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A single-strut hydrofoil boat is a craft with two inline struts

protruding from the ventral hull along the keel of the boat

which have hydrofoil wings at their lower ends. Lateral sta-

bility of such a craft is conventionally achieved by turning

of the front strut, with the rudder-like control input on the

boat inducing a rolling and yawing moment that allows for

the boat to be controlled like a bicycle. The Cedarville Uni-

versity Solar Boat team has been researching advancements

to this single-strut hydrofoil boat design with the addition

of differential front- and rear-strut rudder control, vectored

thrust, and independently actuated side wings. Using air-

craft flight dynamics principles and state-space control the-

ory, a model of the Cedarville University solar boat was

developed in order to achieve improved handling through

tuned, automatic feedback-control of the flight control sur-

faces.

Nomenclature
CLα Lift coefficient slope deg-1

CL0
Reference lift coefficient -

CL Lift coefficient -

In Identity matrix of size n -

Ixx Moment of inertia about x-axis kg·m2

Ixz Product of inertia about xz-plane kg·m2

Iyy Moment of inertia about y-axis kg·m2

Izz Moment of inertia about z-axis kg·m2

K Empirical factor -

L Roll axis moment N·m
M Pitch axis moment N·m
N Yaw axis moment N·m
Q Dynamic pressure Pa

Ss f Front strut submerged area m2

Ssr Rear strut submerged area m2

Sw Wing total surface area m2

V Longitudinal velocity m·s-1

X Longitudinal body force N

Y Lateral body force N

Z Vertical body force N

bw Wingspan m

dxs f Longitudinal dist. COM to front strut COP m

dxsr Longitudinal dist. COM to rear strut COP m

dzfly Vertical distance COM to ideal waterline m

dzs Vertical distance COM to strut end m

m Boat total mass kg

p Body frame roll rate deg·s-1

q Body frame pitch rate deg·s-1

r Body frame yaw rate deg·s-1

u Longitudinal velocity in body frame m·s-1

v Lateral velocity in body frame m·s-1

w Vertical velocity in body frame m·s-1

ȳ Spanwise location of wing centroid m

y1 Distance to aileron inboard edge m

y2 Distance to aileron outboard edge m

α Angle of attack deg

α0 Zero-lift axis deg

γ f Front strut steering angle deg

γr Rear strut steering angle deg

δa Aileron deflection deg

η Factor for estimate of K value -

θ Pitch angle deg

ρ Fluid density kg·m-3

τ Flap effectiveness parameter -

φ Roll angle deg

ψ Yaw angle deg

Note: COM stands for center of mass and COP stands

for center of pressure.

1 Introduction

The Cedarville University Solar Boat team has been

a high-caliber competitor in the international Solar Splash

competition hosted in the United States of America. This

competition involves the creation of solar-powered electric

boats optimized to convert solar energy into mechanical

power as efficiently as possible to win competitive races.

The team also has competed twice in the Dutch Solar Chal-
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Fig. 1. CAD model of the Cedarville University hydrofoil solar boat
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Fig. 2. Simplified kinematic diagram (left) & kinetic diagram (right)

with axis convention (x, y, z), body forces (X , Y, Z), moments

(L, M, N), linear velocities (u, v, w), and angular rates (p, q, r).

lenge in the Netherlands, but has not returned to compete

since 2012. During this time, numerous senior-student de-

sign teams have been working on a twin-strut single-track

hydrofoil boat in hopes of returning to the Netherlands and

being a top competitor.

A large challenge that has faced the development of this

new boat has been the creation and implementation of auto-

matic fly-by-wire flight control software to allow the boat to

fly on its hydrofoils to achieve minimal drag and therefore

higher efficiency and performance. Competitors on the solar

boat team of TU Delft have published [1] experimental vali-

dation for a state-space mathematical model of a single-track

hydrofoil boat with manual control. In this paper, we will

attempt to further develop this model to incorporate front-

strut steering, rear-strut steering, and differentially-actuated

wing control in a multi-input multi-output automatic feed-

back control loop to eventually be modified into an automatic

flight control algorithm for the Cedarville hydrofoil boat.

2 DYNAMICAL MODEL OF A SINGLE-TRACK

HYDROFOIL BOAT

For a dynamically moving craft, positions, velocities,

and accelerations can be described either in a reference frame

attached to the craft’s body or in an inertial reference frame

attached to, for example, the Earth. The conventions and

nomenclature for a body reference frame are shown in the

kinematic and kinetic diagrams in Fig. 2. Following the axis

convention used for aircraft, the x-axis is aligned with the

longitudinal axis towards the front of the craft, the y-axis

points laterally starboard, and the z-axis points ventrally.

2.1 Attitude equations

The orientation of an aircraft body is typically described

with the Euler angles of roll (φ ), pitch (θ ), and yaw (ψ).

With an established body-frame coordinate system as shown

in Fig. 3, transformation from the inertial frame to the body

frame requires three transformations. The frame is first ro-

tated about the inertial frame z-axis to give the craft’s yaw in

the “vehicle 1” frame, then rotated about the new y-axis to

give pitch in the “vehicle 2” frame, and finally rotated about

the vehicle-2 x-axis to give the roll of the body. These three

respective transformations can be expressed by single-axis

intrinsic rotation matrices:

Rv1
I (ψ) =





0

−sinψ
cosψ

0

cosψ
sinψ

1

0

0


 (1)

Rv2
v1(θ) =





−sinθ
0

cosθ

0

1

0

cosθ
0

sinθ


 (2)

Rb
v2(φ) =





0

0

1

sinφ
cosφ

0

cosφ
−sinφ

0


 (3)

The resulting rotation matrix R to transform an arbitrary

position vector rI = [rx,ry,rz]
T in the inertial frame to the

body frame is:

rb = Rv1
I (ψ) Rv2

v1 (θ) Rb
v2 (φ) rI (4)
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Fig. 3. Euler angle rotations. Yaw from inertial frame to Vehicle-1

Frame (left), pitch from Vehicle-1 frame to Vehicle-2 frame (middle),

roll from Vehicle-2 frame to body frame (right)

2.2 Translational motion equations

Newton’s second law of motion, expressed in the body

frame, is:

m
dVCM

dt

∣
∣
∣
∣
I

= Fb (5)

where:

�
dVCM

dt
|b is the acceleration of the boat expressed in the

body reference frame,

� m is the mass of the boat, and

� Fb is the external body forces on the boat, expressed in

the body frame.

These forces include the hydrodynamic forces as well as

the force of gravity.

Fb = mg





sinθ
sinφ cosθ
cosφ cosθ



+





X

Y

Z



 (6)

Since the boat is taken to be rotating, the boat’s acceler-

ation in the inertial frame can be expressed by:

dVcm

dt

∣
∣
∣
∣
b

=
dVcm

dt

∣
∣
∣
∣
I

+ωb ×VCM (7)

where:

�
dVcm

dt

∣
∣
∣
I
=

[
u̇, v̇, ẇ

]T
, the time rate of change of the boat

velocity in the body frame,

� ωb =
[
p, q, r

]T
, the rotation rate vector components in

the body frame, and

� VCM = [u,v,w]T , the boat velocity components in the

body frame, with no water current.

From Eqs. (6) and (7), Eq. (5) becomes:

m





u̇+qw− rv

v̇+ ru− pw

ẇ+ pv−qu



= mg





sinθ
sinφ cosθ
cosφ cosθ



+





X

Y

Z



 (8)

2.3 Rotational motion equations

From the transport theorem in analytical dynamics, the

time rate of change in an object’s angular momentum L in

a rotating frame is equal to the sum of external moments on

the center of mass MCM which is expressed by:

dL

dt
= MCM = (ωb × Iωb)+ Iω̇b (9)

where:

� I =

[
Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

]

, the mass moment of inertia tensor,

� MCM =
[
L, M, N

]T
, the external moments acting upon

the craft, expressed in the body frame, and

� ω̇b =
[
ṗ, q̇, ṙ

]T
, the angular acceleration vector compo-

nents in the body frame.

Since the angular acceleration components are of interest, we

solve for the time rate of angular velocity, ω̇b:

ω̇b = I−1 (MCM −ωb × Iωb) (10)

which, with substitution, yields:





ṗ

q̇

ṙ



= I−1









L

M

N



−





p

q

r



× I





p

q

r







 (11)

The angular velocity vector in the body frame can be found

from the time rates of change of the Euler angles in the iner-

tial frame by:

ωb =





φ̇
0

0



+Rb
v1 (φ)





0

θ̇
0



+Rb
v1 (φ)Rv2

v1 (θ)





0

0

ψ̇









p

q

r



=





0

0

1

−sinφ
cosθ

0

cosφ cosθ
sinφ cosθ
−sinθ









φ̇

θ̇
ψ̇



 (12)

Inverting this equation yields:





φ̇

θ̇
ψ̇



=





0

0

1

sinφ secθ
cosφ

sinφ tanθ

cosφ secθ
−sinφ

cosφ tanθ








p

q

r



 (13)

2.4 Model simplifying assumptions

We now make several assumptions to simplify the

model.

� Forward speed is a constant greater than zero, meaning

the sum of forces in the longitudinal direction is zero

(X = 0), the thrust force is equivalent to the drag on the

boat (FT =D), and longitudinal acceleration is zero (u̇=
0).

� The model is linearized about a point where there is no

sideslip or sideforce, hence v0 = 0, v̇ = 0, Y = 0, Ẏ = 0.
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� The model is linearized where the boat has no rotational

rate or acceleration: r0 = 0, ṙ0 = 0, ψ0 = φ0 = 0, ψ̇0 =
φ̇0 = p0 = 0, ṗ0 = 0.

� The boat maintains perfect longitudinal control such that

there is no change in pitch (θ = 0, θ̇ = q = 0, q̇ =
0, M = 0) and the vertical forces sum to zero with no

heaving motion (Z = 0, Ż = 0, w = 0, ẇ = 0).

� All surfaces operate in a region where the lift coefficient

slope is linear.

� Rotation of the wings as a result of strut deflection γ is

ignored.

� The boat is perfectly rigid with constant mass and mass

distribution, and is symmetric about the xz plane: Ixy =
Iyz = 0.

� The lift coefficients of the wing and struts are indepen-

dent of Reynolds’ number.

� The boat operates in a region of low roll (<30°) so we

can apply small angle assumption: sinφ ≈ φ ,cosφ ≈ 1.

� The propeller wash does not influence the flow field over

the rear wings.

When we apply these assumptions to the translation, ro-

tation, and attitude equations, the model is reduced to:

m





−rv

v̇+ ru

pu



=





0

mgφ +Y

mg



 (14)





Ixx ṗ− Ixzṙ

0

−Ixz ṗ+ Izzṙ



=





L

p(Izzr− Ixz p)+ r(Ixx p− Ixzr)
N



 (15)





φ̇
0

ψ̇



=





p

0

r



 (16)

It can be seen that there are only four unique variables

describing the state of the boat: sideslip velocity v, roll an-

gle φ , roll rate p, and yaw rate r. All the other terms are

either parameters of the model (e.g. m), rates of these state

variables (e.g v̇), or functions of them (e.g. L, N).

2.5 Single-rudder hydrofoil boat linear time-invariant

model

Methods of modern control theory have been widely

used to describe the dynamics of aircraft motion. To make

use of these methods, we must transform our equations of

motion into a continuous linear time-invariant (LTI) state-

space form:

ẋ(t) = A x(t)+B u(t) (17)

y(t) = C x(t) (18)

where:

� x(t) = [v,φ , p,r]T , the state vector,

� u(t) is the input vector,

x0

f (x0)

x0 +δx

f (x0 +δx)

d f

dx

f (x)

δx

Fig. 4. Linearization of a nonlinear function

� y(t) is the output vector,

� A is the state matrix,

� B is the input matrix, and

� C is the output matrix.

For the purposes of the front/rear steering model, we

will consider the effect of one of the steering struts as the

only input to the system. When either of the struts is turned

by an angle γ , this changes its angle of attack and generates

sideways lift on the strut, influencing the motion of the boat.

Therefore, we define u(t) = γ(t). To prevent confusion with

notation, forward velocity will hereafter be denoted by V .

To begin acquiring our state-space model, we start by

solving our previously obtained equations for the highest-

order derivatives. Two of these are already in the proper form

in Eq. (16), the latter of which is not immediately relevant to

our model. From Eq. (14), we can obtain:

v̇ =
1

m
Y +

1

m
mgφ − rV (19)

We can see that this equation is linear with respect to φ and

V , but Y is a function of the state variables and must be lin-

earized.

Linearization is the process of finding the linear approx-

imation to a function at a given point, which is the first order

Taylor expansion around the point of interest. From Fig. 4 it

can be seen that close to some x0, the nonlinear function f

can be approximated with a linear function, but only in a re-

gion local to the linearization point. In mathematical terms:

f (x)≈ f (x0)+δx
d f

dx

∣
∣
∣
∣
x0

(20)

For functions of multiple variables, it is the same idea:

f (x)≈ f (x0)+δx ·∇ f

∣
∣
∣
x0

(21)

which can be rearranged to express a relative change in the

function value from the equilibrium point, rather than its ab-
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solute value:

∆ f ≈ δx ·∇ f

∣
∣
∣
x0

(22)

Applying this to Eq. (19) yields:

∆v̇ =
1

m

[
Yvδv+Yφ δφ +Ypδ p+Yrδ r+Yγ δγ

]
−V δ r (23)

The notation for linearized derivatives is introduced at this

point — for example, dY/dv ≡ Yv. It should also be noted

that from Eq. (14) that in static equilibrium, Y = mgφ and

so Yφ = mg, accounting for the second term in Eq. (19). The

above equation can be rewritten as:

v̇ =

[
Yv

m
,

Yφ

m
,

Yp

m
,

Yr

m
−V

]

x +

[
Yγ

m

]

u (24)

From Eq. (15), the rate terms can be solved for as:

ṗ = LKzz +NKxz (25)

ṙ = LKxz +NKxx (26)

where:

� Kxx =
Ixx

IxxIzz−Ixz
2

� Kzz =
Izz

IxxIzz−Ixz
2

� Kxz =
Ixz

IxxIzz−Ixz
2

Linearizing yields:

ṗ =
[
LvKzz +NvKxz, Lφ Kzz +Nφ Kxz,

LpKzz +NpKxz, LrKzz +NrKxz

]
x+

[
Lγ Kzz +Nγ Kxz

]
u

(27)

ṙ =
[
LvKxz +NvKxx, Lφ Kxz +Nφ Kxx,

LpKxz +NpKxx, LrKxz +NrKxx

]
x+

[
Lγ Kxz +Nγ Kxx

]
u

(28)

The assumption that φ only affects the gravitic vector means

that the partials with respect to φ go to 0. The result of

these linearized equations is the complete state-space model,

where:

A =

[
Yv/m Yφ /m Yp/m Yr/m−V

0 0 1 0

LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

LvKxz +NvKxx 0 LpKxz +NpKxx LrKxz +NrKxx

]

(29)

B =

[
Yγ/m

0

Lγ Kzz +Nγ Kxz

Lγ Kxz +Nγ Kxx

]

(30)

The output matrix C is the identity matrix. This choice is not

unique, but it is useful to output all of the states when the

model is run with a program such as MATLAB or Simulink.

3 COMPARISON OF FRONT AND REAR-

STEERING MODELS

In the model derived in the previous section, the input

is a generic rudder deflection γ . This can represent either

front or rear-rudder steering, depending on the definition of

the input derivatives (Yγ , Lγ , & Nγ ) in Eq. (30).

3.1 Front steering input derivatives

For a deflection of the front steering strut measured by

angle γ f , the angle of attack of the strut foil is given by

α = γ f . The steering angle is defined such that positive strut

deflection creates a positive sideforce, and thus the strut turns

to the right from the pilot’s perspective. While operating in

the linear region of the strut’s lift coefficient slope, the side-

force created on the strut is:

Y =
1

2
ρV 2Ss fCLα sγ f (31)

where CLα s is the lift coefficient slope of the strut. This force

acts at the vertical center of pressure of the submerged area

of the strut and creates a negative moment about the roll axis:

L =−Y

(
dzs +dzfly

2

)

(32)

as well as a positive yawing moment based on the strut’s dis-

tance from the center of mass:

N = Y ·dxs f (33)

It can be easily seen that the derivative of sideforce with

respect to front steering angle is:

Yγ f
=

1

2
ρV 2Ss fCLα s (34)

and the derivatives Lγ f
and Nγ f

follow suit. For brevity, these

terms are listed in Table 1.

3.2 Rear steering input derivatives

For a deflection of the rear steering strut measured by an-

gle γr, the angle of attack of the strut foil is given by α = γr,

once again defined such that a positive turn creates positive

sideforce. A significant difference between the rear-steering

and front-steering models is the propeller at the end of the

rear strut, shown in Fig. 1. The propeller is assumed to gen-

erate a constant thrust force FT in-line with the angle of the

strut and hub assembly. Using the small angle assumption,

the lateral component of this thrust force can be expressed

by FT γr and the total sideforce generated is:

Y =
1

2
ρV 2SsrCLα s γr +FT γr (35)
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Table 1. Summary of front and rear steering derivatives

Front steering Rear steering

Yγ f
= 1

2
ρV 2Ss fCLα s Yγr =

1
2
ρV 2SsrCLα s +FT

Lγ f
=− 1

2
ρV 2Ss fCLα s

(
dzs+dzfly

2

)

Lγr =− 1
2
ρV 2SsrCLα s

(
dzs+dzfly

2

)

−FT ·dzs

Nγ f
= 1

2
ρV 2Ss fCLα s ·dxs f Nγr =−

(
1
2
ρV 2SsrCLα s +FT

)
dxsr

Both components of this force generate a negative roll mo-

ment, as with front-steering, but the propeller’s thrust is gen-

erated at the end of the strut rather than at the center of pres-

sure:

L =−Y

(
dzs +dzfly

2

)

−FT γr ·dzs (36)

The yawing moment, however, is negative due to the force

being opposite the COM compared to the front-steering

model. The thrust force is assumed to cross through the cen-

terline of the boat at the rear strut pivot axis, giving it the

same yaw moment arm as the hydrodynamic lift force:

N =−(Y +FT γr)dxsr (37)

Once again, the derivatives of these terms follow easily:

Yγr =
1

2
ρV 2SsrCLα s +FT (38)

and so forth. The terms can be seen in Table 1.

4 FEEDBACK-CONTROLLED NUMERICAL SIMU-

LATION MODEL

4.1 Reasoning

In van Marrewijk [1], the TU Delft Solar Boat team used

their single-track hydrofoil boat to experimentally validate

the front-steering model presented here. Their methodology

involved acquiring real-time measurements of the state and

input variables during operation of the boat on water, and

then comparing the boat state data with the response of the

model to the same input variable data. Our goal was to also

gather data with flight control tests, but the Cedarville Uni-

versity hydrofoil boat was being rebuilt during the extent of

this work, so we were forced to take a theoretical approach.

The steering response tests by van Marrewijk were per-

formed at approximately 0.47 Hz and 2.50 Hz steering in-

put frequencies [1]. In the initial stages of theory develop-

ment, when we input sine inputs of these frequencies to the

state-space model, we found that the response was unstable

and deviated towards infinity. The reason for this is because

the model is inherently unstable. Since the TU Delft solar

Introducing Reference Input

To fix this, we will make the ref-

erence signal and the feedback

signal comparable by scaling r

such that it is equal to the value

of Kx when the system is at

steady state. This scaling ac-

tor we will call N̄ .

N̄
ẋ = Ax+Bu

y = Cx+Du
R

+

−

u

K
x

y

With some math4that would take too much space and time to explain here, an

expression to calculate N̄ can be found:

N̄ = [K Im]

[

A B

C D

]

−1
[

0n

Ir

]

4
A detailed explanation can be found here.

24/25

Fig. 5. Block diagram representation of precompensated state-

space feedback control loop. Adapted from “Control tutorials for MAT-

LAB” [2]

boat has no lateral feedback control for steering, the boat is

controlled like a bike, and thus it is similar in that constant

micro-adjustments in steering are necessary to maintain bal-

ance. Simple sine wave input does not account for this, re-

sulting in the unstable behavior of the model. This posed a

further challenge to our progress.

Our solution was to mathematically derive a feedback-

controlled simulation model, which can be represented by

the block diagram in Fig. 5. With a mechanically linked

steering wheel control, as on the TU Delft solar boat, the strut

steering angle is directly proportional to the steering wheel

input, so the input signal u is effectively γ . As discussed

above, making this setup stable is only possible through man-

ual control of the steering wheel. Since this was not possible

for us, we used methods of modern control theory to create

a stable feedback loop to allow us to examine the results of

the front-steering and rear-steering models.

In the setup depicted in Fig. 5, the independently con-

trolled variable is R, typically called the setpoint of the

model. Rather than manually controlling the input u, the

feedback loop reads the state x of the boat and compares it

to the desired state R, adjusting u accordingly. For our sim-

ulation setup, we chose yaw rate r to be the variable for the

setpoint. The justification for this decision was that when

the pilot turns the steering wheel, the desired command is

not directly the strut angle but rather the turn rate, like what

one would expect when turning the steering wheel of a car.

Therefore, with feedback control as shown, the model will

track the setpoint and remain stable, allowing us to examine

its behavior. During simulation testing, the setpoint signal

can be any value or data curve that we desire, and for physi-

cal implementation on the boat, the signal will come from a

rotary encoder on the steering shaft that will relay the posi-

tion of the steering wheel to the flight control system.

6



Modeling

In state-space representation;

x is the state vector, A is the state matrix,

ẋ is the state derivative, B is the input matrix,

y is the output vector, C is the output matrix,

u is the input (or control) vector D is the feedthrough matrix (typically zero)

The sizes of the matrices must be as shown in the diagram, with n as the

number of states, m as the number of inputs, and r as the number of outputs.

A B

C D

n

r

n m

7/25

Fig. 6. The sizes of the state-space matrices must be as shown in

the diagram, with n as the number of states, m as the number of

inputs, and r as the number of outputs. Adapted from MathWorks [3]

4.2 Design methodology

The first step in this design is to choose a suitable feed-

back gain K that makes the closed-loop system stable. If the

reference input is set to zero, then the input is u =−Kx and,

with substitution into Eq. (17):

ẋ = (A−BK)x (39)

where the coefficient of x is called the closed loop state ma-

trix. The eigenvalues of this matrix are what determine the

location of the closed loop poles, so (with an observable and

controllable system) we can create an equation knowing our

desired poles, P, and choose K accordingly:

eig(A−BK) = P (40)

Jürgen Ackermann’s formula [4] states that the process of

choosing a suitable feedback gain can be simplified by only

computing one equation:

K = [ 0 0 . . .0
︸ ︷︷ ︸

n−1

1]C−1 pnew(A) (41)

where pnew(A) is the desired closed-loop characteristic poly-

nomial evaluated at the state matrix A, n is the number of

states, and C is the controllability matrix of the system given

by:

C =
[
B AB A2B . . . An−1B

]
(42)

These equations can be performed in MATLAB with the

place() or acker() built-in functions [5].

With K obtained, the feedback control model is now sta-

ble and returns to equilibrium from an initial disturbance.

However, if the reference input is changed from zero, the re-

spective output state will not necessarily settle at the value of

R. A precompensation gain, N̄, is necessary to scale the ref-

erence input to equal the feedback signal Kx in steady state.

The value of this gain can be found by:

N̄ =
[
K Im

]
[

C

A

D

B
]−1 [

0n

Ir

]

(43)

where m is the number of inputs and r is the number of out-

puts as in Fig. 6 (both 1 in this case).

4.3 Testing and evaluation

The state-space matrices were calculated using the pa-

rameters for the TU Delft solar boat listed in van Marrewijk

[1] — for which the front-steering state-space model was ex-

perimentally validated — with the addition of FT = 250 N

representing the approximate thrust necessary to overcome

drag at 10 m/s. We found that pole locations of −8 ± 5i,

−34, & −3400 gave desirable response characteristics for

both the front and rear-steering models. The corresponding

feedback and precompensation gains calculated using these

poles and the state-space matrices from TU Delft’s solar boat

are listed in Table 2. Note that the scaling factor of π/180

converts a command value of deg/s to rad/s for calculation in

the state-space model.

The matrices and gains were then implemented in a

Simulink model for testing, which was beneficial for un-

derstanding dynamics of the boat. For instance, one lesson

we learned was that the model behaved very poorly when

subjected to a step input, with yaw rate spiking an order

of magnitude larger than, and in the opposite direction of,

the commanded yaw rate. Though this spike was less than

0.25 seconds in duration, and stabilized to the commanded

value within 1 second, it still resulted in a significant ad-

verse turn. However, since a step input is not realistic for

the physical system, we ignored this issue and opted to use

a sine-ramped step input which, when put into the Simulink

program, caused favorable response of the models.

The example setpoint curve we chose instead is a two-

second sine ramp up to 10 deg/s, held for four seconds, fol-

lowed by a two-second sine ramp down, which we believed

to be representative of a driver’s input on a steering wheel

during a turn. The integral of this desired yaw rate equals a

60° turn to the right that should be completed by the model.

The curve and the responses of the front and rear-steering

models to this setpoint curve are shown in Figs. 7 & 8.

An expected but nevertheless interesting phenomenon

can be seen in the response of both models. When a posi-

tive yaw rate command is introduced, the control input gen-

erated to do so is initially (at approximately t = 3 s) opposite

what should be necessary to make a positive turn. After sta-

bilization, the same holds true again when the command is

reversed at approximately t = 9 s. We explain this behav-

ior as like riding a bicycle, where when one wants to turn

to the right, they must first steer left to begin falling to the

right, and then steer into that fall to make the turn. With

a rear-steering model, the concept is paralleled but with the

steering direction reversed. We predicted this behavior be-

fore the existence of these results, so it leads us to believe

we are testing the model behavior in accurate and effective

manner.

When the model behaviors are compared, it can be seen

that the front steering model’s yaw rate quickly tracks to the

setpoint at steady state but has significant deviance to main-

tain stability and control when the setpoint is changing. The

rear steering model, on the other hand, follows the shape of

the setpoint curve more closely but with a significant lag.

The front steering model’s heading curve settles at the pre-

dicted 60° almost simultaneously with the flattening of the

7



Table 2. Computed values for feedback and precompensation gains used in front and rear steering simuation models

Steering K N̄

Front
[
4.0325 −196.9836 −11.2395 0.7965

]
−191.4162 · π

180

Rear
[
16.1330 234.9360 −3.3098 −5.5975

]
187.4735 · π

180

Fig. 7. Input and response curves for front steering model, acquired from Simulink simulated feedback control model. Yaw rate setpoint is a

two-second sine-ramped step to 10 deg/s starting at t = 3 s, a four-second hold, and a two-second sine-ramped step down to 0 deg/s.

setpoint curve, while the rear steering model falls a few de-

grees short of the expected heading and settles nearly four

seconds after the yaw command is flattened.

The sideslip velocity curves also reveal behaviors of the

two models. With the front steering model, sideslip is pos-

itive and roughly proportional to the roll angle curve. This

indicates that the boat is departing from coordinated flight

and sliding laterally along the plane of the wings due to the

influence of gravity. This is a well-known phenomenon in

aircraft flight dynamics, and its presence in the response re-

inforces our confidence in the model’s behavior. The rear

steering model achieves lateral velocity away from the di-

rection of bank and turn, a motion which is typically referred

to as skid. This can be attributed to the lateral contribution of

the vectored thrust, as the sideslip curve is roughly propor-

tional to the control input curve.

Although the results are promising, the models are no-

tably limited by the simplifying assumptions in the deriva-

tions. For instance, in Eq. (16) the small-angle assumption

led to the result that φ̇ = r. It’s intuitive to see that this holds

for small angles of roll or pitch, but at higher angles this be-

comes inaccurate, and r cannot be used alone to get the true

measure of the turn. If the craft is in a bank, then r (defined

in the body frame) indicates that the craft is only rotating on

the plane of the wings. If enough yaw in the body frame is

achieved, this could lead to the nose pointing directly into

the water. A form of pitch control would be necessary to

maintain a level attitude when in a banked turn.

We furthermore surmise that the behavior of the rear

steering model in particular deviates very quickly from the

8



Fig. 8. Input and response curves for rear steering model, acquired from Simulink simulated feedback control model. Yaw rate setpoint is a

two-second sine-ramped step to 10 deg/s starting at t = 3 s, a four-second hold, and a two-second sine-ramped step down to 0 deg/s.

linearity of the mathematical model due to the large addi-

tional force from the lateral component of thrust. Notice that

when in a right-hand turn with positive roll, the rear strut

is commanded to point left, or towards the surface. We be-

lieve that this could cause a tendency for the vectored thrust

to wrest the aft of the boat towards the surface of the wa-

ter and significantly change the dynamics of the turn. This

should be addressed with a fully coupled lateral-longitudinal

simulation model.

5 DERIVATION OF RUDDER & WINGERON

MULTI-INPUT MULTI-OUTPUT MODEL

In contrast to the TU Delft solar boat, the Cedarville

University hydrofoil boat has the capability to pivot both

the front and rear struts independently, as well as the abil-

ity to differentially actuate its rear foils [6], allowing them

to serve the same function as aileron control surfaces on

an aircraft. The combination of the actuated wing input

with strut steering in the state-space model allowed for the

creation of a multi-input multi-output (MIMO) system with

front-rudder (γ f ), rear-rudder (γr), and “aileron” (δa) inputs.

Since each rear foil entirely serves the functions of both wing

Fig. 9. CAD model of the CU hydrofoil boat rear strut assembly in-

cluding the gearbox pod, propeller, and rear foils

and aileron, the typical term for the foil is called a wingeron

(portmanteau of “wing-aileron”), which is how we will re-

fer to it henceforth. To derive the model, we considered the

process we took for derivation of the rear-steering model and

started the same method, attempting to derive the input re-

9



Fig. 10. Diagram of positive wingeron deflection

sponse from first principles. As this work progressed, we

realized it was akin to a model developed by Nelson [7] for a

lateral model of a fixed-wing aircraft with aileron and rudder

input.

The introduction of the new inputs to the state-space

boat model will not affect the state matrix A, as the boat still

responds identically to the states. The new inputs affect the

input matrix B, however, with new columns describing the

boat’s response to each separate input:

B u =





Lγ f
Kxz +Nγ f

Kxx

Lγ f
Kzz +Nγ f

Kxz

0

Yγ f
/m

Lγr Kxz +Nγr Kxx

Lγr Kzz +Nγr Kxz

0

Yγr /m

Lδa Kxz +Nδa Kxx

Lδa Kzz +Nδa Kxz

0

0





[
γ f

γr

δa

]

(44)

The primary things to note about this equation, aside from

the new variable δa for “aileron” deflection, is the new

derivatives Lδa
& Nδa

, and that the top rows are not similar.

The latter is explained most easily, as it should be intuitively

obvious to tell that wingeron deflection creates no side force

and thus does not influence sideslip, so the matrix term on

that row is zero. Rows three and four of the third column are

similar to those of the first and second columns, so only the

new terms Lδa
& Nδa

will be discussed. In these derivations,

the subscript of w will be used for “wing,” which refers to

the rear foils of the boat(s).

The change in aerodynamic yaw moment with respect

to a change in aileron angle — an effect which is referred

to as adverse yaw, as it opposes the direction of bank — is

given [7] by:

Nδa
=

QSwbw

Izz

Cnδa
(45)

where Q is dynamic pressure, Sw is the total planform surface

area of both wings, bw the wingspan, and Cnδa
is the change

of the aerodynamic coefficient of yaw (Cn), with respect to

aileron deflection. This derivative is given as:

Cnδa
= 2KCL0

Clδa
(46)

where K is an empirical constant, CL0
is the reference lift co-

efficient, and Clδa
is the control power of aileron deflection.

The constant K is tabulated [7] as a function of an aileron

factor η and wing aspect ratio AR as shown in Fig. 11. The

aileron factor η is given as:

η =
y1

bw/2
(47)

Fig. 11. Tabulated values for empirical constant K as a function of

aileron factor η and aspect ratio AR. From Nelson, Flight Stability &

Automatic Control, 2 ed.

where y1 is the spanwise distance from the centerline to the

aileron inboard edge, and bw/2 is the semispan. Aspect ratio

is defined as:

AR =
bw

2

Sw

(48)

The reference lift coefficient is defined as:

CL0
=CLα |α0| (49)

where CLα is the lift coefficient slope and α0 is the zero-lift

angle of attack. The control power of aileron deflection is

given as:

Clδa
=

2CLα wτ

Swbw

∫ y2

y1

c(y) · y dy (50)

where τ is the flap effectiveness parameter (which can be ap-

proximated to 1 for a wingeron), c(y) is the chord as a func-

tion of spanwise distance y, and y1 & y2 denote the spanwise

distances of the inboard and outboard edges of the aileron.

Since in our case the entire wing is the control surface, y1 &

y2 indicate the wing root and tip respectively, and the integral

in Eq. (50) can be thought of as the first moment of area of

the wing. Since for a shape bounded by an arbitrary curve

g(x) and lines x = x1, x = x2, & y = 0 giving an area A, the

centroid x̄ of the shape can be found by:

x̄ =
1

A

∫ x2

x1

g(x) · x dx (51)

We note that the integral is the same form as the integral in

Eq. (50), so solving for it yields:

∫ x2

x1

g(x) · x dx = x̄A (52)
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and therefore, equivalently:

∫ y2

y1

c(y) · y dy = ȳSw (53)

where ȳ is the spanwise centroid of the wing. Using an ellip-

tical wing assumption, the centroid is taken as:

ȳ =
4(bw/2)

3π
(54)

With Eqs. (46) to (50), (53) and (54), Eq. (45) can be ex-

pressed by:

Nδa
=

8KτQ Swbw (CLα w)
2 α0

3πIzz

(55)

noting that this is only applicable for an elliptical or near-

elliptical wing. The second and last new stability derivative,

Lδa
, is given by:

Lδa
=

QSwbwClδa

Ixx

=
8τQSwbwCLα w

3πIxx

(56)

To implement these equations for the Delft boat, we needed

a few extra parameters. First, the wing aspect ratio is:

AR =
b2

w

Sw

=
(0.997 m)2

(0.0681 m2)
= 14.6 (57)

which is well off the tabulated range. The aileron factor η
is approximated to be 0, due to actuation of the entire wing.

We performed a Farazdaghi-Harris-model curve fit [8] of the

three data points at η = 0, and approximated the value of K

at the calculated aspect ratio to be −0.0583.

Since we do not have information about the shape of the

TU Delft boat’s foils, we assumed an elliptical foil shape.

The ellipse fitting the given constraints of wingspan and wing

area has a root chord of 0.087 m which is less than the strut

chord, which we believe justifies this assumption. Again, we

do not have information on the foils to obtain the zero-lift

angle of attack. Typical values for α0 are between −0° and

−15°, and for the MH115 foils on the CU solar boat the value

is about −7° [6], so we use this value as an estimate of α0.

The stability derivatives for the aileron deflection column of

matrix B can then be computed.

6 EVALUATION OF RUDDER & WINGERON

MULTI-INPUT MULTI-OUTPUT MODEL

6.1 Design methodology

The design of a MIMO feedback control system incor-

porating front steering, rear steering, and wingeron action

follows the same procedure as in Section 4.2, but with a few

details that should be noted. First, K must result in a 3x4 ma-

trix in order to give a 3x1 feedback signal to the comparator.

In MATLAB, the place() and acker() functions will

automatically handle this based on the dimensions of B.

N̄ =
[
K Im

]
[

C

A

D

B
]−1 [

0n

Ir

]

(43)

Second, from Eq. (43) (reprinted above for conve-

nience), we can see that the ABCD matrix must be square

in order to be inverted, meaning the output quantity r must

equal the input quantity m. Even though we have four out-

puts, this is not an issue. In the state-space model we can

still leave C as it is, but we will modify it for calculating K

in a way that “tells” the system which variables we want to

control. Since we have three inputs to the model, this gives

us the opportunity to govern three states with setpoints. In

this situation, we desire to control sideslip velocity, roll, and

body yaw rate — the first, second, and fourth states — so our

modified C becomes:

C =





0

0

1

0

1

0

0

0

0

1

0

0


 (58)

Lastly, the third term in the equation must have inverse

dimensions of the first term, i.e. 6x3. The identity matrix of

size r = 3 fulfills the width criteron, and the rest of the digits

are required to be zero, making:

[
0n

Ir

]

=













0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1













(59)

Using the same pole locations as were used for the previ-

ous models, we calculate the feedback and precompensation

gains in Table 3.

6.2 Testing and evaluation

We used the same experimental setup as in Section 4.3,

setting the commanded roll rate magnitude in degrees to be

equivalent to the yaw rate magnitude in degrees per second

and using the same setpoint curve shape as used previously,

with sideslip velocity commanded to 0 m/s. The results of a

20-second simulation are shown in Fig. 12.

Immediately noticeable is how well yaw rate and roll

angle track with their setpoints compared to the single-input

models in Figs. 7 and 8. When compared to the yaw rate

response of the front-steering-only model in Fig. 7, it can
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Table 3. Computed values for feedback and precompensation gains used in the wingeron MIMO model

K N̄





3.7121

−0.4076

1.1833

39.6515

9.3478

−11.1560

0.8311

0.6683

−0.5730

−96.3300

−21.9404

24.8014








4.5120

−0.2617

1.3363

37.4332

9.2143

−11.3034

−95.1927

−22.0057

25.1316


 · π
180

Fig. 12. Input and response curves for front steering - rear steering - wingeron MIMO model, acquired from Simulink simulated feedback

control model. Yaw rate setpoint is a two-second sine-ramped step to 10 deg/s starting at t = 3 s, a four-second hold, and a two-second

sine-ramped step down to 0 deg/s. Roll angle setpoint is a curve of equivalent shape, with magnitude of 10 deg. Sideslip velocity setpoint is

constant at 0 m/s.

easily be seen how the wingerons deflect at t = 3 s to initi-

ate the positive roll, eliminating the necessity for the boat to

be piloted like a bike. In this way, the combination of inde-

pendent inputs allows us to overcome an inherent behavioral

challenge in the original system. We also note that during

the turn the front strut is turned to the right and the rear strut

is turned left. This is similar to the performance of active

four-wheel steering in automobiles and is representative of

behavior we expected from the model.

We do note that the magnitude of the wingeron deflec-

tion is problematic. The rear foils of the CU hydrofoil boat

are only designed to operate from −6° to 13° which is ap-

proximately the extent of the linear region of the lift coeffi-

cient slope for the MH115 foils. However, we can see that

in order to maintain a moderate 10 deg/s turn, the foils are

commanded to deflect up to −20°. When we introduced a

saturation block in the Simulink model that gave upper and

lower saturation limits to the wingeron deflection, the simu-

lation model showed unstable behavior. This is an effect of

the commanded signal not making it to the model due to the

saturation block, and the controller therefore being unable to

compensate for an effect it is not “aware” of.
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CONCLUSIONS & RECOMMENDATIONS

Conclusion

In this paper, we have used theory of aircraft dynam-

ics to expand upon an experimentally-validated state-space

model for a single-track hydrofoil boat to include front and

rear steering and differential wing control. We mathemati-

cally developed a stable feedback control loop for the vali-

dated model in a Simulink simulation to prove the efficacy

of such an approach and repeated the process for the new

multi-input model we developed.

Using the simulation, we demonstrated the feasibility of

using multi-input automatic control for the Cedarville Uni-

versity solar boat, and we showed that using all three control

inputs available to us will allow the boat to perform excel-

lently while flying on hydrofoils. We believe this work lays

an important foundation for the development of an automatic

flight control system for Cedarville’s solar boat and we hope

that future students will be able to make use of this work and

realize our dream of returning to compete in the Dutch Solar

Challenge.

We further hope that this document can be used as a

ground-level reference to anyone interested in multi-input

automatic control for the purposes of hydrofoil watercraft,

aircraft, or any system otherwise.

Recommendations

While promising, the model presented in this work is not

a complete solution in and of itself. As discussed in Section

6.2, the simulation is exceeding the limits for wing deflec-

tion. Further work should be performed to overcome this

problem.

The model also assumes perfect control of the longitu-

dinal states (e.g forward velocity, pitch, etc.). The model and

simulation should either be expanded to account for longitu-

dinal dynamics and include longitudinal control, or be com-

bined and coupled with a separate height and pitch control

system to maintain level flight during maneuvers.

Preceding the implementation of the automatic control

model on a physical system, we recommend implementing

a simulated form of sensor/signal delay and possibly signal

noise to test the reactivity and robustness of the control sys-

tem. For similar reasons, we also suggest experimenting with

different sampling rates for the feedback signals.
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