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Abstract

Computer automated design of complex engineering systems, such as hydrofoils for
displacement support, is often limited by the computational resources required for
the prediction of complex and competing quantities of interest driving the decision-
making process. For hydrofoil supporting vessels operating at very high speeds, this
task is complicated by the complex flow solution involving turbulent, multi-phase flow
with phase change between vapor and liquid. In these operating conditions, determin-
ing an optimum design in a multi-dimensional input space necessitates an enormous
amount of data often available only through expensive computer codes. In the spe-
cific case of hydrofoils, further complexities are introduced by the interconnectedness
of the constraint and objective quantities. This paper applies recent advances in
machine learning techniques to the development of an automated framework for it-
erating through a design loop that includes both physics-based computer simulations
and surrogate model training. The key feature of this framework is the construction
of probabilistic response surfaces based on Gaussian Process regression describing
complex quantities of interest. The capabilities of the design framework are particu-
larly suitable for the optimization of unconventional cavitating hydrofoil specifically
designed to work in super-cavitating conditions, for which few experimental data or
empirical formulations are available and the design must rely on the solution of chal-
lenging fluid dynamic problems. Prediction models based on potential flow assump-
tions frequently fail in predicting strong time-dependent phenomena such as cavity
reattachment. An accurate prediction of the unsteady, turbulent, multi-phase flows
requires the application of expensive solvers based on the solution of the Navier-Stokes
equations. The necessity of fast, inexpensive objective function evaluations and the
accuracy requirements represents a typical bottleneck in engineering optimization. To
alleviate the computation burden and efficiently explore the design space, surrogate
models are constructed using simulation data and interrogated for new design can-
didates. Each surrogate model is built using a multi-fidelity framework capable of
producing response surfaces that retain the accuracy of the high-fidelity data used for
their formulation while reducing their number by exploiting information coming from
low-fidelity, cheaper models. The surrogate model is iteratively improved through
Bayesian Optimization techniques and additional high-fidelity simulations automati-
cally initiated within the design loop. In addition, Bayesian Optimization will be used
to automatically determine the optimum kernel for the Gaussian regression model.
This automated multi-fidelity Bayesian optimization framework can aid in taking the
human out of the design loop, and therefore free manpower resources, remove poten-
tial human bias, and potentially enable the discovery of innovative designs.
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Computer automated design of complex engineering sys-
tems, such as hydrofoils for displacement support, is often
limited by the computational resources required for the pre-
diction of complex and competing quantities of interest driv-
ing the decision-making process. For hydrofoil supporting
vessels operating at very high speeds, this task is compli-
cated by the complex flow solution involving turbulent, multi-
phase flow with phase change between vapor and liquid. In
these operating conditions, determining an optimum design
in a multi-dimensional input space necessitates an enormous
amount of data often available only through expensive com-
puter codes. In the specific case of hydrofoils, further com-
plexities are introduced by the interconnectedness of the con-
straint and objective quantities. This paper applies recent
advances in machine learning techniques to the development
of an automated framework for iterating through a design
loop that includes both physics-based computer simulations
and surrogate model training. The key feature of this frame-
work is the construction of probabilistic response surfaces
based on Gaussian Process regression describing complex
quantities of interest. The capabilities of the design frame-
work are particularly suitable for the optimization of uncon-
ventional cavitating hydrofoil specifically designed to work
in super-cavitating conditions, for which few experimental
data or empirical formulations are available and the design
must rely on the solution of challenging fluid dynamic prob-
lems. Prediction models based on potential flow assump-
tions frequently fail in predicting strong time-dependent phe-
nomena such as cavity reattachment. An accurate predic-
tion of the unsteady, turbulent, multi-phase flows requires
the application of expensive solvers based on the solution of
the Navier-Stokes equations. The necessity of fast, inexpen-
sive objective function evaluations and the accuracy require-
ments represents a typical bottleneck in engineering opti-
mization. To alleviate the computation burden and efficiently
explore the design space, surrogate models are constructed
using simulation data and interrogated for new design can-
didates. Each surrogate model is built using a multi-fidelity

framework capable of producing response surfaces that re-
tain the accuracy of the high-fidelity data used for their for-
mulation while reducing their number by exploiting informa-
tion coming from low-fidelity, cheaper models. The surrogate
model is iteratively improved through Bayesian Optimization
techniques and additional high-fidelity simulations automat-
ically initiated within the design loop. In addition, Bayesian
Optimization will be used to automatically determine the op-
timum kernel for the Gaussian regression model. This au-
tomated multi-fidelity Bayesian optimization framework can
aid in taking the human out of the design loop, and therefore
free manpower resources, remove potential human bias, and
potentially enable the discovery of innovative designs.

1 Introduction
Engineering design problems generally include multiple

design inputs and difficult to evaluate quantities of interest.
The quantities of interest, which are the design objective
and constraints, are determined by computer simulation or
experimentation. Since both evaluation methods are often
expensive, in terms of time, they often inadequately explore
the design space. Thorough design space exploration
often requires orders of magnitude more simulations than
budgeted. Therefore, model-based optimization is used to
"fill in the gaps" in the design space between simulation
results.

Model-based optimization, also referred to as surrogate
modeling or response surface modeling, is the method of
creating models from training data that can recreate simula-
tion results and make predictions at untested locations. The
input training data is purposely chosen to span the design
space and the black-box model will attempt to mimic the
simulations outputs. If the design input is one dimensional,
then the surrogate modeling is the process of fitting a curve
to the data. If the design input is two dimensional, then the
surrogate modeling is the process of fitting a surface to the



data. Higher order design inputs are more difficult to visual-
ize, but the modeling concept is the same. Modeling allows
the designers to optimize their design by more thoroughly
exploring the design space. These simple examples don’t
show the model uncertainty, but this important factor will
be addressed in Section 4. The theory behind of Gaussian
process regression, also referred to as kriging, will be
explained in Section 4, but this section will focus on the
advantages of this response surface modeling technique.
First, GP regression is flexible. GP modeling is capable of
handling a large variety of engineering problems, including
both regression and classification problems, and producing
effective predictive models. Second, GP is user-friendly.
Since GP is commonly used, there are many GP regression
tools, training resources, and support venues. Because of
the many resources available and the efficacy of GP for
many engineering problems, I call GP user-friendly. Third,
GP is a non-linear and non-parametric modeling paradigm.
This enables more complex and better modeling solutions.
Fourth, GP regression is computationally tractable. There
are other regression techniques that are computationally
cheaper, but GP gives advanced modeling solutions with an
understood and stable computational cost.

One of the main goals of this paper is to demonstrate the
feasibility of an automatic design loop, integrating physics-
based solvers and machine learning principle. There are
many advantages to having an automated design loop. These
advantages include (1) freeing man-power resources to work
on problems for which computers are ill-equipped, (2) deci-
sions can be made quicker as humans and computers work
simultaneously, (3) more thorough exploration of the design
space is possible using surrogate models and digital twins,
(4) removal of potential human bias which will increase the
probability of discovering fresh design solutions and reduce
the probability of inadvertently making design decisions ear-
lier than necessary, and (5) easily allows for design bounds
and constraints to be adjusted as decision makers learn in
greater detail the scope of the engineering problem. There
are many ways to attempt automation for an engineering de-
sign problems, but according to Shahriari et al. Bayesian
optimization "promises greater automation so as to increase
both product quality and human productivity" [25].

The paper first describes the design approach employed
for the optimization of a super-cavitating hydrofoils, illus-
trating the main challenges to address to maintain stable cav-
itating regimes and prove a steady-state lift force. The sec-
ond part of the paper will be dedicated to the description of
the probabilistic framework used to construct response sur-
faces describing the stability of the cavitating regime, the
lift development, the structural integrity of the hydrofoil and
the hydrofoil efficiency which represents the quantity to op-
timize. The third part of the paper describes the details of
the hydrodynamic problem and the multi-fidelity approach
adopted to mitigate the computational burden while main-
taining high accuracy in the solution of the super-cavitating
flow. Finally, the super-cavitating hydrofoil design analysis
and results are presented.

2 Hydrofoil Design
The goal of this project is to optimize the shape of hy-

drofoils specifically designed to sustain the displacement of
ultra-fast small craft conceived to operate at very high speed
(approximately 100 knots). The main idea is that higher
speeds can be reached by completely or partially lifting the
hull out of the water using hydrofoils capable to generate
vertical forces completely or partially balancing the overall
weight of the vessel. Lifting surfaces operating at speeds
in excess of approximately 50 knots experience cavitation:
the pressure on the hydrofoil suction surface drops below
the surface tension, triggering water vaporization at ambient
temperature (see [1, 2]).

The main challenge when designing ultra high-speed
hydrofoil supported vessels is to ensure a stable cavitating
regime on the supporting hydrofoils at the highest speeds
(super-cavitating regime) while maintaining adequate perfor-
mance at lower speeds, when the supporting hydrofoils op-
erate in fully wet conditions. Figure 1 presents conventional
hydrofoil shapes designed for different regimes [3].

Fig. 1: Hydrofoil shapes designed for different cavitation en-
vironments. Red curves show the cavity contours and the
blue lines show the flow streamlines [3].

The family of the super-cavitating hydrofoils analyzed
in this study adopts an unconventional 2D section shape,
specifically designed by Brizzolara [8] to ensure high hy-
drodynamic efficiency over a wide range of operating con-
ditions (sub-cavitating and super-cavitating). Conventional
super-cavitating hydrofoils feature a sharp leading edge and
a blunt trailing edge ensuring cavity detachment at very high
speeds. Their design is indeed conceived to efficiently op-
erate only when a stable vapor cavity envelops the entire
suction surface, enclosing many chords aft the trailing edge.



The shape of the Sub-Cavitating/Super-Cavitating (SBSC)
unconventional hydrofoil presented in this study features a
pointed leading edge ensuring cavity detachment at the oper-
ating conditions, and a sharp corner (face cavitator), trigger-
ing base cavitation at intermediate speeds or at high speeds
and lower angles of attack.

At very high speeds (low cavitation numbers) and higher
angles of attack the hydrofoil is fully enclosed in a vapor cav-
ity (Super-Cavitating conditions). The trailing edge of the
SBSC 2D hydrofoil has been tapered to provide a sufficient
pressure recovery (hence higher lift) when working at lower
speed (sub-cavitating conditions). As demonstrated by Briz-
zolara and Bonfiglio [9], this innovative 2D hydrofoil is able
to ensure high performance also in sub-cavitating conditions,
where conventional super-cavitating hydrofoils perform very
poorly.
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Fig. 2: Parametric model of the 2D hydrofoil section [26].
Four B-spline curves have been used to define the pressure
and the suction surfaces on the forward part as well as the
tail of the SCSB hydrofoil. These curves are generated from
a control polygon indicated by black dashed lines connect-
ing circular dots. Control points represented by green cir-
cular dots is parametrized through variables xi. Red points
represent fixed locations.

A first study aimed to shape an unconventional Sub-
Cavitating/Super-Cavitating Hydrofoil (SB-SC) was pre-
sented in [26], where the 2-D hydrofoil has been described
with a full parametric model and optimized using a differen-
tial evolution algorithm driven by hydrodynamic predictions
obtained through a potential flow method. The optimized
shape of the SB-SC hydrofoil was able to improve the lift-
to-drag ratio of about 40%, but URANS simulations showed
a consistent reduction of the cavity thickness on the hydrofoil
suction surface, possibly affecting the stability of the cavitat-
ing flow in case of small deviations with respect to the ref-
erence shape. This problem was successively addressed by
using a Risk-Adaptive Set Based Design (RASBD) approach
able to include uncertainty in the manufacturing of the 2-
D shape, identify candidate designs respecting constraints
and providing quantification of the associated super-quantile
risk [24].

The object of this paper is to develop a fully automated
design framework capable of optimizing quantities of in-
terest predicted using data-driven stochastic response sur-

faces generated from multi-fidelity simulations data. The
main novelty of the proposed framework is the introduction
of a self-learning procedure that exploits active learning al-
gorithms and automatic simulation frameworks to improve
the prediction of the response surface while simultaneously
searching for the best design candidate.

2.1 Mission Requirements and Decision Framework
In the present study our goal is to optimize the shape

of an unconventional 2-D super-cavtitating hydrofoil at con-
stant operating conditions corresponding to the maximum
speed of the hydrofoil supported SWATH vehicle patented
by Brizzolara [10]. In this mission profile, the vessel’s speed
is U = 61.67 m/s, corresponding to 120 knots, the hydro-
foil angle of attack corresponds to α = 6◦ and hydrodynamic
chord length cH = 0.66m. We assume constant thermody-
namic characteristics of water corresponding to density of
ρ = 997.3 kg/m3 and saturation pressure of pSAT = 3064.68
Pa.

When the lifting surface operates in the cavitating
regime, their hydrodynamic characteristics are determined
on the basis of the cavitation index, σ. Cavitation index is a
non-dimensional parameter defined as the ratio between the
difference of the local absolute pressure p and the saturation
pressure, and the kinetic energy per unit of volume:

σ =
p− pSAT

1
2 ρU2

∞

. (1)

The objective quantity is to maximize the Lift-to-Drag
ratio, L/D, where the lift force is expressed in terms of lift
coefficient CL = L

1/2ρcU2 and the drag force through the drag

coefficient CD = D
1/2ρcU2 . The quantity to minimize is given

by the ratio between drag and lift coefficient. While max-
imizing the hydrofoil efficiency in terms of drag-to-lift ra-
tio it is important to guarantee the delivery of specific lift
values, necessary structural characteristics and a stable flow
regime through the introduction of specific constraints. In
the present study four additional QoIs are considered and are
shown in Equation (2). The hydrofoil must produce an ap-
propriate lift force to support the displacement of the ship.
Therefore, a minimum lift value is imposed to safeguard
against sinkage, while to prevent the ship from experiencing
over-lift, a maximum lift constraint is also applied. Stability
of the cavitating regime is ensured by imposing a minimum
value to the thickness of the cavitation pocket enveloping the
suctions surface of the hydrofoil and measured at 10% of the
chord length, t10%

c . Finally, to certify that the profile has ad-
equate strength to undergo the high pressure loads necessary
for developing high values of lift a minimum value to the
profile inertia modulus, w, is imposed.

The most unique aspect of this decision framework is
that decisions will be automatically taken within the design
loop without human intervention. In fact, this framework has
been developed to automatically train the surrogate models,



search the models for new designs, balance improving the
design and improving the surrogate models, and initiate, run
and post-process numerical simulations. The design problem
is formally described as follow:

maximize
xxx∈X⊂R15

CL

CD
(x) (2)

subject to CL(x)≥ 0.3
CL(x)≤ 0.4

t10%
c (x)≥ 0.004m

w(x)≥ 7.5×10−6m3

Where x represents the design vector defining the shape of
the hydrofoil through a parametric model specifically con-
ceived to describe the shape of the unconventional super-
cavitating hydrofoil by means of 15 parameters.

2.2 Parametric Model

The foil shape is parametrically defined by a set of 4
B-Splines curves joining at specific functional points where
C0, C1, C2 conditions are imposed (see Figure 2). Control
points on the hydrofoil face have a direct impact on lift and
drag forces while points on the suction side directly affect
the cavity thickness while maintaining sufficient structural
characteristics. Four control points (mi, i= 1, 2, 3, 4) are
employed for the definition of the hydrofoil pressure surface
and allow for a double curvature profile. This generally leads
to higher lift force while reducing flow separation at higher
angles of attack. A fifth point (m5) controls the vertical po-
sition of the face cavitator, regulating the cavity detachment
position at the trailing edge. The shape of the suction surface
is controlled by 5 points. Point m6, regulates the thickness of
the hydrofoil at the leading edge safeguarding against flutter-
ing dynamic instability. At specific operating conditions, the
shape of the vapor cavity depends on the curvature of the hy-
drofoil back controlled through the relative position of points
m7 and m8. The tail of the hydrofoil is tapered by points m9
and m10 position which is fixed in the chord-wise direction
and vertically depends on point m8. Lastly, red points in Fig-
ure 2 represent points having fixed position and not included
in the parametric description. The non-dimensional geome-
try of the 2D section is kept constant along the span of the
hydrofoil.

Table 1 presents minima and maxima for each compo-
nent of the design vector (xmin

i ≤ xi ≤ xmax
i for i = 1, ...,15)

as well as values selected for the benchmark hydrofoil de-
scribed in Figure 3.

Table 1: Benchmark design and bounds of design variables.

Variable Benchmark xmin
i xmax

i

x1 7.764E-2 7.835E-2 8.806E-2

x2 2.756E-1 2.471E-1 2.777E-1

x3 3.581E-1 4.003E-1 4.499E-1

x4 5.438E-1 5.274E-1 5.927E-1

x5 2.58E-3 3.803E-3 4.274E-3

x6 7.23E-3 9.3E-3 1.045E-2

x7 1.767E-2 1.386E-2 1.558E-2

x8 2.297E-2 8.803E-3 9.893E-3

x9 5.3E-4 2.563E-3 2.881E-3

x10 1.981E-1 1.774E-1 1.994E-1

x11 3.946E-1 3.693E-1 4.151E-1

x12 5.19E-1 5.266E-1 5.918E-1

x13 3.161E-2 2.817E-2 3.166E-2

x14 6.041E-1 5.658E-2 6.359E-2

x15 7.299E-2 6.975E-2 7.839E-2
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Fig. 3: Benchmark Hydrofoil Shape. The 3D hydrofoil fea-
tures a sharp leading edge ensuring cavity detachment and
a sharp edge on the pressure surface that ensures that the
hydrofoil tail is enveloped in a stable cavity pocket at low
cavitation index. The pressure surface presents a double cur-
vature profile meant to increase the lift generated in super-
cavitating conditions.

All quantities of interest in Equation (2) are com-
puted by Unsteady Reynolds Averaged Navier-Stokes super-
cavitating simulations developed by [4]. Additionally, tor the
initial training dataset, low-fidelity data is generated by solv-
ing a two dimensional flow around super-cavitating hydro-
foils using a potential flow model developed by [26]. These
two numerical models provide two data sources character-
ized by different fidelity that are blended together to speed



up the formulation of stochastic response surfaces.

3 Performance assessment through multi-fidelity pre-
dictions
The proposed multi-fidelity simulation framework relies

on two different fidelity information sources describing hy-
drofoil performance in terms of transient-free lift and drag
coefficients as well as cavity thickness at specific hydro-
foil locations. These metrics are provided by a low-fidelity
Boundary Element Method (BEM) formulated around the as-
sumption of potential flow and a URANS simulation frame-
work specifically tailored to this particular application. The
main advantages of these framework are the simple interface
with external tools for geometry generation and the minimal
requirement of input data which reduce the simulation set-up
burden, provide a parametric mesh for any hydrofoil shape,
and effectively speed up the systematic runs of the numeri-
cal solver while ensuring consistency and robustness of the
results. Given the same computational resources, the CPU
time required for a low-fidelity prediction is about 600 times
faster than the time required to obtain a high-fidelity predic-
tion.

3.1 Low-fidelity CFD
The low-fidelity CFD solver is a BEM potential flow

simulator accurately described by Vernengo et al. [27]. Po-
tential flow implies irrotational and inviscid flow. More-
over incompressibility is assumed. With these premises, the
Laplace equation for the scalar velocity potential, ϕ, is shown
in Equation 3. For pressure, p, the Bernoulli equation for un-
steady flow is used and is shown in Equation 4. The Laplace
and Bernoulli equations replace the continuity and momen-
tum equations as the governing equations for fluid motion.

∇
2
ϕ(x) = 0 (3)

p =−ρ[
∂ϕ

∂t
+0.5|∇ϕ|2 +gz]+ f (4)

To solve the system of equations in cavitating conditions,
two boundary conditions are applied to the problem. The
first uses the bubble thickness tc to define the cavity surface
as a flow streamline. This boundary condition is expressed
in Equation 5 where n is the local boundary normal. The
second boundary condition is shown in Equation 6 and en-
forces saturation pressure to the fluid on the cavity pocket
surface. These governing equations and boundary conditions
were used in an iterative process to converge on the hydrody-
namic forces. Numerical integration and extrapolation tech-
niques were applied to calculate the forces on all faces of the
hydrofoil. Finally, viscous effects are considered through a
flat plate approximations for local frictional coefficients pre-
dictions (see [27]).

D
Dt

(n− tc(x)) = 0 (5)

p = pvapor (6)

3.2 High-fidelity CFD
Possible cavity instabilities leading to harmful lift un-

steadiness are addressed by solving a more realistic fluid dy-
namic problem, governed by the continuity and momentum
equations, solved in a Cartesian reference frame for the pres-
sure and velocity unknowns:

∂(ρui)

∂xi
= 0,

∂ui

∂t
+

∂(uiu j)

∂x j
=

∂

∂x j
(ν

∂ui

∂x j
)− 1

ρ

∂p
∂xi

+gi.

(7)

The solution of this problem allows designers to consider
viscous effects through a more rigorous approach based on
the solution of the turbulent boundary layer flow. The nu-
merical solution of this system of PDEs is complicated by
the high Reynolds number flow involved in our application:
Re = Uc

ν
≈ 5e6. This requires a very high resolution in both

temporal and spatial discretization, significantly increasing
the computational complexity of the problem. The solution
of the turbulent flow around the hydrofoil is achieved apply-
ing a Reynolds averaging technique to the N-S equations.
More specifically, we employed a k-ε turbulence model to
provide the closure equations required for the solution of the
Reynolds stresses [19].

Cavitation occurs when the pressure field drops below
the vapor pressure value, causing water vaporization at con-
stant temperature. Unsteady vaporization and condensation
of the fluid interacts with the turbulent boundary layer in
a strongly time varying flow pattern. The individual bub-
ble dynamics is not captured by the solver, but volumes of
fluid intersected by cavitation bubbles are treated as homo-
geneous fluid having a variable density and viscosity, which
depends on the fraction of liquid volume occupied by va-
por bubbles. The solution of unsteady RANS equations is
therefore complicated by the presence of a fluid interface due
to the simultaneous presence of two different water phases:
liquid and vapor. Additional equations are required for the
solution of the non-linear fluid dynamic problem. The de-
termination of the interface between vapor and liquid phase
has been obtained using the Volume of Fluid surface captur-
ing technique [14]. This method relies on the definition of
a scalar function γ describing the balance of two different
phases within each control volume. In such way, each cell is
filled with water at two different phases: liquid L and vapor
V , whose characteristics are defined by means of the scalar
function γ:

ρ = (1− γ)ρL + γρV , ν = (1− γ)νL + γνV . (8)

The VOF function γ is numerically calculated in cavitating
flow conditions by solving the following transport equation:

∂γ

∂t
+∇ � (γU)+∇ � [γ(1− γ)Ur] =

ṁ
ρV

. (9)



In the context of the present study we employed the cavita-
tion model proposed by Kunz et al. [18], describing the mass
transfer term through the following equation:

ṁ = ṁ+− ṁ−. (10)

Here the vaporization term ṁ+ is proportional to the liquid
volume fraction in the amount by which the pressure is be-
low the vapor pressure while the transformation of vapor to
liquid, ṁ−, is a polynomial function of the vapor volume
fraction γ:

ṁ+ =
CV ρV γmin [0, p− pSAT ]( 1

2 ρLU2
∞

)
t∞

, ṁ− =
CCρV γ2 (1− γ)

t∞
.

(11)
Standard values of CC = 1000 and CV = 1000 have been
used.

The numerical solution of the flow governing equations
is provided using the open source libraries of OpenFOAM
based on a finite volume approach with a collocated arrange-
ment of variables (see [21]). Forces are numerically cal-
culated integrating the pressure distribution and the shear
stresses on the hydrofoil surface.

4 Modeling: Gaussian Process Regression
Gaussian process regression is an inductive, non-

parametric method of modeling unknown functions from a
finite set of training points for the purpose of making predic-
tions. The authoritative reference for GP is Gaussian Pro-
cesses for Machine Learning by C. E. Rasmussen and C. K.
I. Williams [23].

To perform a design by optimization problem of the
super-cavitating hydrofoil parametrized as shown in section
2.2, we consider a dataset of n observation, D , of inputs and
corresponding outputs. Here, independent inputs are differ-
ent design vectors xi ∈RD (Where D=15) and dependent out-
put are scalar quantities of interest yi, obtained through nu-
merical solution of the hydrodynamic problem (for instance
D/L, CL, etc.).

D = {(xi,yi)|i = 1, ...,n} (12)

The input design vectors are collected to form a D× n
design matrix, X, while output scalars are collected to form
a output vector, y, of length n. The underlying assumption
when building a surrogate model is that there exists an un-
known function that relates the input vector and the output
value, and this function can be learned with quantified uncer-
tainty even in the presence of noisy data. This relationship is
shown in Equation 13.

yi = f (xi)+ ε for i = 1,2, ...,n (13)

Here, we model the unknown function using Gaussian Pro-
cess (GP) regression. GP regression assigns an a priori, also

referred to as prior, probability to every function within the
design space. After training data D is considered, the prob-
ability of each function conditioned on the training data can
be determined. This is the posterior distribution of func-
tions. However, the set of possible functions within the de-
sign space is infinite and each needs to have its probability
quantified. To solve this hurdle, the function distribution is
assumed to be a specific stochastic process called a Gaussian
process. A GP is a generalization of the joint Gaussian prob-
ability distribution. Being f (x) a GP, we characterize it by
means of its expected value, m(x), and covariance function,
(kernel) k(x,x′). The implication of this is that at any loca-
tion xi, f (xi) is a random variable with a normal distribution,
and for any finite set of locations x1,x2, ...,xm, the random
variables f (x1), f (x2), f (xm) will have a joint Gaussian dis-
tribution.

f (x)∼N (m(x),k(x,x′)) (14)

In Equation 13, ε is the noise in the observation data and is
assumed to be an independent, identically distributed Gaus-
sian distribution with zero mean and variance σ2.

ε∼N (0, σ
2) (15)

4.1 Prediction
GP regression is initialized by selecting appropriate

mean and covariance functions for the prior function space.
For convenience, the mean function will be set equal to zero.
For the covariance function, any kernel that produces a pos-
itive semidefinite covariance matrix ( of size n×n ) is valid.
The mean and covariance function, and the assumed error
distribution, are combined to form the GP prior for the target
values, as shown in Equation 16.

y∼N (0,K +σ
2I) (16)

The GP prior over all possible functions is then conditioned
on the training dataset to produce the posterior.

Since a GP prior is combined with Gaussian noise, the
posterior is also a GP that can be analytically determined.
In such a way we can infer predictions at the test point x?.
The joint distribution of the training data and the test data is
shown in Equation 17.

[
y

f (x?)

]
∼N

(
0,
[

K +σ2I K(X ,x?)
K(x?,X) K(x?,x?)

])
(17)

The expanded covariance matrix is a composed of blocks:
(1) the original covariance matrix of the training data, K,
which is size n× n, (2) two covariance vectors between the
training data inputs and the testing data inputs, K(X ,x?) and
K(x?,X), both of which are length n, and (3) the kernel func-
tion evaluated at the test point, K(x?,x?), which is a scalar.



To simplify the notation, the vector K(X ,x?) will be writ-
ten as k?, the vector K(x?,X) as kT

? , the scalar K(x?,x?) as
k?, and the unknown random function f (x?) as f?. The pre-
dictive distribution is conditioned on x? as well as X and y,
which is a straightforward operation for Gaussian processes.
Therefore, the GP fundamental predictive equation is shown
in Equation 18 and is defined by a mean and variance func-
tion which are shown in Equations 19, and 20.

f?|D,x? ∼N (E[ f?],V( f?)) (18)

E[ f?] = kT
? (K +σ

2I)−1y (19)

V( f?) = k?−kT
? (K +σ

2I)−1k? (20)

The predicted quantity of interest value with input x? is found
by evaluating Equation 19 and the variance at the test point
is found by evaluating Equation 20.

4.2 Covariance Functions
The critical components when training GPs is the

choice of the specific form of the covariance function and
the vector of hyperparameters that defines it. Covariance
function must be produce a covariance matrix that is positive
semidefinite and symmetric. The choice of specific kernel
functions is based on the specific knowledge that we have of
the training data. Frequently used functions include Radial
Basis Function (RBF), Rational Quadratic, Periodic, Linear
and Constant kernel. The kernel used in this paper is called
the automatic relevance determination (ARD) function and
is the product of the RBFs.

The Radial Basis Function, also known as the Squared
Exponential or Gaussian kernel, is the most ubiquitous
kernel. This is because RBF kernels have a number of
convenient properties. First, RBF kernels only have two hy-
perparameters, the signal variance, σ2, and the lengthscale,
l. The signal variance, also called the output variance, is
a hyperparameter common to all kernels and magnifies (if
greater than one) or reduces (if less than one) the correlation
between inputs (see [11]).

kRBF(x,x′) = σ
2exp

(
− (x− x′)2

2l2

)
(21)

Another kernel property that is used is the fact that the
product of two valid kernels is also a valid kernel. To prove
this, let f1(x) and f2(x) be two independent GPs. The prod-
uct of two GPs is another GP fproduct(x) = f1(x)× f2(x) and
this GP has the kernel kproduct(x,x′) = k1(x,x′)× k2(x,x′).
Therefore, the GP fproduct(x) has a valid kernel which is
composed by multiplying two other kernels. Therefore,
there is no end to the number of or depth of the kernels
available for modeling.

The ARD kernel used for this analysis is the product
of RBF kernels. This common training method for multi-
dimensional problems uses an RBF kernel for each design

input and multiplies all these together to compose a single
kernel and subsequent covariance matrix. The ARD kernel
is shown in Equation 22.

kARD(x,x′) =
D

∏
i=1

kRBF(xi,x′i) (22)

ARD gets its name from the lengthscale hyperparame-
ters, li which automatically determine how important each
feature is with regards to affecting change on the quantity
of interest. When the lengthscales are relatively large, then
the exponent approaches zero and that feature become irrel-
evant compared with the other design features. Often, the
learned hyperparameters are rewritten as λi =

1
li

so that irrel-
evant features will have hyperparameters near zero.

4.3 Optimizing Hyperparameters
Different predictive models can be obtained using dif-

ferent combinations of hyperparameters, θθθ. Therefore, by
varying hyperparameters the model can be improved. The
metric used to compare predictive models is the Negative
Log Marginal Likelihood (NLML), also called the evidence.
Integrating the product of the likelihood and the prior over
all prior functions, f, yields the Marginal Likelihood, shown
in Equation 23. Here, a new notation is introduced to show
which variables are dependent on the hyperparameters.

p(y|X ,θθθ) =
∫

p(y|f,X ,θθθ)p(f|X ,θθθ)df (23)

The prior is a GP, f|X ,θθθ∼N (0,Kθ). The likelihood is also a
GP, y|f,X ,θθθ∼N (f,σ2I). Two Gaussians multiplied together
yields a new Gaussian and the Marginal Likelihood can be
determined. Finally, by taking the logarithmic of both sides
of the Marginal Likelihood equation and multiplying through
by negative one Equation 24 is produced, which is used to
calculate the NLML =−log(p(y|X ,θθθ)).

NLML =
1
2

yT (Kθ +σ
2I)−1y+

1
2

log|Kθ +σ
2I|+ n

2
log(2π)

(24)
The hyperparameter space is searched for hyperparameters
that minimize the NLML, or, conversely, to maximize the
Marginal Likelihood.

θθθ
? = argmin

θθθ

NLML(θθθ) (25)

For this paper, the search for hyperparameters was conducted
using a quasi-Newton, gradient descent optimization algo-
rithm. This method essentially goes through the following
optimization loop: (1) with the current (or initial) hyperpa-
rameters determine NLML using Equation 24, (2) calculate



the direction of steepest descent of the NLML using Equa-
tion ??, (3) take step in this direction in the hyperparameter
space, and (4) check for convergence. This method depends
on the step-size, the initial value of the hyperparameters, and
the convergence criteria. While this optimization technique
doesn’t ensure that the global optimum will be found, the
method is well understood, efficient, and can be compared
against results found with different initial hyperparameters
and random restarts.

4.4 Multi-Fidelity Regression
The flexibility of Gaussian process regression allows for

different fidelity levels for the training data. A multi-fidelity
dataset may be the result of different types of physics-based
computer simulations, varied mesh granularities for the sim-
ulations, or combining simulation data with physical ex-
periment results. In general, it is rightly assumed that fi-
delity level is inversely proportional to "cost." Cost can
be measured in computational, temporal, or monetary re-
sources. Overall, the goal is to make high accuracy pre-
dictions while training a model with multiple fidelity levels
of data. Cheaper low-fidelity data is used to make a bet-
ter model than that produced solely with expensive high fi-
delity data. In this paper we consider training data obtained
by prediction models characterized by two different fidelity
levels. The multi-fidelity training dataset consists of high-
fidelity with DH and low-fidelity data DL.

yH = fH(xH)+ εH (26)
yL = fL(xL)+ εL (27)

Equations (28) and (29) show the zero-mean Gaussian
processes that are used. These Gaussian processes are inde-
pendent of each other, fL ⊥ δH(x).

fL(x)∼ GP (0,kL(x,x′;θθθL)) (28)
δH(x)∼ GP (0,kH(x,x′;θθθH)) (29)

Equation (30) shows the assumed function distribution re-
lationships in terms of the independent, zero-mean GPs
defined above. These model relationships were used by
Kennedy and O’Hagan [17], Bonfiglio et al. [6], [7], and
Perdikaris and Karniadakis [22]. For these relationship, a
regression scaling parameter, ρ, is also introduced.

fH(x) = ρ fL(x)+δH(x) (30)

The high-fidelity input/output equation, Equations 27, is
combined with Equation 30 to produce Equation 31.

yH = ρ fL(x)+δH(x)+ εH (31)

Therefore, the joint distribution with both levels of data is
shown in Equation 32, where yT = [yT

L yT
H ].

yyy =
[

yyyL
yyyH

]
∼N

([
000
000

]
,

[
KKKLL KKKLH

KKKHH

])
(32)

Where the blocks within the matrix described Equation 32
are defined as:

KKKLL = kL(xxxL,xxx′L;θL)+σ
2
εL

III

KKKLH = ρkL(xxxL,xxxH ;θL)

KKKHH = ρ
2kL(xxxH ,xxx′H ;θL)+ kH(xxxH ,xxx′H ;θH)+σ

2
εH

III

(33)

Let Km f be the size (nL +nH)× (nL +nH) multi-fidelity
block covariance matrix of y. Each diagonal block of the
covariance matrix is used to model data from a single fidelity
data class. The non-diagonal blocks are used for modeling
correlations between classes of data. The optimum set of
hyperparameters and model parameters (see Equation (34)),
ΘΘΘ, are learned using the training data set.

ΘΘΘ = [θθθL,θθθH ,ρ,σ
2
L,σ

2
H ] (34)

The NLML, predicted function value, and predictive vari-
ance equations now use the block covariance matrix, Km f ,
and are shown below.

E[ f?] = kT
? K−1

m f y (35)

V( f?) = k?−kT
? K−1

m f k? (36)

ΘΘΘ
? = argmin

ΘΘΘ

NLML(ΘΘΘ)

:=
1
2

yT K−1
m f (ΘΘΘ)y+

1
2

log|Km f (ΘΘΘ)|+ n
2

log(2π) (37)

5 Optimizing: Bayesian Optimization
Once GP surrogate models for each quantity of inter-

est considered for the design of the super-cavitating hydro-
foil are obtained, we aim to efficiently search the design
space in order to discover optimal candidate designs charac-
terized by maximum hydrodynamic efficiency and respect-
ing mission constraints. Global optimization is often com-
putationally expensive requiring many function evaluations.
The goal is to use the predictive model instead of physics-
based solver to explore the design space. A potent tool for
exploring the design space and searching for the global min-
imum while observing a computational budget is Bayesian
optimization [20]. This block-box optimizer uses the predic-
tive response surface, in terms of posterior mean and uncer-
tainty, and an acquisition function to find a minimum within
the design space. Instead of minimizing the quantity of in-
terest directly, the acquisition function, also referred to as the



utility function, is maximized (or minimized, based on util-
ity function). There are a number of available acquisition
functions, but the acquisition function used for the analysis
described in this paper is a variation of the Expected Im-
provement (EI) acquisition function called the Constrained
Expected Improvement (CEI) acquisition function. The EI
acquisition function balances exploring and exploiting the re-
sponse surface [16]. It explores the model by giving credit to
areas within the design space that have high uncertainty. Si-
multaneously, it exploits the model by giving credit to areas
within the design space that have desirable quantity of inter-
est values. Section 5.1 gives the theory for the general EI
utility without constraints and Section 5.2 explains how the
EI utility function can be used when inequality constraints
are present [12].

5.1 Expected Improvement Acquisition Function
As stated above the goal of Bayesian optimization with

an EI acquisition function is to search the predictive model
for the global minimum and for areas within the model with
high uncertainty. The engineering design problem is to min-
imized the objective value, as shown in Equation 38, but BO
will instead search for a new design that maximizes the util-
ity function, as shown in Equation 39

x? = argmin
xxx

f?(x) (38)

xn+1 = argmax
xxx

αEI(x) (39)

To develop the EI utility function, first the Improvement
function is defined in Equation 40. Since the prediction from
the surrogate model is a random variable, the Improvement
function is also a random variable. Therefore, taking the
expected value of the Improvement function yields the Ex-
pected Improvement acquisition function. Let x4 be the de-
sign from the current dataset with the best observed quantity
of interest, referred to as the "best" design, and x+ be the
candidate design being tested.

I(x+) = max(0 , f (x4)− f?(x+)) (40)

αEI(x+) = E[I(x+)] (41)

A closed form of Equation 41 was developed by Jones et
al. [16] and is shown in Equation 42. In Equation 42, φ is the
standard Gaussian probability density function and Φ is the
standard Gaussian cumulative distribution function. Also, let
Z f be the quotient of the difference between the mean pre-
dicted value at x+ and the observed "best" value and the vari-
ance at the predicted value. Z f is defined in Equation 43.

αEI(x+) = Φ(Z f )
(
E[ f?(x+)]− f (x4)

)
+φ(Z f )V[ f?(x+)]

(42)

Z f = Z f (x+) =
E[ f?(x+)]− f (x4)

V[ f?(x+)]
(43)

In Equation 42 note the two components that are combined
to form the EI utility function. The first term gives credit for
improving upon the best design: exploitation term. The sec-
ond term gives credit where there is high uncertainty. At first
this may seem odd, but this is the exploration term. The ex-
ploration component gives credit to regions which need more
data to improve the model.
To explore the tradespace using BO, the design space is sam-
pled, the EI utility function and gradient are calculated, and
the design follows the path of greatest ascent until a maxi-
mum is reached. In each iteration, the maximum EI reached
for each restart is stored, the maximums are compared, and
the design with the greatest EI is the next design simulated
with the physics-based solver. This new input/output pair
is added to the training dataset and the model is re-trained.
BO can be considered a "greedy" optimization methodology,
since with each iteration either the "best" design or the model
is improved.

5.2 Constrained Expected Improvement Acquisition
Function

When constraints are imposed upon the design selection,
the original EI acquisition function will most likely nominate
infeasible designs. Therefore the probability of satisfying all
the constraints must be factored into the BO EI methodol-
ogy. Let ck be constraint k and assume all constraints are of
the form ck ≥ 0. Constraints not originally expressed in this
manner can be mathematically rewritten into this form, as
shown below. The EI acquisition function value found using
the predictive model for the quantity of interest is then ad-
justed based on the constraint surrogate model values. How-
ever, the constraint models provides mean and variance func-
tion values, just as the object regression model. Therefore,
there will never be certainty whether a design is feasible or
infeasible using the predictive models, but rather a proba-
bility of satisfy all the constraints. These probabilities are
multiplied with the EI acquisition function defined in 42 to
produce the Constrained Expected Improvement (CEI) ac-
quisition function. The probabilities are able to be simply
multiplied together because the models, and therefore the
probabilities, are assumed to be independent.

αCEI(x+) = αEI(x+)
K

∏
k=1

Pr
(
ck(x+)≥ 0

)
(44)

There is now a Zk value for each constraint k, as shown in
Equation 46, in addition to the Z f defined in 43. Finally,
while the unconstrained EI function defined the "best" de-
sign as the design with the minimum engineering objective
value, x4, with the inclusion of constraints in design prob-
lem, the "best" design is redefined as the observed design
with the minimum engineering objective value that satisfies
all constraints. While they are defined differently, the same



notation will be used for the "best" observed design. The
Constrained Expected Improvement acquisition function is
defined in Equation 45.

αCEI(x+) = αEI(x+)
K

∏
k=1

Φ(Zk) (45)

Zk = Zk(x+) =
E[ck(x+)]−0
V[ck(x+)]

=
E[ck(x+)]
V[ck(x+)]

(46)

6 Super- Cavitating Hydrofoil Design Analysis
The multi-fidelity framework for super-cavitating hy-

drofoils performance predictions was leveraged to generate
a multi-fidelity training data set used to formulate GP regres-
sion models. In particular, the design space was sampled
using a Latin Hypercube Sampling (LHS) algorithm (see
[15]) identifying 442 design suitable for low-fidelity predic-
tions and 111 hydrofoils to be evaluated using high-fidelity
URANS simulations. From the initial dataset, a benchmark
design was established. The benchmark design was the de-
sign with the greatest Lift-Drag ratio and satisfied all the con-
straints. The benchmark design has a Lift-Drag ratio of 10.76
and is shown in Figure 4 in terms of vapor content (Figure 4a)
and pressure (Figure 4b) contours.

(a) Vapor Content of benchmark hydrofoil

(b) Pressure Distribution of benchmark hydrofoil

Fig. 4: Benchmark hydrofoil pressure and vapor distributions

6.1 Automatic Design Loop
The 2D super-cavitation hydrofoil automatic design

loop is shown in Figure 13, providing an overview of the au-
tomatic design process, including the input and output files
for each step and a short description. We initiated the design
loop by training surrogate models using the multi-fidelity
training dataset. Training the surrogate models requires four
inputs: 1) a low-fidelity design matrix, XL, 2) a high-fidelity
design matrix, XH , 3) a low-fidelity simulation results ma-
trix, yL, and 4) a high-fidelity simulation results matrix, yH .
As described in Section 4, training a model means identify-
ing the set of hyperparameters that minimizes the negative

log-marginal likelihood of the model. Once the optimum hy-
perparameters are determined, the surrogate model has been
found for that QoI.

Using the most recently trained surrogate models, the
design space is explored for new candidate designs using the
Bayesian Optimization method described in section 5. Fig-
ure 13 shows the design loop with the Bayesian optimization
search method. When initializing the automatic design loop,
the human designer must choose which search paradigm to
utilize. Regardless of the search method, the top candidate is
saved and represents the input into the Simulation Environ-
ment.

In this study, the simulation environment is the high-
fidelity URANS solver (low-fidelity solver was only used to
generate part of the initial training set). The simulation en-
vironment has two inputs: 1) the candidate design vector,
x, and 2) an operating conditions vector, v. The output for
the simulation environment are the time-averaged QoIs over
steady-state time intervals.
In the first module, Geometry Setup, the inputs x and v are
used to generate the input files for meshing engine (GMSH,
see [13]), which are a 2D geometry data file (geometry.dat)
and the mesh instructions. Next, the mesh instructions, 2D
geometry, and operating condition vector are input into the
Mesh Generation module. This module will produce a mesh
file (geometry.msh) compatible with the CFD solver (Open-
FOAM, see [21]). Next, the CFD Interface module will use
the mesh file and the operating condition vector to automat-
ically set up the initial and boundary conditions, the fluid
characteristics, the flow model, and the numerical solvers
and schemes necessary for the flow prediction. These output
will be compiled into a single data file (inputCFD.dat). The
inputCFD.dat file is the input into the CFD Solution module
which will calculate the CFD solution, storing each QoI data
at each time step, by utilizing OpenFOAM libraries. The out-
puts from this module are time-step folders containing field
variables and integral quantities, such as forces (force.dat
and forceCoeffs.dat). Finally, the QoI Prediction module is
a post-processing tool that takes the CFD Solution outputs
and produces the QoIs for the design vector, x, under the
operating conditions, v. More details on the simulation envi-
ronment such as mesh generation strategy and solver settings
can be found in [5] and [4].

After each iteration, the "best" design is compared with
the simulation environment output. If the newest design that
was simulated has in improved Lift-to-Drag ratio and satis-
fies all the constraint, it replaces the "best" design and is used
in future iterations.



(a) Vapor Content Contours

(b) Pressure Distribution Contours

Fig. 5: Best hydrofoil candidate: Iteration 4-5

Table 2: Results from Phase 1

Iteration D/L L/D PercentImprovement

0 0.092902789 10.76 0.00%
...

...
...

...

4 0.091376341 10.94 1.67%
...

...
...

...

6 0.090972396 10.99 2.12%

7 0.088483169 11.30 4.99%
...

...
...

...

48 0.088079071 11.35 5.48%

6.2 Results
The automatic design loop was implemented in two

phases: Phase 1 is a coarse design search and Phase 2 is a
fine design search.

Phase 1 Phase 1 started with the initial dataset and trained
surrogate models, and iterated through the automatic design
loop 100 times. In each iteration, the number of Bayesian
optimization restarts was 1000. The number of BO restarts
is the number of random design points that are used to ex-
plore and search the surrogate models. A higher number of
BO restarts indicates a more refined search of the model. In
Phase 1, the number of BO restarts is moderate, since the
goal of Phase 1 is to improve the models and make obvious
improvements upon the benchmark design. The results from
Phase 1 are shown in Table 2.

Phase 2 Phase 2 started with the final dataset and trained
surrogate models from Phase 1, and iterated through the
design loop five times. In each iteration, the number of
Bayesian optimization restarts was 1,000,000. The number
of BO restarts in Phase 2 is 99900% greater than the Phase 1
value. This is consistent with the goal of Phase 2, which is to
use the improved models created in Phase 1 to finely search
the models for global improvements of the hydrofoil design.

(a) Vapor Content Contours

(b) Pressure Distribution Contours

Fig. 6: Best hydrofoil candidate: Iteration 6

(a) Vapor Content Contours

(b) Pressure Distribution Contours

Fig. 7: Best hydrofoil candidate: Iteration 7-47

(a) Vapor Content Contours

(b) Pressure Distribution Contours

Fig. 8: Best hydrofoil candidate: Iteration 48-100

The results from Phase 2 are shown in Table 3.



Table 3: Results from Phase 2

Iteration D/L L/D PercentImprovement

0 0.092902789 10.76 0.00%
...

...
...

...

100 0.088079071 11.35 5.48%

101 0.085346869 11.717 8.85%

102 0.085283969 11.726 8.93%

103 0.085283969 11.726 8.93%

104 0.085283969 11.726 8.93%

105 0.085283969 11.726 8.93%

(a) Vapor Content Contours

(b) Pressure Distribution Contours

Fig. 9: Best hydrofoil candidate: Iteration 101

(a) Vapor Content Contours

(b) Pressure Distribution Contours

Fig. 10: Best hydrofoil candidate: Iteration 102-105

Figures 5 - 10 presents vapor content and pressure coef-
ficient contours for best-so-far hydrofoils obtained during the
automatic optimization loop. During the first iterations the
thickness of the hydrofoil close to the leading edge is gradu-
ally reduced, as evident from comparing Figure 5, 6, and 7.
Figure 6 demonstrates the probabilistic nature of the design
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Fig. 11: Comparison between benchmark (black dashed line)
and optimal design (red solid line). The optimal design has
been identified after 105 iterations of the Bayesian Optimiza-
tion loop presented in the present study.

framework: even though one constrain acts on the thickness
of the cavitation pocket, the best-so-far design identified us-
ing surrogate models do not properly predict the quantity of
interest corresponding to the cavity thickness.

Figure 11 presents a comparison between the shape of
the benchmark hydrofoil, best performing design among the
initial training dataset and the candidate design, obtained af-
ter 105 iteration of the Bayesian Optimization loop previ-
ously described. The shape of the optimal hydrofoil presents
a thinner leading edge that has the effect of reducing the drag
on the pressure surface while producing high pressure over
an extensive region on the hydrofoil face downstream the
leading edge. The reduced thickness of the hydrofoil close to
the leading edge causes a reduction of the inertia of the 2-D
section, which is recovered on the hydrofoil suction surface,
close to the trailing edge. In design conditions, the hydrofoil
suction surface is fully enveloped in a vapor cavity, hence
its shape does not significantly affect the hydrodynamic effi-
ciency of the hydrofoil.

Figure 12 presents quantitative results in terms of hy-
drodynamic efficiency improvement achieved at different it-
eration of the automatic loop presented in this study. Blue
solid line shows the optimization path followed during phase
1, in which we used a coarse search with the number of BO
restarts has been set to 1,000. Red solid line presents the op-
timization path followed during phase 2, in which we used a
finer search with the number of BO restarts set to 1,000,0000.
As evident in figure 12, phase 1 allowed an efficiency in-
crease larger than 5% with respect to the best hydrofoils of
the training data set, while a finer search allowed to fur-
ther increase the accuracy of approximately 3%. The trade-
off between exploration and exploitation is clearly evident
in figure 12, where regions of constant hydrodynamic ef-
ficiency improvements (horizontal segments) correspond to
exploration iterations in which the BO algorithm select new
designs with the goal of reducing prediction uncertainty. The
vertical paths correspond to exploitation iterations in which
the learning algorithm requires a URANS simulation after
identifying a promising region of the design space.
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Fig. 12: Phases 1 and 2: Percent Improvement

7 Conclusion
This paper demonstrates the effectiveness of using an

automated engineering design loop which includes machine
learning techniques and physics-based solvers to improve
the design of a super-cavitating hydrofoil. The machine
learning techniques applied to the hydrofoil design chal-
lenge included Gaussian process regression, multi-fidelity
regression, and Bayesian optimization.

A new hydrofoil design was discovered that improved
the Lift-to-Drag ratio by more than 8.8%. This was done
automatically, without spending human resources or in-
troducing potential human bias to the final solution. This
analysis was accomplished in 105 iterations, with more
than 5.1 million designs being explored in the simulation
environment. The final design results are shown in Figure
11.
Since this field of research is promising and continuing to
grow, there are plenty areas for future study. Specific to
the topics discussed in this these, the following concepts
are worthy of future study: (1) include an optimized ker-
nel search within an automatic design loop, (2) incorporate
multi-disciplinary optimization in an automatic design loop,
and (3) compare the results of automatic design loops with
different modeling and optimization methodologies.
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