizing the results of References
(7), (8), and (9), the supercavitating forms which
have lowest drag when ¢ = 0 (for nearly all values
of reasonable strength) is described by the para-
meters k and 6 of these references. The parameter
k indicates the amount of Z-term camber*, and § in-

dicates the amount of thickness introduced by angle
of attack where

k = 0.875 cLo (22)

é » 0.0787
- ‘o (23)
and where C represents C, when ¢ = 0,
The upper and lower coordinates of the hydro-

foil surface (assuming that the hydrofoil just fills
the cavity) are

Ve Ryix) kv yi(xt) e
(24)
vim ovale) kv i) o 8

(omo
M' = Q)

where approximate value's of y!(x') through. y!(x'
are obtained from €8) and pre§ented in Tab1e42, %o-
gether with the values for yg(x') which will be
utilized later.

TANE 2
Amvmwyi(x')myg(:') FOR THE BASIC
2-7EN CAGER, -THICXNESS, AND PARANOLIC TEICKNESS
DISTRIBUTIONS DESIGNED JOR ¢ = O ARD INFINITE DEPTR

as
Ymlx') = v (x') - 6 (19)
where ,v! (x']) is the meanline height for = 1.0.
Some valfles for y',(x') are reproduced in Table |
from (6).
TARLE 1
VALUES OF y.(x') POR THE NACA & = 1.0 (twIrOm Frases)
MEANLINE AT G =~ 1.0

=’ o 0.1 0.2 0.3 0.h 0.5

=’ 1.0 0.9 0.8 0.7 0.6 0.3

y;(x‘) ° 0.0259 | 0.0398 | 0,086 | 0.0336 0.0332

x [0.0 [ 005 [ 01 [ 0.2 0.4 | 0.6 0.8 1.0
n |° 0,009 | 0.07 | 0.0 | 0.053 | 0073 | 0.091 | 0.107
7 [0 0.8 [0 . 0|3 7 |00TL 011 0,102 0,08 -0.085
yi o 0.10 0.16 0,25 | 0.3 0% | 0.59 0.68
¥ |® |o0.08 |00 |0, |-0.40 |0.60 |-0.80 |-1.00
|0 0.22 [ 032 | o8 [ 063 | 0uT? | 089 | 1.00

The drag is assumed to consist solely of tur-
bulent skin friction drag. Utilizing the velocity
distribution as a function of ¢, Reference (1)
shows that the drag coefficient is

(20)

Also from the velocity distribution, Reference (1)
shows that the critical cavitation mmber of the
Region | forms is also the boundary expression be-
tween Regions | and 11, which is

Cd"ch

#Callea 2-tem in view of the nwnber of terms in a
certain trigonometric series used in &fining the
pressure distribution

The next problem is to determine the best forms
for points in Region 1l where g > 0. Although both
nonlinear and linearized theories exist for deter-
mining the lower surface shape, cavity shape, and
lift and drag coefficients for the case when ¢ > ¢
(Wu, References 10 to 12 ), the results would re-

ire a lengthy computer study to determine which
orm has the lowest drag for a given Cl,, ¢, and
strength.

A relatively simple solution to this problem is
to linearly add the appropriate NACA a = 1.0 uni-

“form pressure meanline to the ap(pro riate two-term
a

supercavitating hydrofoil form (and cavity) de-
signed for ¢ # 0. The result is a minimum drag



hydrofoil form for 3 » 0. Letting ¢ be the in-
cipient cavitatior number of an NACA a = 1.0 mean-
line, and G be the lift coefficient of a 2-term
hydrofoil f#fmat s = 0, the lift coefficient c,
of the linearized combination is approximately

(Region :le) € =€ = 20 (25)
where C,r is assumed smal; Region Il is now called
Region. T'le for reasons which will be presented
later. Notice that the pressure along the upper

surface of the linearized combination, which shall
be called the Region Ile form, is exactly cavity
pressure when ¢ = The nondimensional pressure
along the lower sur¥face is approximately the non-
dimensional pressure at ¢ = O for the 2-term hydro-
foil designed for "Gy plus the pressure Ocr'

~ Notice that the NACA a = 1.0 meanline is de-
signed for a lift coefficient of ¢, * Gy = 2o

The Region Ile form are seen to satisfy the
necessary boundary conditions for minimum drag,
which are: (1) the upper surface pressure is uni-
form and matches the cavity pressure, (2) the low-
er surface is fully wetted, and (3) the resulting
form has minimum thickness and minimum cavity drag.
Furthermore, the Region Ile forms are seen to merge
into the Region | forms at the boundary between
Regions | and 1le, since = 0 along the boundary
line where = 20. There¥ore, the Region [le
forms change smoothly from supercavitating 2-term
forms designed for o = O to the NACA a = 1.0 mean-
lines corresponding to the boundary line ¢ = CL/Z"

The nondimensional heights of the upper cavity
wall and the lower hydrofoil surface )'1'l and y;
respectively, are -

Yoo vilx') c k+ y3(xt) - 8+ yilx') + 20
(Region Ile)
yp = vp(x') -k oyp(x) e s yo(x') + 20

Equation 26 is valid only for low values of be-
cause of the assumptions made in the lineariz
theory; Reference (9) reports negligible error up
to C,_ = 0.2, but considerable error may exist for
1!°0.6. Therefore, the value of in this
lysis is limited to a maximm of U.6.

(26)

The drag coefficient for the Region IIe forms
is shown by (1) to be
0.2360%(C, -20)

= 0.142 (CL-ZO) 2,

c 2
g
G+0.71(c -20) + Q1 - iJ-_ .,_2_)

%

(Region Ile) @n
where the last term is friction drag and the other
terms are cavity drag.

lllustration of the Resign Result. Some of the
hydrofoil forms corresponding to the graph of ¢
versus where M' = 0 are shown superimposed on
the loweFgraph of Figure 4 together with the
boundary line between Regions | and Ile. The
corresponding values of C;=xe plotted in the upper
graph. Only the cavit dilag is plotted in Region
1Ie shc; Cis negI|]g| le relative tow C,*ken
R »» 10¢. *Values 0 are plotted only~up ‘to
0%60 due to the limitatYohs of the 1line:rized
theory. The most practical range of Ck for super-
cavitating hydrofoils is around 0.20, 80 the cover-
age is adequate.

03 I !

REGION ]

02" Cq = 2C¢

o2t

03 ©Oa 05 6
C

Figure 4 « Hydrofoil forms and drag coefficients for the
cue when M' s O N

Resign Problem Where o= 0

Since ¢ = 0, all points in the grth of
versus M' will correspond to supercavitating ge-
sign forms consisting of different combinations of
the 2-term camber configuration represented by K,
parabolic thickness represented by , and angle-of
attack thickness represented by 6.

Reference (1) shows that Region Il splits into
the following families of supercavitating hydro-
Toils:

k= O
: (28)
<
o.osozcu’) =N (6 = (”“)CLO
(Reglon 11c

= = - -
g=0 ) 1 1.93 /MT O'OOMCL:) 0,1|26CL°

<" T =0

2 (29)
0.0016¢, 2 £ ut

k = 0.962¢, - h.35 /W'-0.0012C, 2
S 0.0502¢, 2 Lo Lo
é = 0.024C,  + 2.76 yHT-0.00712¢C 2
Region Ild Lo Lo
=0



=0

(o S s o.omscL’)

k = 0,875C
(Region 11e)*° Lo (30)

6 = O.O?SCLO

whereC, _ is defined as

Lo
CLQ ] CL - 20 (31)
The upper and lower surface coordinates are

Yo = YI(X) Kk 4yy(x') v 6+ yolx') o 1
vo royy(x') vk + y,'|(x') + 6 - yé(x') ]

Regions 1lc,

(Ild. andlle) (32)
where the values of y;(x') through yé(x') are
listed in Table 2.

The drag coefficient for all Region Il forms
when o= 0 is shown by (1) to be c 2

¢y = [0.319k + 1.25(me6)] 2 4 c (1 22
(Region 11
¢ =0) (33)

The lower graph of Figure § illustrates the de-
sign result where ¢ = 0,and M' is plotted against
C,. Sketches of the corresponding design forms
a{‘e superimposed. The upper graph of Figure §
shows the values of the cavity drag coefficient,

which is Equation 33 less the last term.

LB
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Figure 5 . Hydrofoil forms and drag coefficients for the
case vhen ¢ .«

Solution of the Entire Three-Dimensional
Design __problem

The solutions to the three previous two-di-
mensional design problems can be used as guides in
solving the three-dimensional problem represented
by the three coordinates, C,, M', and ¢. The same
physical equations are used,’and the same general
design concepts are applied: The expressions for
the hydrofoil forms, their drag coefficients, and
the boundaries between regions I, I1a, IIb, 1Ic,
11d, and [Ie in the three-dimensional space of G
versus M' versus ¢, will be presented later. 'rhk
boundaries, as derived in Reference (1), are shown
in Figure 6, and the corresponding hydrofoil forms
are shown superimposed in five different planes of
the three-dimensional space in Figure 7. Notice
how. the hydrofoil forms change continuously between
any two points in the three-dimensional space,
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Figure 6 - Boundaries of Regions | through lle in three-
dimensional space

Transformation of the Three-Dimensional Design
Problem _into a One-Dimensional _Design__Problem

~As a result Of solving the three-dimensional de-
sign Froblem, Reference (1) shows that a significant
i

simplification takes place by introducing the para-
meter K where
¢~C/2
Ke ——— 34
e (34)

Alternatively, K may be expressed as

[+]
k - (3%)
f &
or
¢
P—- (36)
2 AT

The equations for the region boundaries are ex-
pressed solely as a function of K in Table 3.



Cac = Cac 7 M (37)

cdo / W
where
, ke £)
c
cdc £ (38)
<
Equation 38 is an empirical relationship developed

in (1) from theory presented in References (13) and
(14).,

The hydrofoil forms as a function of K, C;, and
the new variables defined by Equatlon 37 are listed
in Table 4%, The values for C,are shown in Fig-
ure 2 as a function of K2. Thé form and drag
coefficients for the truncated ellipses of Regions
ITa and IIb are presented in Figure 8. The ex-
pressions for C, and the frictional drag co-
efficient C,. af? listed for all hydrofoils in

Table 5. & °
TABLE %
_ HYDROFOIL FORM _CHARACTERISTICS
Reglion Form Equation . (43 '_b
- /BT t
Ly = 309K ey T 319 o
e B2 T e RV
Figure 7 - Illustrat fon Of the solution O the three- = KA i, 2
dimensional design problea S il L P
. fo’ Y I o T
Yol e e !

ey - ;}(n'r; ol)---—(;;"n;t'[ 1.0

TASLE 3 1
REGION DOUNDARIES FOR SUBSPACE (f)_AS A FyNCTION_OF K i-- !z('y‘i‘!it_l \UZIR E DAy ch
Reglon Soundary Equat lon Ilc Y-," - Yi T 1; T 2y, B
1 to ite e v, = v T - yg T+, o -0.436K I
T e -l2720 +3.86/T-0.0058KT
Ila to 1Ib K m3.19 -
T « 1.93/T00056KT » 0.85K
1 to e K-0
k-0
He to 1e Kooz He Fy-yjKey3Toays
_ _"‘ to e k= -2 - v5 ReyiTeoy s -0.451K (I
K= -5.924K - §,35/T-0.0048KF +3.80/T-0.0048kT
T o -0.0M8K + 2,76/T-0 DORERY
The simplification introduced for the descrip- -0
tion of the boundaries can be extended to the de- e F=vjFeyjToea
scription of the hydrofoil forms and the drag co- Fiayi eyt Toeza -0.602k -
efficients., The following definitions are intro- 1 N °
duced: X = -1.750K
T T = -0.158x
C, =¢ /M oo
omag/ M
Y = y' /AT = (y/c) / /M 37)
-. - - N i .
t t'/ JHT = (t/e) / vHT The basic form characteristics which consist of
T =8/ W = (t/c)/MT, t,/t, T, k/10and T are plotted in
- I u Flgure 9 as a fun tion of K. Also shown in Figure
ToeT 9 are typical hydrofoil shapes superimposed along
K =k/ M vertical lines which represent the region boundar-

ies . Notice how clearly and precisely Figure 9
presents all of the hydrofoil forms and how the
TNotice the difference in definition between the
lower case k and the capital K symbols in Table 4.
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three-dimensional illustration in Figure 7 has been
condensed into a single one-dimensional graph
where the only parameter is K. The parameter K
classifies all” cavitating hydrofoils and the sim-
pler fully-wetted hydrofoils much like the specific
speed parameter classifies turbomachinery. The
nature of the parameter K is somewhat broader
than the specific speed parameter, however, be-
cause it includes the effect of cavitation and
(sé:cructural strength on design form which the latter
es not.

Figure 9 can be utilized together with Tables 4
and 5, Equations 57 and 38, and Figures 2 and 8, to
completely specify the lowest-drag hydrofoil cross
section as a function of C;, M', and o.

General Comments on the Design of
Hydrofoill Cross Sections

The results of this hydrofoil design problem
are applicable to a wide variety of operating situ-
ations. The restrictions that. R »» 107 and r' = 0
are not necessary as long as the boundary layer is
turbulent; an expression for the frictional drag
has been included to correct all drag coefficients
for R and r', N4 even the boundary layer state
restriction is needed for the case of the cavi-
tating Region Il forms, The design assumption that
there is negligible effect of the water'surface on
performance is also not important, in general,
since very few hydrofoils are designed to operate
steadil?; within about two chordlengths of the sur-
face where depth affects become significant.
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Figurs 9 - One-dimensional, reprasentation of hydrofoll design

form characteristics

The restsiction that sa = 0 can be relaxed to

bda = ¢ Z"or-mere, in general, for fully-wetted
hydrofoils when the boundary layer is turbulent,
without seriously influencing the performance or
design form, unless cavitation is very critical.
The effect of short periods of positive values of
4a on supercavitating hydrofoil performance or

. design form is small; however, If Aais to be nega-

tive, the upper surface should be undercut so that
the cavity clears it at negative angles of attack.
The restriction to solid sections is not serious
because the designer can easily modify the speci-
fied M' to account for any amount of hollowness by
using a ficticiously high value of M'. Similarly,
the assumption that the separation drag of the
fully-wetted hydrofoils is negligible can be com-
plied with by adding a cusp-shaped or wedge-shaped
trailing edge to reduce separation of the turbulent




boundary layer*. A final comment is that the re-
sults of this analysis can also be made to apply to
a relatively new Kkind of hydrofoil form introduced
by Hydronautics, Incorporated, caIIeEi 55 super-
cavitating hyvdrofoil with an annex.(15) This form
is essentially a typical Region Il-hydrofoil form
with an unwetted annex extending rearward into the
cavity from the trailing edge to increase the bend-
ing strength without changina_any of the performance
characteristics.  Such a form can be treated in

this analysis bv artificially reducing the reauired,

value of M' by perhaps thirty percent or whatever
value the designer finds reasonable in view of the
anticipated form of the hydrofoil and cavity. When
the design of the Region Il form has been completed,
the designer can add the annex and check his ear-
lier estimate of approximate annex size and strength.
change. By applym% these modifications, the
selected conditions for this analysis are found to
be significantly extended.

Notice that the hydrofoil forms split into six
different families in which each family is de-
scribed by a different set of equations. Although
some of the families and their boundaries in
problem space are uniquely determined, while the
determination of others is arbitrary and depends
upon the variables used in describing the hydrofoil
form. For examle, the houndary between Regions |
and 11 is uniquely determined because it results
from a fundamental change in physical flow condi-
tion, On the other hand, the boundaries between
Regions 11d, IIe, and 1If are not unique because
instead of using the variables k, 1, and 6 to re-
present the amount of two-term camber, parabolic
thickness distribution, and §-thickness distri-
bution, other variables could have been used to re-
present other kinds of basic camber and thickness
distributions.  Essentially the same hydrofoil
form would be found to correspond with ‘each &sign
problem, but the equations &scribing the forms
would be different. Slight form changes and small
improvements in performance will probably be found
for Regions 1Ic, IId, and IJe as a result of fur-
ther research into new forms. No changes are

anticipated in the forms or boundary description
corresponding to Regions I, IIa, and IIb within
the framework of the stated assumptions. Also,

the classification parameter K which resulted from
this analysis should remain unique.

*The Tow-drag hydrofoil forms are very close in
shape to an ellipse with either a cusp-shaped or a
wedge-shaped trailing edge.. For example, see the
NACA 16-series and 65-series airfoils of Refer-
ence (6) Also, a shag trailing edge is necessary
in order to satisfy the Kutta condition for the
lifting hydrofoils: Notice that the value of M’
reduces when such a trailing edge is added; this
reduction in M’ can be accounted for by reducing
the specified value of chordlength about 20 per-
cent, or whatever value appears reasonable for

the thickness-to-chord ratio. Notice that the
specified value of &dhas to be changed accordingly.
This trailing edge ition affects only the
Region | forms.

10

Report.
12, Wu, IE)r Y.

13.

Acknowledgment

The author wishes to thank his advisor, Pro-
fessor G. F. Wislicenus, for his generous assist-
ance during the period when the PhD thesis was

written. This paper is an abstract of a portion of
that thesis.

References
1. Lang, T. G. “A Generalized Engineering Design

Procedure,” PhD Thesis, Department of Aero-
space Engineering, Pennsylvania State Uni-
versity. University Park, Pennsylvania,
June, 1968.

2. Tulin, M. P., and Burkart, M. P.
Theory for Flows ‘About Lifting Foils at Zero
Cavitation Number " Report C-683, The David
Taylor Model Basin. Washington, D. C.,
February, 1955,

3. Tulin, M. P. “Steady  Two-Dimensional ~ Cavi
Flows About Slender Bodies,” Report 834, The
David Taylor Model Basin. Washington, D. C.,
May, 1953.

4. Lang, T. G. *“Base-Vented Hydrofoils ," NAVORD
Report 6606, U, S. Naval Ordnance Test Station.
China Lake, California, 19 October 1959.

5. Tulin, M. P. _"The Shape of Cavities in Super-
cavitating Flows,” Technical Report 121-5,
Hydronautics, Inc., Laurel’ Md.. April,. 196S.

6. Abbott, I.H., and Von Doenhoff, A. E, Theory
of Wing Sections, New York: Dover publica-
tions, Inc.,.1959.

7. Johns&, V. E., Jr. ‘Theoretical Determina-
tion of Low-Drag Supercavjtating Hydrofoils
and Their ‘lwo-Dimensional Characteristics at
Zero Cavitation Mumber," NACA RMLS57Glla,
September,  1957.

8. Auslaender, J. *The Linearized Theory for
Supercavitating Hydrofoils Operating at High
Speeds Near a Free Surface,” Journal of Ship
Research, October, 1962, 8-23:

9. Auslaender, J. ‘“Low Drag Supercavitatin
Hydrofoil Sections,” Technical Report 801-7,
Hydroanutics, Inc., Laurel, Md., April, 1962.

10. Wu, T. Y. “A Free Streamline Theory for Two-
Dimensional Fully Cavitating Hydrofoils,”

J. Math. Phys., XXXV (1956), '236-65. )

11. Wa, T. Y. --K Note on the "Linear and Nonlinear
Theories for Fully Cavitated Hydrofoils, '
California Institute of Technology Hydro. Lab.

Pasadena, California, 1956.

. “A Wake Model for Free-Streamline
Flow Theory; Part I, Fully and Partially
Developed” Wake Flows and Cavitv Flows Past
an Oblique Flat Plate,” J . Fluid Mech., XIII
(1962),. 161-81. -

Fabula, A. G. “Application of Thin-Airfoil
Theory to Hydrofoils with Cut-off Ventilated
Trailing Edge,” NAVWEPS:Report 7571, U, S.
Naval Ordnance Test Station. China Lake,
California, 13 September 1960.

“Linearized

14. Fabula, A. G.. “Linearized Theory of Vented

Hydrofoils ,'" NAVWEPS Report 7637, [J, S. Naval
Ordnance Test Station. China Lake, California,
7 March 1961.

1s.  Tulin, M. P. “Supercavitating Flows - Snal]
Perturbation  Theory ," Technical Report 1/]-3,
I1-|)/6<13r0nautics, Inc., Laurel, Md., September,
963, .




