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ABSTRACT Implementation of hydrofoils in the Formula Windsur�ng turned setting the gear
into an even more intricate physical problem. Multiplicity of adjustable parameters like the rear
wing angle, rake angle, position of the straps, mast foot, downhaul tension, position and length of
the harness lines, height of the boom and many more, gives sailors a real challenge. Due to the high
dimensionality of this parameter space, an enormous number of combinations must be tested before
�nding the optimal one. Thus a Velocity Prediction Program enabling optimization may be very
helpful. This paper is focused on creating such a program (which is implemented in Mathematica)
and explaining its details. It takes into account the nontrivial geometry of the sailor body and the
sail (not present in similar programs designed for boats), which results in a model with ten degrees
of freedom. Simple engineering mathematical formulas are used to describe the aero-hydrodynamic
forces to produce only qualitatively reasonable outputs. Ultimately, the program is meant to be �lled
with accurate CFD data and used for optimizing real-life windsur�ng gear. Attention is also paid to
the numerical methods needed for �nding balance and optimizing performance. Finally, generated
polar plots are presented and qualitatively discussed.
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I. MOTIVATION

A certain foiling windsurfer is sailing upwind, highly
focused on handling the gear, so as to �y with optimal
speed and angle. Unexpectedly, another competitor ap-
pears on his windward side, screens the wind and easily
overtakes the former. However, the faster sailor is not
able to keep the angle of the slower, so it is not obvious
who performs better. These two setups are like di�erent
units: even though both sailors are optimizing their ve-
locity made good, they do not have the same speed and
true wind angle. This is just an exemplary situation, but
such discrepancies are common in the Formula Wind-
sur�ng Class. In severe cases, two racers may have no
opportunity to compete by means of sailing strategy be-
cause of signi�cant disproportion in velocity made good.
Equipment (with multiple adjustable parameters), physi-
cal features of the sailor and his technique are the factors
responsible for that. Testing every possible setting on the
water is forbiddingly time-consuming, so this paper aims
at developing a Velocity Prediction Program, which can
be used for optimization of real-life windsur�ng gear, af-
ter feeding it with CFD data.

II. IDEA OF POLAR PLOTS

Most important information about yacht performance
is presented on a polar plot. Let vT be the true wind
speed and ϕ ∈ [0, π] denote an angle between directions
of vT and yacht speed v, with ϕ = 0 representing going
directly upwind and ϕ = π - directly downwind. Func-
tion v (vT , ϕ), for a given value of vT , can be plotted in
polar coordinates (v, ϕ), which constitutes a polar plot.
It can be used to determine most relevant quantities. For
example, velocity made good in sailing upwind is found
as maxϕ∈[0,π] v (ϕ) cosϕ, while for sailing downwind it
is −minϕ∈[0,π] v (ϕ) cosϕ. Thus theoretical prediction of
polar plots for a considered sailing unit is a major task
in the physics of sailing. Here we are interested in the
special case of windsur�ng foil.
In order to familiarize with the concept of a polar plot,

it is illuminating to invoke a well-known example of an
ice-boat, described for example in [3] and [4]. Among all
sailing units, land-yachts and ice-boats experience min-
imal resistance (i. e. non-aerodynamic force opposing
aerodynamic thrust). It turns out, that even in the ab-
sence of any resistance, �nite speed is achieved. As ar-
gued in [3], ice-boats are often close to this limiting case.
The mechanism responsible for that can be most clearly
demonstrated on a wind diagram (�g. 1). vA denotes
speed of the apparent wind (i. e. air motion which is
measured in the rest frame of the sail) and α is the ap-
parent wind angle. For �xed vT and ϕ, α decreases as
the unit speeds up (v increases). It means that for su�-
ciently high v, apparent wind blows almost directly from
the bow and sail is unable to produce any thrust, thus
limiting �nal velocity. If no resistance is present, ice-boat

Figure 1: Theoretical polar plot of an ice-boat

reaches equilibrium when zero thrust is produced. This
happens for a particular angle α, which depends on the
e�ciency of the sail and on windage (aerodynamic drag,
which as explained before, is excluded from �resistance�).
For this reason, polar plot is fully determined just by a
simple condition α = const. According to the inscribed
angle theorem, curve given by coordinates (v, ϕ) is a cir-
cle (�g. 1). In order to obtain functional form of depen-
dence v (vT , ϕ), the law of sines can be used:

v

sin (ϕ− α)
=

vA
sinϕ

=
vT

sinα
(1)

v (vT , ϕ) = vT
sin (ϕ− α)

sinα
(2)

Example of the ice-boat is the only one, which can be
summarized sensibly by a closed-form formula (2). Nev-
ertheless, equations (1) and (2) are applicable in general,
but angle α is no longer constant in the presence of signif-
icant resistance and has to be replaced by some function
α (vT , ϕ).
Ordinary yachts have quite di�erent polar plots (�g.

2), determined mainly by resistance (i. e. achieved
speeds are far from the limit dictated by apparent wind
as for ice-boats). Foiling units experience signi�cantly
smaller resistance, which makes their polar plots more
similar to those of ice-boats (�g. 3). For both, angle α
remains acute for all practical angles ϕ (which is in gen-
eral a feature of high-speed sailing). This forces the sail
to stay almost in the same position in sailing upwind, as
well as in sailing downwind. For mentioned reasons, it is
possible to come across the opinion that windsur�ng foil
is an �ice-boat on water�. However, as further results will
reveal, even foilers are still far from the limit almost met
by ice-boats.
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Figure 2: Polar plots for the 12-meters yacht, taken
from [3]

Figure 3: Theoretically predicted polar plot for the
International Moth, taken from [4]

III. INTUITIONS BEHIND THE VPP

In this section we will propose a rough idea for con-
structing polar plots for windsur�ng foil. Complexity
which we are about to encounter, makes this task impos-
sible to solve by means of a single formula, as in the case
of an ice-boat. Rather, a special program called VPP
(Velocity Prediction Program) is needed.
Sailing on course can be treated as a static situation,

so in order to determine the state of the unit, we seek for
equilibrium in which all forces and torques balance. Even
in presence of waves or small gusts, we can speak about
time-averaged forces and still follow the same approach.
Figure 4 depicts famous foiler Nicolas Goyard during a
slalom race, with added arrows representing the most
important forces. They are classi�ed as follows:

1

2

3 4

5 6

Figure 4: Forces acting on a windsur�ng foil set in
action. Original photo taken from the PWA o�cial

website https://www.pwaworldtour.com/index.php?
id=2254&tx_pwagallery_pi1%5BcurrentPage%5D=17&

cHash=8753f80c75317880a968b8379cc1ad55

� Aerodynamic forces:

1. sail thrust

2. sail side force

� Gravity forces:

3. weight

� Hydrodynamic forces:

4. main lift

5. lateral force

6. drag

For a rigid body, we expect six equations (three com-
ponents of the net force and other free components of
the net torque). Here, however, the situation is even
more complicated, because the board (with foils), sail
and sailor may change their relative orientation. This
in the worst case would triple the number of equations.
Luckily, these three parts exert some forces and torques
on each other, in a way, that allows us to reduce com-
plexity. The windsurfer is connected with the board by
his feet at two points. Front foot can be assumed to be
always in the foot strap. Thus the board and the sailor
may exert force on each other in all directions. In the
case of torque, windsurfer cannot apply any signi�cant

https://www.pwaworldtour.com/index.php?id=2254&tx_pwagallery_pi1%5BcurrentPage%5D=17&cHash=8753f80c75317880a968b8379cc1ad55
https://www.pwaworldtour.com/index.php?id=2254&tx_pwagallery_pi1%5BcurrentPage%5D=17&cHash=8753f80c75317880a968b8379cc1ad55
https://www.pwaworldtour.com/index.php?id=2254&tx_pwagallery_pi1%5BcurrentPage%5D=17&cHash=8753f80c75317880a968b8379cc1ad55
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torque (measured with respect to the front strap) par-
allel to the line joining his feet (otherwise it would be
uncomfortable to maintain for longer time). In the re-
maining two linearly independent directions there is no
problem in applying torque. If the sail is regarded (or
actually the entire rig), it is connected with the board
by a rubber joint, which transfers any force freely, but
no torque (with respect to that joint). Of course, the
sailor exerts force and torque on the sail, but it is done
in a special way and we are going to keep this interac-
tion as variables describing state of the foil and thus not
reducing more equations. Summarizing, we are left with
six equations for the force-torque balance of the entire
system, one equation for torque balance of the sailor and
three equations for torque balance of the sail. This re-
sults in ten equations in total. Now we need to �nd at
least ten variables that describe state of the foil during a
�ight, in order to obtain solvable system of equations.

Here we have to distinguish between state variables
and equipment parameters. The former may change dur-
ing sailing and describe current state of the foil in a �ight.
The later express equipment setup and are not varied
during sailing, thus we regard them temporarily as con-
stant. Quantities vT and ϕ deserve separate classi�ca-
tion, as for each possible pair of them we try to calculate
performance. Therefore they will be referred to as input
variables.

Total number of state variables is greater than ten.
This allows the sailor to ride di�erently for the same in-
put variables. However, this freedom is somehow con-
strained and sailors usually adopt one, most e�cient
technique. For this reason, among all state variables,
we can further distinguish ten basic (which we treat as
unknowns in the ten equations for equilibrium) and a
few additional variables corresponding to the mentioned
freedom in performance.

Choice of equipment parameters (not their values, but
what they should represent) is quite natural, because
they are already speci�ed clearly enough by sailors and
manufacturers. The case of state variables is harder, be-
cause they can be picked in a number of ways. Choosing
ten basic out of them is another dilemma. In order to
do it reasonably, sailing intuition has been used: Addi-
tional variables should correspond to elements directly
controlled by the sailor. These are: bending knees (de-
scribed by e�ective lengths of the legs), position of the
rear foot (which is often out of strap), height of the �ight
and outhaul regulation. Remaining (basic) state vari-
ables are: speed of the foil, three angles describing ori-
entation of the sail, next three angles describing orienta-
tion of the board, one angle corresponding to long-wise
shift of sailor's body (it is not directly under windsurfer's
control, because it is determined by the torque from the
foils), tension of the harness lines and one component of
torque exerted by sailor's arms through the boom on the
sail.

Figure 5: Board coordinate system shown on the
Olympic iQFOiL model

IV. MODULAR STRUCTURE OF THE VPP

Before we can solve the ten equations for equilibrium
of the foil, they need to be �rst established. This re-
quires knowledge of the aerodynamic and hydrodynamic
forces and torques involved. Such a task is quite di�-
cult on its own and is usually completed by collecting
data from experiments or CFD (computational �uid dy-
namics) simulations. Future VPP should be able to take
in such data, and generate appropriate polar plots. For
this reason, it is convenient to built the VPP from mod-
ules - parts of code which are responsible for di�erent
sub-problems (like determining forces on the hydrofoils
or the sail) and can be fed with data from experiments,
CFD or even with approximations. In the following sec-
tions, we are primarily interested in the architecture of
VPP, i. e. the way all modules work together in order to
establish the equations for equilibrium and how they are
subsequently solved. For this purpose, the modules will
be �lled only with approximations based on [5] and [6].

V. SAILOR POSITION MODULE

This module is the most mathematical one. It assumes
a stick-man model for sailor's body and calculates posi-
tion of his joints using methods of analytic geometry.
During explaining the ideas behind VPP, we will intro-
duce a few Cartesian coordinate systems (each module
uses its own), but all with the same zero point. This
module makes use of the board coordinate system (�g.
5) de�ned as follows. Its origin is situated on the top
surface of the board at the position of the front screw
of the foil mast. xy-plane coincides with the deck, with
x-axis directed forward (from stern to bow) and y-axis
directed windward. z-axis points upwards. In order to
obtain right-handed system, we have to consider sailing
on port.
Crucial elements of the geometry of windsur�ng are

the harness lines. For simplicity we assume the �rst con-
�guration presented on �gure 6, where points at which
the lines are attached to the boom are close to each
other. Also, we assume that the harness freely rotates
around windsurfer's body and behaves like a ball joint.
All mentioned simpli�cations reduce the somewhat com-
plex constraints of the harness lines to a single condi-
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Figure 6: Two slightly di�erent settings of the harness
lines; picture taken from �How to windsurf 101� blog by

Arne Gahmig, https://howtowindsurf101.com/
how-to-set-up-the-harness-lines/

tion: Distance between point L (at which harness lines
are attached to the boom) and some �xed point P on
sailor's torso is constant and equal leff (�g. 7). We use
a stick-man model for sailor's body, in which arms, legs
and torso with head are straight lines. We have thus only
two joints: K - connecting legs with torso and R - joining
torso with arms. Point P in this approximation lies on
the KR segment. We can introduce a unit vector v̂ with

direction along
−−→
KR and two �xed distances x1 and x2,

such that P = K + x1v̂ and R = K + x2v̂ (once we have
set the origin of the coordinate system, each point X can
be associated with a vector from that origin to X, so
that we can perform operations on points as on vectors).
Distance |RL| is constrained by the length of arms, so we
can write |RL| = larm. Of course larm is only an e�ective
length and it is shorter than arms if they are bent. We
can perform similar reasoning for the legs. Let F1 and
F2 be the position of the front and rear foot respectively.
We assume F1 to coincide with the front foot strap, but
it is not the case for F2 as the rear foot strap is often
absent. We can write |F1K| = leg1, |F2K| = leg2, where
leg1 and leg2 are e�ective lengths of the front and rear leg
respectively (i. e. these distances are shorter when the
legs are bent).
Summarizing, we end up with the following conditions:

|F1K| = leg1, |F2K| = leg2,

|RL| = larm, |PL| = leff

(3)

With no additional conditions, there are �ve degrees
of freedom in choosing position of point K and direction
of vector v̂. Four constraints from (3) leave us with just
one remaining degree of freedom, which we call β. The
task of the sailor position module is to �nd K and v̂,
given F1, F2, L and β (together with distances x1, x2,
leg1, leg2,larm and leff).
Let M be a projection of point K onto segment

F1F2 (�g. 8). Let h = |MK| and df = |F1F2|.
We can introduce a parameter u ∈ (0, 1), such that
M = (1− u)F1 + uF2. Thus |F1M | = dfu. Using

Pythagorean Theorem, we have h2 = l2eg1 − (dfu)
2
and

|MF2| =
√
l2eg2 − h2, so |MF2| =

√
l2eg2 − l2eg1 + (dfu)

2
.

Figure 7: Distance |PL| = leff ; photo of Maciek
Rutkowski provided by FotoSurf

Of course, |F1M | + |MF2| = df , which can be written
now as:

dfu+
√
l2eg2 − l2eg1 + (dfu)

2
= df (4)

Solving for u, we get:

u =
l2eg1 − l2eg2 + d2

f

2d2
f

(5)

Using

h =
√
l2eg1 − (dfu)

2
=
√

(leg1 − dfu) (leg1 + dfu)

and substituting (5) for u, we get:

h =

√(
l2eg2 − (leg1 − df )

2
)(

(leg1 + df )
2 − l2eg2

)
2df

(6)

Position of K can be written as M +
−→
h , where

−→
h is

a vector of length h perpendicular to
−−−→
F2F1. Direction of−→

h has to be chosen so as to satisfy the second pair of
constraints from (3). Let us write them using K and v̂:

https://howtowindsurf101.com/how-to-set-up-the-harness-lines/
https://howtowindsurf101.com/how-to-set-up-the-harness-lines/
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Figure 8: F1F2K triangle

{
|K − L|2 + x2

1 + 2 (K − L) · v̂x1 = l2eff

|K − L|2 + x2
2 + 2 (K − L) · v̂x2 = l2arm

(7)

Rearranging terms in (7), we obtain:

2 (K − L) · v̂ =
l2eff−(|K−L|2+x2

1)
x1

2 (K − L) · v̂ =
l2arm−(|K−L|2+x2

2)
x2

(8)

Thus:

l2eff −
(
|K − L|2 + x2

1

)
x1

=
l2arm −

(
|K − L|2 + x2

2

)
x2

(9)

Solving for |K − L|2, we get:

|K − L|2 =

(
l2eff − x2

1

x1
− l2arm − x2

2

x2

)
/

(
1

x1
− 1

x2

)
(10)

Using |K − L|2 =
∣∣∣M − L+

−→
h
∣∣∣2, we can write:

|K − L|2 = |M − L|2 + h2 + 2 (M − L) ·
−→
h (11)

This gives:

(M − L) · ĥ =
|K − L|2 −

(
|M − L|2 + h2

)
2h

(12)

Equations (6) and (12), together with the fact
−→
h⊥
−−−→
F2F1 allow us to determine

−→
h . We know the com-

ponent of ĥ along M − L, so it is useful to decompose it
in the following way:

ĥ = cosϑ p̂+ sinϑ r̂, (13)

where −→p = (F1 − F2) × (M − L), p̂ = −→p / |−→p | and r̂ =
p̂×(F1 − F2). Taking a scalar product of (13) withM−L
and exploiting the properties of a mixed product, we get:

sinϑ =
(M − L) · ĥ
(M − L) · r̂

(14)

It is su�cient to put ϑ = arcsin
(

(M−L)·ĥ
(M−L)·r̂

)
. There

is another branch of the solution with negative sign of
cosϑ. This however corresponds to a situation, when

ĥ is directed downwards, which is not what occurs in
practice.
Now we need to �nd v̂ from (8). Special choice of

|K − L|2 (formula (10)), made the system of two equa-
tions for v̂ indeterminate (in fact both became identical).
Thus v̂ can have any direction, provided that (K − L) · v̂
is as given by (8). This single degree of freedom can be
parameterized by variable β as follows:

v̂ =
K − L
|K − L|2

(K − L) · v̂+

(
cosβ â+ sinβ b̂

)√
1−

(
K − L
|K − L|

· v̂
)2

, (15)

where, for example, −→a = x̂ × (K − L), â = −→a / |−→a |
and b̂ = â × K−L

|K−L| . As β increases, sailor's torso shifts

backwards. It is reasonable to assume β ∈ [−π/2, π/2].
Closed-form formula for given geometrical problem

could be built, nesting appropriate equations from above.
This would yield very complex result, which is not in fact
necessary, as obtained formulas are enough for construct-
ing an algorithmic solution (�g. 9 shows an exemplary
result).

VI. GLIDER MODULE

Glider module takes in just four state variables: speed
v and three RPY angles θf , φf , ψf describing orientation
of the board. It returns the total force and torque gen-
erated by the foils.
Let us introduce the �main� coordinate system. Its

origin coincides with the board coordinate system. Its
x-axis is directed as the velocity −→v , y-axis is horizontal
and directed windward, while z-axis is vertical (and di-
rected upwards). Neutral orientation of the board (i. e.
the one with (θf , φf , ψf ) = (0, 0, 0)) corresponds to a sit-
uation when the board coordinate system coincides with
the main coordinate system. In order to �nd the position
of the board for (θf , φf , ψf ) 6= (0, 0, 0), we subsequently
apply to it the following rotations. First we rotate it
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Figure 9: Stick-man model generated by the sailor
position module

by angle ψf around the main z-axis. Secondly, we ro-
tate it by angle −φf around the main y-axis and �nally
we rotate by −θf around the main x-axis. Presence of
the minuses is to ensure that φf > 0 means pitching up
and θf > 0 represents heeling to windward, as it usually
occurs in the case of windsur�ng foil.

Described transformation can be written as a 3D-
rotation matrix given by equation (16).

Now we de�ne the glider coordinate system, which we
obtain by rotating all axes of the main coordinate system
by angle −θf around the x-axis. Output of this module
is given in this system, because it reduces the role of
angle θf signi�cantly. Neglecting water-air interface ef-
fects (i. e. waves), this output will be independent of
θf , as all forces and torques are expected to simply ro-
tate (together with the glider coordinate system) as θf is
changed.

Inputs and outputs of the glider module are already de-
�ned. We are in a position to �ll it with approximate for-
mulas based on [5] and [6] as announced before. Among
the RPY angles, θf takes the greatest values. Presence
of some positive θf can be easily seen by eye, while vis-
ibility of φf > 0 or ψf > 0 is rather subtle (take-o� and
very low speed are exceptions). For this reason, forces
generated due to φf and ψf can be regarded as inde-
pendent (in φf , ψf � 1 approximation). ψf is just the
angle of attack of the foil mast, so as long as we are away
from stalling limit, lateral force is proportional to ψf . As
for φf , it changes the angle of attack of the front wing,
fuselage and the tail wing, so lift also increases with it lin-
early. Zero-lift angle can di�er signi�cantly from φf = 0,
due to the rake and the glider itself. Thus lift can be
said to be proportional to φf − r, where r is some ef-

fective rake angle. To complete the model, drag can be
expressed as a quadratic function of lift and appropriate

factors have to be included. The total force
−→
F f , gen-

erated by the foils, has the following components in the
glider coordinate system (equation (17)):

−→
F f =

1

2
ρwv

2S1

 −CDCLm
CLf


glider

, (17)

with


CLm = Sm

S1
smψm

CLf = sf (φf − r)
CD = AfC2

Lf + BfCLf + Cf
+AmC2

Lm + BmCLm + Cm

(18)

ρw is the water density. S1 is the planform area of
the front wing. Sm is the wetted area of the foil mast
and sm is its lift-curve slope. sf is the e�ective lift-
curve slope for the glider (for vertical lift). Coe�cients
Af ,Bf , Cf ,Am,Bm, Cm are present just to approximate
drag as a quadratic function of lift. Values of Am,Bm, Cm
depend on the depth of submersion, due to changes in the
aspect ratio of the mast wetted part.
In the case of torque, we have:

−→τ f =
1

2
ρwv

2S1

×


(tboard +H − κhm)CLm(

−lACCLf − lCτf + (tboard +H)CDf
+ (tboard +H − κhm)CDm

)
0


glider

(19)

tboard is the thickness of the board (on the stern). H
is the total height of the foil mast, while hm is its wetted
part. κ is a factor indicating the vertical position of the
hydrodynamic center of the foil mast. lAC is the posi-
tion of the neutral point of the glider. l is the length of
the fuselage. Cτf is the pitching moment coe�cient of
the glider referred to l. CDf = AfC2

Lf + BfCLf + Cf
and CDm = AmC2

Lm + BmCLm + Cm. Vanishing of the
z-component of −→τ is due to the choice of the point of
reference (which is the common origin of the coordinate
systems): Front screw of the foil mast is roughly above
its hydrodynamic center. Even if it is not so, we can shift
the reference point to satisfy this condition (after all po-
sition of the screw itself does not a�ect performance).

VII. SAIL MODULE

This module is designed in full analogy to the glider
module. The only di�erence is that the velocity −→v gets
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TRPY (θ, φ, ψ) =

 cosψ cosφ − sinψ cosφ − sinφ
cos θ sinψ + sin θ cosψ sinφ cos θ cosψ − sin θ sinψ sinφ sin θ cosφ
cos θ cosψ sinφ− sin θ sinψ − sin θ cosψ − cos θ sinψ sinφ cos θ cosφ

 (16)

replaced by the apparent wind velocity with reversed di-
rection −−→v A. Orientation of the sail (or actually the
entire rig) is given by three RPY angles θs, φs, ψs. Neu-
tral position can be chosen arbitrarily, but it seems most
natural to set it at zero angle of attack and no sweep.
Sail coordinate system is obtained as follows. x-axis is
directed as vector −−→v A. For θs = 0, y-axis is horizontal
and directed windward (when referred to the true wind)
and z-axis is vertical (pointing upwards). If θs 6= 0, these
axes have to be rotated by −θs around the x-axis.
Signi�cant twist and variable camber along the span

characterize windsur�ng sails. This makes the air�ow
past them rather complicated. Given sail has basically
two changeable parameters: downhaul and outhaul reg-
ulation. The �rst changes tension on the mast and thus
its curvature, which a�ects twist and shape in general
(also camber). It is an equipment parameter. The sec-
ond in�uences mainly camber and can be varied during
sailing. Thus it is described by an additional state pa-
rameter, which we denote by ψ0. Sail works usually with
some nonzero sweep. This actually makes only CFD (or
experimental) data reliable. Nevertheless, for now, we
want some toy model to �ll this module and obtain at
least qualitative predictions. Problem of sweep can be
handled by invoking the cross-�ow principle (from [5]
and [6]), which states that the component of the free
stream velocity parallel to the span-wise direction can be
neglected. This reduces the �ow to the no sweep situa-
tion. Lift coe�cient CLs can be approximated by a linear
function of ψs and drag coe�cient CDs by a quadratic
function of CLs. Zero-lift angle depends on the camber,
so we can assign value of this angle to ψ0. This gives:

−→
F s =

1

2
ρav

2
A cos2 φsSs

TRPY (0, φs, 0)

 −CDs−CLs
0


sail

,

(20)
with

{
CLs = ss (−ψs + ψ0)

CDs = AsC2
Ls + BsCLs + Cs

(21)

Subscript sail indicates that the components are given in
the sail coordinate system. ρa is the air density. Ss is
the sail area and ss is the lift-curve slope. Coe�cients
As, Bs, Cs play analogous role to Af , Bf , Cf and Am,
Bm, Cm. Presence of cosφs and TRPY (0, φs, 0) is due
to the cross-�ow principle. If ss (−ψs + ψ0) exceeds the
maximal lift coe�cient CLsMax, we are unarguably out
of the range of applicability of the linear approximation.

It starts to be not accurate already for smaller values of
CLs, but here is the limit when it gives opposite trend
(further increasing of the angle of attack decreases lift).
This problem can be avoided as follows (keeping in mind
that it is only a toy model): If ss (−ψs + ψ0) > CLsMax,
we follow (21) normally, but then reduce CLs down to
CLsMax (in other words we evaluate CDs with the over-
estimated value of CLs). This leads to further increasing
drag CDs for ss (−ψs + ψ0) > CLsMax with no increment
in CLs. Thus situation ss (−ψs + ψ0) = CLsMax is always
more favorable than ss (−ψs + ψ0) > CLsMax, which im-
itates stalling.
Total torque on the sail (exerted by aerodynamic

forces) is calculated with respect to the mast foot. It
can be approximated as follows:

−→τ s = (TRPY (0, φs, ψs) rAC)sail ×
−→
F s

+
1

2
ρav

2
A cos2 φsSscsCτs

TRPY (0, φs, 0)

 0
0
1


sail

(22)

rAC is a column matrix (a vector) representing the com-
ponents of the position vector (relative to the mast foot)
of the sail aerodynamic center in the neutral orientation.
It is regarded as a constant here, which in general should
depend on ψ0. Cτs is the pitching moment coe�cient
referring to the cord length cs.

VIII. BOARD MODULE

A windsur�ng foil racing board has a considerable size
when compared to other water sports employing a board.
This is mainly due to the need of exerting su�cient right-
ing moment to the set. Moreover, the board is rigidly
connected to the foils, so its angle of attack cannot be
prevented from changing. Thus aerodynamic forces gen-
erated on it should be taken into account.
It is convenient to follow the same convention as for

the sail. We use three RPY angles θb, φb, ψb describing
orientation of the board relative to its neutral one (which
occurs when the x-axis of the board coordinate system is
parallel to −−→v A, y-axis is horizontal and directed wind-
ward, while z-axis is vertical and directed upwards). If
we take the axes of the board coordinate system at its
neutral orientation and than rotate them by −θb around
the x-axis, we obtain the �output board coordinate sys-
tem�, in which the output of this module is given. This
is exactly the same idea, which we used for the sail, but
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now the term �board coordinate system� is reserved for
that rigidly �xed to the board itself. Now the glider,
sail and board modules are compatible in the way they
take inputs and return outputs relative to the �ow of the
corresponding �uids.
The problem is, that θb, φb, ψb are not state variables,

but rather they can be expressed in terms of them. This
issue arises from the fact that the glider and the board are
rigidly connected, while immersed in two di�erent �uids,
which free-stream velocities are not parallel. Let x̂b, ŷb
and ẑb denote unit vectors with directions along axes of
the board coordinate system. Let v̂A = −→v A/vA. The
following simple dot products can be used to calculate
θb, φb, ψb:

ẑb · v̂A = sinφb (23)

ŷb · v̂A = sinψb cosφb (24)

(x̂b sinψb + ŷb cosψb) · ẑ = − sin θb (25)

ẑ is a unit vector directed vertically (i. e. along z-axis of
the main coordinate system). Thus:

φb = arcsin (ẑb · v̂A) (26)

ψb = arcsin

(
ŷb · v̂A
cosφb

)
(27)

θb = − arcsin ((x̂b sinψb + ŷb cosψb) · ẑ) (28)

In order to express θb, φb, ψb in terms of θf , φf , ψf and
α, we can write unit vectors in formulas (26)-(28) in the
main coordinate system:

x̂b =

TRPY (θf , φf , ψf )

 1
0
0


main

(29)

ŷb =

TRPY (θf , φf , ψf )

 0
1
0


main

(30)

ẑb =

TRPY (θf , φf , ψf )

 0
0
1


main

(31)

v̂A =

TRPY (0, 0, α)

 −1
0
0


main

(32)

It is useful to �nd the unit vectors x̂ob, ŷob, ẑob cor-
responding to the axes of the output board coordinate
system:

x̂ob = −v̂A, ŷob =
v̂A × ẑb
|v̂A × ẑb|

, ẑob = −v̂A × ŷob (33)

No ��lling� of this module will be proposed, because
the VPP can be launched without it (which is not true
in the case of the glider or sail modules).

IX. SAILOR WINDAGE MODULE

Sailor's body creates aerodynamic drag DW . For
present purposes it is assumed to be independent of
sailor's position, so we need just one parameter to de-
scribe it, namely the e�ective drag area SW . Then:

DW =
1

2
ρav

2
ASW (34)

This force can be assumed to act on some point of the
form K + xwv̂.

X. CENTER OF MASS MODULE

For given RPY angles θf , φf , ψf , θs, φs, ψs, point K
and unit vector v̂, geometry of �ight is fully determined.
Knowledge of masses of each component allows us to cal-
culate the total mass M and its center CM . The same is
done for the sailor alone, based on his stick-man model
and statistical data from [7].

XI. COMBINING OUTPUTS OF THE

MODULES

Now we are in a position to determine the ten equations
indicating equilibrium of the foil in a �ight by combining
outputs of the mentioned modules. Let us write all ten
basic state variables:

v, θs, φs, ψs, θf , φf , ψf , β, Tlines, τarms (35)

together with the additional state variables:

ψ0, F2x, F2y, leg1, leg2 (36)

F2x, F2y are coordinates (in the board coordinate system)
of the point F2. Tlines refers to the tension of the har-
ness lines and τarms is the torque applied to the boom
by sailor's arms. We will express all further formulas in
terms of the input variables vT , ϕ and those from (35)
and (36).
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Apparent wind speed vA and angle α can be calculated
using the wind diagram (�g. 1), the cosine and sine laws:

vA =
√
v2
T + v2 + 2vT v cosϕ (37)

α = arcsin

(
vT
vA

sinϕ

)
(38)

First, we calculate the net force acting on the entire
system. We write it in a form, such that it is straight-
forward to obtain its components in the main coordinate
system.

−→
F net =

 0
0
−Mg


main

+ (TRPY (θf , 0, 0)Ff )main︸ ︷︷ ︸
−→
F f

+(TRPY (0, 0, α)TRPY (θs, 0, 0)Fs)main︸ ︷︷ ︸
−→
F s

+ [x̂ob, ŷob, ẑob]Fb︸ ︷︷ ︸
−→
F b

+DW v̂A, (39)

g is the acceleration due to gravity. Ff , Fs and Fb rep-
resent force components returned by the glider, sail and

board modules respectively.
−→
F b is the total force acting

on the board (as a vector in absolute notation).
Secondly, we do the same thing for the net torque.

Sailor's position is meaningful here, but the module re-
sponsible for that needs coordinates of the point L in
the board coordinate system. L is �xed to the rig,
so its coordinates L0 in the sail coordinate system at
(θs, φs, ψs) = (0, 0, 0) should be regarded as equipment
parameters. We can calculate coordinates of L in the
board coordinate system (denoted as Lb) by applying the
following rotations and translations:

Lb = R

L0 −

 xfoot

0
0

+

 xfoot

0
0

 , (40)

where

R = (TRPY (θf , φf , ψf ))
−1
TRPY (0, 0, α)TRPY (θs, φs, ψs)

xfoot is the distance from the common origin of coordinate

systems and the mast foot. Subtracting [xfoot, 0, 0]
T
from

L is equivalent to shifting the origin to the mast foot.
Strictly speaking, it is the position of the rubber joint

that is relevant, so [xfoot, 0, 0]
T
should, in general, contain

some small nonzero z-component. Formula (40) follows
simply from the fact, that both

TRPY (0, 0, α)TRPY (θs, φs, ψs)

L0 −

 xfoot

0
0



and

TRPY (θf , φf , ψf )

Lb −
 xfoot

0
0


are equal and represent the coordinates of L in the main
coordinate system (shifted so that the origin is at the
mast foot).
The net torque −→τ net (measured with respect to the

common origin of the coordinate systems) can be now
calculated:

−→τ net =

CM ×
 0

0
−Mg


main

+ (TRPY (θf , 0, 0) τ f )main︸ ︷︷ ︸
−→τ f

+ (TRPY (0, 0, α)TRPY (θs, 0, 0) τ s)main︸ ︷︷ ︸
−→τ s

+

TRPY (θf , φf , ψf )

 xfoot

0
0


main

×
−→
F s

+ [x̂ob, ŷob, ẑob] τ b︸ ︷︷ ︸
−→τ b

+ (TRPY (θf , φf , ψf ) (K+ xwv̂))main︸ ︷︷ ︸
K+xw v̂

× (DW v̂A) (41)

CM is the output of the center of mass module. τ f ,
τ s and τ b represent torque components returned by the
glider, sail and board modules respectively. K and v̂ are
components of the K and v̂ vectors in the board coor-
dinate system (they are returned by the sailor position
module). Torque due to the board and the glider is given
with respect to the common origin. In the case of the
sail, −→τ s is measured with respect to the mast foot, which
results in an additional term (fourth line in (41)).
We have already established six equations governing

the performance of the foil, which can be written as−→
F net = 0, −→τ net = 0. There are yet four equations left,
corresponding to the net torque on the sail −→τ sail (mea-
sured with respect to the mast foot) and one component
of the torque on the sailor τsailor. The latter is mea-
sured with respect to the the front foot F1 along direction
F1F2. In order to calculate these quantities we need to
specify precisely the meaning of τarms. We assume that
the total force exerted on the boom by arms is zero, in
other words, left and right arms act with opposite forces,
which results only in some torque. This minimizes the
loads on arms and even though di�erent distributions of
forces are possible, they are not considered maintainable
for longer time and are excluded from further analysis.
Forces due to the arms are assumed to be parallel to
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K + x2v̂ − L. Let −→r hands denote a vector from the rear
hand to the front one. Torque τarms has direction along
the vector −−→r hands × (K + x2v̂ − L). In this sign con-
vention, τarms > 0 corresponds to pulling the rear arm.
−→r hands is roughly parallel to the tangent to the boom at
point L. If rhands denotes the components of −→r hands in
the sail coordinate system at (θs, φs, ψs) = (0, 0, 0), it can
be regarded as equipment parameter. Then direction of
τarms can be calculated as direction of the following vec-
tor given in the main coordinate system:

D = − (TRPY (0, 0, α)TRPY (θs, φs, ψs) rhands)

× (TRPY (θf , φf , ψf ) (K+ x2v̂− Lb)) (42)

Now −→τ sail and τsailor can be written out:

−→τ sail = −→τ s

+ (TRPY (0, 0, α)TRPY (θs, φs, ψs)Cmsail)main ×

 0
0

−msailg


main

+

TRPY (θf , φf , ψf )

Lb −
 xfoot

0
0


main

× TlinesT̂lines

+τarms

(
D

|D|

)
main

(43)

msail is the mass of the rig. Cmsail + [xfoot, 0, 0]
T

is the position of the center of mass of the rig at
(θs, φs, ψs) = (0, 0, 0) in the main coordinate sys-

tem. T̂lines is a unit vector obtained by normalizing
(TRPY (θf , φf , ψf ) (K+ x1v̂− Lb))main.

τsailor =(
(TRPY (θf , φf , ψf ) (Cmsailor − F1))main ×

 0
0

−msailorg


main

− (TRPY (θf , φf , ψf ) (K+ x1v̂− F1))main × TlinesT̂lines

−τarms

(
D

|D|

)
main

)
·
−−−→
F2F1

|F2F1|
(44)

Cmsailor is the position of the center of mass of the sailor
in the board coordinate system. F1 and F2 represent the
coordinates of points F1 and F2 respectively (in the board

coordinate system). msailor is sailor's mass. Vector
−−−→
F2F1

can be expressed as (TRPY (θf , φf , ψf ) (F1 − F2))main.

We have presented how to combine outputs of the mod-

ules, in order to calculate
−→
F net,

−→τ net,
−→τ sail and τsailor,

which equated to 0 give the ten equations governing the
performance of the foil. In subsequent sections, we turn
to the problem of solving them numerically.

XII. DIFFICULTIES IN FINDING A SOLUTION

Complexity of the equations which we want to solve,
gives us no clue about the number or even existence of
the roots. However, we know that there are �physical� so-
lutions, because the equations represent a situation well-
known from practice - steady sailing on course. VPPs
usually employ the Newton-Raphson algorithm for solv-
ing non-linear systems of equations (because of its speed).
It has two important disadvantages though: Jacobian has
to be calculated and good starting point is required. We
cannot easily determine the derivatives of the established
equations, but �nite di�erences can be used instead. The
latter issue is slightly more problematic. Choosing a ran-
dom starting point usually does not provide convergence.
It is not a problem in general, because if at least one
solution for given parameters (i. e. input variables, ad-
ditional variables and equipment parameters) is known,
we can change them in small steps, each time solving
the equations with the starting point taken from the last
step. If the changes are su�ciently small in each update,
convergence is provided. Finally a solution for arbitrary
parameters can be found. This method (similar in its
spirit to homotopy [8]) cannot be used to �nd the so-
lution for the �rst time. Two di�erent approaches have
been used for this task.
The �rst is a brute force method, in which we pick a

random starting point (chosen from the physically possi-
ble subset of the state space), then we run the Newton-
Raphson. The procedure is repeated until convergence
is obtained. Even though such algorithm is very ine�-
cient, it is acceptable, as we use it only once (before any
solutions are known). It is good to mention that run-
ning it many times gave exactly two distinct roots. The
way hydrodynamic drag is modeled in the glider mod-
ule is responsible for that. When v → 0+, pro�le drag
of the horizontal foils tends to zero, but for given con-
stant lift, induced drag tends to in�nity. When v → ∞,
the situation is reversed, pro�le drag tends to in�nity,
but induced drag (for given lift) tends to zero. Thus the
same hydrodynamic drag may be achieved at two di�er-
ent speeds. This may lead to existence of two di�erent so-
lutions. That with lower value of v is often unstable, be-
cause when the induced drag dominates, increasing speed
reduces drag. Even if it is not the case, the solution with
greater value of v should be always considered, as it is
preferable.
The second approach is more sophisticated and ex-

ploits some physical intuitions. It is explained in the
next section.

XIII. EQUATION BY EQUATION METHOD

This strategy is based on qualitative knowledge of the
forces and torques involved (�g. 4). Sailing is possible
primarily due to the presence of the sail thrust (arrow
number 1). It is opposed by the hydrodynamic drag (ar-
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row number 6), which results in some �nite equilibrium
speed. Of course, it is not the full story. This corre-
sponds just to one equation Fx = 0 (where Fx denotes

the x-component of
−→
F net in the main coordinate system).

Final speed is in�uenced by other equations as well, for
example heavy sailor will need slightly more pitch angle
in order to satisfy Fz = 0, which leads to greater in-
duced drag on the front wing. Even though in�uence of
these equations on speed is high, we can obtain the �rst
(very rough) approximation by solving Fx = 0 alone for
v, treating other basic state variables as constant.
When θs, φs, ψs are held constant and v changes, ap-

parent wind angle α varies and thus the orientation of
the sail too. If RPY angles θs, φs, ψs and θf , φf , ψf have
certain values, sailor position module returns complex
numbers, because its geometrical task is unsolvable. For
this reason, Fx as a function of v alone can be complex for
some inputs and real-valued elsewhere. This complicates
solving Fx = 0. In order to avoid the problem, we can
replace θs, φs, ψs (which refer to the apparent wind angle
−−→v A) by θ′s, φ′s, ψ′s (referring to −→v similarly as the RPY
angles θf , φf , ψf of the glider), for the role of basic state
variables. Given (θ′s, φ

′
s, ψ
′
s), we can calculate (θs, φs, ψs)

(which is necessary to use the sail module) in the same
way, as given (θf , φf , ψf ), we calculate (θb, φb, ψb) (for-
mulas (26)-(28)). Now Fx as a function of v behaves
much more intuitively. Increasing v decreases α and mag-
ni�es pro�le drag of the foils. Even though induced drag
decreases, this is a minor e�ect for operational speeds, so
generally ∂Fx/∂v < 0. This condition provides a stable
solution. Solving Fx = 0 can be done in almost no time
by the Newton-Raphson algorithm. Starting value of v
should be taken su�ciently large, to �nd the stable solu-
tion. There may exist an unstable one for unusually low
speeds (as explained before).
We can make the next step towards solving the full

system by considering three equations at once. In or-
der to satisfy Fy = 0 and Fz = 0, lift generated on the
foils (arrows 4 and 5) is needed. It is produced by ap-
propriate angles of attack φf − r and ψf . Their values
in�uence total hydrodynamic drag (arrow 6) and thus

speed too. Now we consider system
−→
F net = 0 for vari-

ables v, φf , ψf . Starting point is chosen from the previous
result. Remaining basic state variables are regarded still
as constants.
We keep adding equations and state variables until we

solve the entire system. The general idea is to choose
pairs equation-variable so that the former strongly de-
pends on the latter (so that the newly added equation
can be satis�ed by adjusting the value of the newly added
variable). It is perfect when other equations are weakly
dependent on this variable, because values of already in-
cluded variables would not change signi�cantly after next
update. Of course, this is not always possible.
In the spirit of the mentioned rule, we seek for an

equation, which can be paired with θf . Due to some
nonzero heel, not only the foil mast takes part in gen-
erating the hydrodynamic lateral (horizontal) force, but

also the main foil. Total magnitude of this force is de-
termined by the aerodynamic side force and depending
on the heel, it is split among the vertical and horizontal
foils. Center of pressure of the front and tail wings (con-
sidered together) is well ahead of that of the foil mast.
Thus distributing more of the lateral force on the main
foil (which occurs for greater θf ), brings some yawing
torque, which increases τz (z component of −→τ net in the
main coordinate system). It is reasonable then to pair
equation τz = 0 with variable θf . To justify it even more
simply, we can note that turning on the foil is realized by
heeling the board.
Remaining components of the net torque: τx and τy

can be paired with θ′s and β. Justi�cation is as follows.
Windsurfers lean back (increasing θ′s) until τx = 0 is
satis�ed. In the learning process it sometimes happens,
that θ′s is insu�cient, so τx > 0 and the sailor gets drawn
by the rig to the leeward side. If the lean is exaggerated
(too large θ′s), τx < 0 and the windsurfer falls back into
the water (on the windward side). Increasing β shifts
sailor's mass backwards, which diminishes τy.
Equation τsailor = 0 can be paired with variable Tlines,

since the lines hold the windsurfer in a position. Torque
τarms is applied to the sail and is roughly directed up-
wards, so this variable can be paired with equation
τsailz = 0.
Last two variables φ′s and ψ

′
s correspond clearly to τsaily

and τsailx respectively. When the sail pitches up (φ′s in-
creases), its center of mass shifts backwards, which de-
creases τsaily. Smaller ψ′s magni�es tension on the sail
and thus increases τsailx.
Finally, we get the following order of pairs equation-

variable:

v, φf , ψf , θf , θ
′
s, β, Tlines, τarms, φ′s, ψ′s

Fx, Fz, Fy, τz, τx, τy, τsailor, τsailz, τsaily, τsailx

(45)
Of course, it could have been done in many di�erent

ways. Described method is a way of �nding a certain
path towards the �nal solution in steps, so that Newton-
Raphson can converge each time. It does not guarantee
success, which is partly dependent on the choice of the
starting point (or more precisely the values of the state
variables that are held initially constant). Anyway, it is
based on some intuitions, which are worth mentioning.
It is also faster than the brute force approach. Equation
by equation method solved the system in 0.8 second (for
certain values of the parameters), while the average time
of the random search was 2.4 seconds.

XIV. GENERATING A POLAR PLOT

Generating a polar plot for given vT can be sensibly
performed by means of the step-by-step method similar
to homotopy. We want to solve the equations for a range
of true wind angles ϕ. After obtaining the �rst solution
(for example using the random search), we update ϕ by a
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small increment ∆ϕ. Using the last result as the starting
point for the current solving guarantees that we are close
to the root. This increases chances of convergence. If it
turns out not to be close enough, ∆ϕ can be reduced.
This process is repeated until we cover the relevant in-
terval of ϕ values. Figure 10a shows the result of such
process for vT = 6 m

s . Obtained shape possesses a few
unexpected features. First of all, upwind speed is greater
than downwind speed. Secondly, the curve representing
speed changes sign of curvature. These properties are
possible, but they are very atypical for sailing hydrofoils.

The reason of these anomalies becomes clear, when
we think about the additional state variables. They were
held constant during solving. However, this is not exactly
what happens with them in practice. Sailor changes them
so as to maximize speed. Now, instead of just solving
nonlinear equations, optimization is necessary.

XV. OPTIMIZING ADDITIONAL STATE

VARIABLES

Solving the ten equations with di�erent additional
state variables, gives in general di�erent speed v in the
solution. Thus we are faced with some function (return-
ing v, with the additional state variables as arguments),
which we want to maximize. This approach treats the
basic and additional state variables on unequal footing.
Actually, they play exactly the same role. We are given
n equations for speed v and m di�erent variables. In
our model, n = 10 and m = 14 (it is the total num-
ber of the basic and additional state variables together
without counting v). m > n, so for �xed v we have an
underdetermined system. Let vmax denote the maximal
speed. Considered system of equations has no roots for
v > vmax, while for v < vmax we expect in�nitely many
solutions. v is now not an unknown, but a parameter.
Having a solution for certain speed v0 < vmax, we can
easily search for a root (one out of in�nitely many) for
some speed v0 + ∆v < vmax, in the same way, as we did
it varying ϕ. The only di�erence is that we deal with an
underdetermined system, so an inverse of the Jacobi ma-
trix in the Newton-Raphson algorithm must be replaced
by the Moore-Penrose pseudoinverse [9, 10]. If �nally a
root is not found, there are two possibilities. ∆v is too
large or v0 + ∆v exceeded vmax. If we keep reducing ∆v
su�ciently, the �rst possibility is excepted. This method
allows to determine vmax with maximal uncertainty of
∆v.

Applying described optimization method to the polar
plot generated before, we get the result presented in �g-
ure 10b. It is free of atypical features encountered previ-
ously. Repeating the procedure for a series of true wind
speeds vT leads to a family of polar plots shown in the
�gure 11.

XVI. PRESENTING FULL PERFORMANCE

Constructed VPP produces much more information
than can be read from a polar plot. For example, the
RPY angles and position of the sailor are of high signif-
icance, but cannot be presented this way. To solve this
problem, polar plots can be extended as follows. A single
point (v, ϕ) gets replaced by a three dimensional minia-
ture of the unit during sailing with speed v and true wind
angle ϕ. Figure 12 shows the result of this idea. Red
mark corresponds to the origin (v = 0 point) and red
arrow represents the true wind. Both lengths and veloc-
ities can be read from the extended polar plot, so some
characteristic time t is need to convert speed v to a rep-
resentative distance on the plot vt. Here t = 1.5 s. Used
sail shape was generated by a mathematical formula, de-
signed to reconstruct qualitatively its characteristic.

XVII. ABSOLUTE OPTIMIZATION

The strategy used for optimizing additional state vari-
ables can be used to maximize any quantity q. First,
we treat it as a parameter to the system of nonlinear
equations and whenever they are solvable, q should be
increased by su�ciently small ∆q. This procedure is re-
peated until the maximal value qmax is obtained, past
which no solution can be found. By �absolute optimiza-
tion� we understand such setting of the gear that the
overall course racing performance is possibly the best.
Quantity q corresponding to this task should be an aver-
age of speed projected on the axis of the course (which is
assumed to coincide with the true wind direction), which
we denote by veff . Let vU be the speed for the optimal
upwind angle ϕU . Similarly, let vD stand for the speed
for the optimal downwind angle ϕD. Then:

veff =
2

1+b
vU cosϕU

− 1−b
vD cosϕD

(46)

vU cosϕU and −vD cosϕD are velocities made good for
upwind and downwind respectively. Thus for b = 0, veff

is a harmonic average of them. Usage of this type of av-
erage follows from the fact, that lengths of the upwind
and downwind legs (measured in the direction of the true
wind) are equal. b is a bias parameter. Setting it to
a small positive value accounts for greater importance
of beating to windward from the tactical point of view.
b = 1 would mean that we are interested only in opti-
mizing the upwind performance. If sailing in the bad air
(turbulence due to other sailors) is easy to avoid, b = 0
is the best choice.
During absolute optimization, a system of twenty non-

linear equations has to be solved each time, because
upwind and downwind course are considered simultane-
ously. Each of the 15 state variables has to appear in
two versions (for example θfU and θfD for upwind and
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(b) with speed optimization over the additional
state variables

Figure 10: Polar plots generated for vT = 6 m
s . Speed is given in m

s .
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Figure 11: Polar plots generated for true wind speeds 4,
5, 6, 7 and 8 m

s .

downwind respectively). Additionally, we have to include
ϕU and ϕD. This gives already 32 variables, to which we
add all the equipment parameters we want to optimize
(let neq be their number). Introducing the global pa-
rameter veff , we can get rid of one variable by means of
equation (46). For example, we can substitute:

vU =
1 + b(

2
veff

+ 1−b
vD cosϕD

)
cosϕU

(47)

This gives 31 + neq variables in 20 equations, which
are solved for each veff update. Thus a thorough multi-

parameter optimization may involve solving 20 equations
for even twice that many variables. It is possible to im-
pose constraints on some quantities in the VPP, like for
example board width not greater than 100 cm.
Figure 13 shows the result of optimizing four equip-

ment parameters: leff , xfoot, Ss and S1 (front wing area
was scaled together with the rear wing area). Initial val-
ues leff = 0.66m, xfoot = 1.25m, Ss = 9m2, S1 = 0.09m2

have been tuned to leff = 0.647 m, xfoot = 1.251 m,
Ss = 9.003 m2, S1 = 0.0846 m2. First three were not
modi�ed considerably. Reduction of the front wing area
is rather signi�cant and its e�ect is exactly what foilers
would expect. Downwind performance improved (both
speed and angle), but for upwind sailing the speed got
better at the expense of angle. However, overall outcome
is positive. Gain of ∆veff = 0.089 m

s during a standard
12 min race gives an advantage of 64 m (in the direc-
tion of course axis), which corresponds to 13.4 s of time
bonus. This optimization process has been conducted for
vT = 6 m

s and msailor = 67 kg.

XVIII. LIMITATIONS AND FUTURE

Presented architecture of the VPP is very general and
it is capable of taking in any CFD (or experimental) data.
Its quality will be the main factor determining �delity of
the �nal results. There are, however, some simpli�cations
built in the program itself. First of all, it neglects any in-
terference between the modules, like for example e�ect of
the board on the sail. This can be (to some degree) com-
pensated by introducing e�ective values of some param-
eters (in this case it would be increased e�ective aspect
ratio of the sail, which decreases As). Of course depen-
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Figure 12: Extended polar plot shows the sailor in action on each possible course.
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Figure 13: Red arrows represent enhanced upwind and
downwind velocities. Black ones correspond to the

initial setup.

dence of this e�ective aspect ratio on θf , φf , ψf cannot be
accounted for. Secondly, the stick-man model, apart from
its simpli�ed nature, admits very unnatural positions. It
can be eliminated by introducing constraints for β and
F2, but telling whether a certain position is comfortable
(or at least rideable) for a real sailor is not easy. Next
drawback is due to the complexity of nonlinear equations
and multiplicity of parameters involved in the numerical
methods (like the initial step ∆veff , its minimal value and
rate of reduction). It is good to supervise the program

to control whether assumptions of the methods are met.
One interesting feature is that time required for gener-
ating downwind part of the polars is signi�cantly longer
than that needed for the upwind part. The reason is not
obvious (probably forces and torques vary more quickly
in this region with the state variables).

Di�erent sailing styles may require changes in the pro-
gram. For example, sailors using �xed-length harness
lines should treat leff as an equipment parameter, while
for those using adjustable harness lines, leff becomes an
additional state variable. Mast wetted height hm is ac-
tually an additional state variable, but usually it is not
regarded this way. Keeping the �ight height precisely at
given level is very di�cult, so using an averaged value
hm = 1

2H has been used throughout the calculations.

Stability is not taken into account during optimization.
It does not matter when optimized aspects weakly a�ect
stability. However, if we pick two equipment parame-
ters for optimization like the rear wing area and fuselage
shift (relative to the foil mast), hydrodynamically most
e�cient setting has zero rear wing area and compensat-
ing fuselage shift. Of course, foil is unstable without the
back wing. For this reason, suitable constraints have to
be added by hand to avoid such situation.

The last important limitation concerns the steady-
state assumption. For small and moderate waves, sailor
does not have to react signi�cantly to them. Crests are
passed quickly enough, so their e�ect is smoothed by
time-averaging. Of course, such situation requires ap-
propriate CFD data including presence of the waves, but
it does not seem to corrupt the steady-state assumption.
When the wave height approaches H (roughly one me-
ter), sailing becomes even a greater challenge. Sailor is
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forced to move back and forth periodically (especially
downwind) and dynamic nature of the process is evident.
Then a Dynamic Velocity Prediction Program may be
needed.

Future development of the program will certainly con-
sist in feeding it with realistic data (of a particular real-
life gear to see e�ects of the optimization during races),
adding automatic longitudinal stability constraints (and
possibly rolling and directional too).

XIX. CONCLUSION

Constructed and described VPP is made of modules
(parts responsible for di�erent sub-problems like deter-
mining the force on the sail). The sailor position module
uses a stick-man model to simulate three dimensional ge-
ometry of windsur�ng. The program can be �lled with
CFD (or experimental) data as well with simple approxi-
mations. The last option has been used to produce qual-
itatively reasonable outputs. VPP can generate multiple
polar plot curves for di�erent true wind speeds 11, it
can present details of the performance in three dimen-
sions 12 and it is capable of multi-parameter constrained
optimization of the equipment parameters 13. Future de-

velopment of the program will certainly consist in feeding
it with realistic data (of a particular real-life gear) to see
e�ects of the optimization during races.
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